Существование решения дифференциального уравнения и последовательные приближения
Курсовая работа
Выполнил студент 2 курса 1222 группы Труфанов Александр Николаевич
Государственное образовательное учреждение высшего профессионального образования «Самарский государственный университет»
Механико-математический факультет
Кафедра дифференциальных уравнений и теории управления
Самара 2004
Теорема существования и единственности решения уравнения
Пусть дано уравнение
с начальным условием
Пусть в замкнутой области R функции и непрерывны). Тогда на некотором отрезке существует единственное решение, удовлетворяющее начальному условию .
Последовательные приближения определяются формулами:
k = 1,2....
Задание №9
Перейти от уравнения
к системе нормального вида и при начальных условиях
, ,
построить два последовательных приближения к решению.
Произведем замену переменных
;
и перейдем к системе нормального вида:
Построим последовательные приближения
Задание №10
Построить три последовательных приближения к решению задачи
,
Построим последовательные приближения
Задание №11
а) Задачу
,
свести к интегральному уравнению и построить последовательные приближения
б) Указать какой-либо отрезок, на котором сходятся последовательные приближения, и доказать их равномерную сходимость.
Сведем данное уравнение к интегральному :
Докажем равномерную сходимость последовательных приближений
С помощью метода последовательных приближений мы можем построить последовательность
непрерывных функций, определенных на некотором отрезке , который содержит внутри себя точку . Каждая функция последовательности определяется через предыдущую при помощи равенства
i = 0, 1, 2 …
Если график функции проходит в области Г, то функция определена этим равенством, но для того, чтобы могла быть определена следующая функция , нужно, чтобы и график функции проходил в области Г. Этого удается достичь, выбрав отрезок достаточно коротким. Далее, за счет уменьшения длины отрезка , можно достичь того, чтобы для последовательности выполнялись неравенства:
, i = 1, 2, …,
где 0 < k < 1. Из этих неравенств вытекает следующее:
, i = 1, 2, …,
Рассмотрим нашу функцию на достаточно малом отрезке, содержащим , например, на . На этом промежутке все последовательные приближения являются непрерывными функциями. Очевидно, что т.к. каждое приближение представляет из себя функцию от бесконечно малого более высокого порядка, чем предыдущее приближение, то выполняются и описанные выше неравенства. Из этих неравенств следует:
что и является условием равномерной сходимости последовательных приближений.
С другой стороны, на нашем отрезке выполняется , что также совершенно очевидно. А так как последовательность сходится, то последовательность приближений является равномерно сходящийся на этом отрезке.
Л.С. Понтрягин. «Обыкновенные дифференциальные уравнения», М.: Государственное издательство физико-математической литературы, 1961
А.Ф. Филиппов «Сборник задач по дифференциальным уравнениям», М.: Интеграл-Пресс, 1998
О.П. Филатов «Лекции по обыкновенным дифференциальным уравнениям»,Самара: Издательство «Самарский университет», 1999
А.Н. Тихонов, А.Б. Васильева «Дифференциальные уравнения», М.: Наука. Физматлит, 1998
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- История статистики
Работу выполнил: SerkМГТУ «Станкин»2003 годТема 1. Статистическая сводка. ГруппировкаСтатистическая сводка является вторым этапом статист
- Волновые уравнения
Реферат подготовил студент 2-го курса группы 20-02 ГД Дерюга А.М.Навоийский Государственный горный институтГорный факультетКафедра «Высш
- Интерполяционный многочлен Лагранжа
Лабораторная работаВыполнил: Евгений2003 годИнтерполирование и экстраполирование данных.Многочлен Лагранжа, принимающий заданные знач
- Роль педагогической практики в формировании профессиональной компетентности учителя математики
Е.М. Рейбан, О.П. Логинова, 3 курс Канский педагогический колледж В современной системе образования неотъемлемым качеством учителя долж
- Особенности формирования учебной деятельности младших школьников при обучении математике с применением персональных компьютеров
Иванов Юрий АнатольевичАвтореферат диссертации на соискание ученой степени кандидата педагогических наук Москва - 1990Общая характе
- Содержание и значение математической символики
История науки показывает, что логическая структура и рост каждой математической теории, начиная с определенного этапа ее развития, ста
- Счётные множества
На каждом шагу нам приходиться сталкиваться с тем трудно определяемым понятием, которое выражается словом совокупность. Например, мо