Скачать

Системы счисления и основы двоичных кодировок

Современный человек в повседневной жизни постоянно сталкивается с числами и цифрами: запоминает номера автобусов и телефонов, в магазине подсчитывает стоимость покупок, ведет свой семейный бюджет в рублях и копейках и т.д. Числа и цифры с нами везде! Интересно, что знал человек о числах две тысячи лет назад? А пять тысяч лет назад?

Историки доказали, что и пять тысяч лет тому назад люди могли записывать числа, могли производить над ними арифметические действия. При этом записывали они числа совершенно по другим принципам, нежели мы в настоящее время. В любом случае число изображалось с помощью одного или нескольких символов. В математике и информатике приняты символы, участвующие в записи числа, называть цифрами.

Что же понимается под словом «число»?

Первоначально понятие отвлеченного числа отсутствовало, число было «привязано» к тем предметам, которые пересчитывали. Отвлеченное понятие натурального числа появляется вместе с развитием письменности.

Появление дробных чисел было связано с необходимостью производить измерения (сравнения с другой величиной того же рода, выбираемой в качестве эталона). Но поскольку единица измерения не всегда укладывалась целое число раз в измеряемой величине, то возникла практическая потребность, ввести более «мелкие» числа, чем натуральные. Дальнейшее развитие понятия числа было обусловлено уже развитием математики.

Понятие числа – фундаментальное понятие, как математики, так и информатики. Под числом мы будем понимать его величину, а не его символьную запись.

Сегодня человечество для записи чисел использует в основном десятичную систему счисления. Что же такое – система счисления? Это мы узнаем в ходе изучения материала и в решении различного рода задач.

Цель исследования: Выявить и систематизировать материалы по теме: «Системы счисления и основы двоичных кодировок».

Задачи Исследования:

· Изучить литературу по теме исследования;

· Систематизировать теоретический материал;

· Рассмотреть практические применения теоретического материала.


1. СИСТЕМЫ СЧИСЛЕНИЯ

1.1История возникновения различных систем счисления

Первобытному человеку считать почти не приходилось. "Один", "два" и "много" - вот все его числа. Но нам - современным людям - приходится иметь дело с числами буквально на каждом шагу. Нам нужно уметь правильно назвать и записать любое число, как бы велико оно ни было. Если бы каждое число называлось особым именем и обозначалось в письме особым знаком, то запомнить все эти слова и знаки было бы никому не под силу. Как же справиться с этой задачей? Нас выручает хорошая система обозначений.

Совокупность немногих названий и знаков, позволяющих записать любое число и дать ему имя, называется системой счисления или нумерацией.

Практически на всем земном шаре алфавитом в языке чисел служат 10 цифр, от 0 до 9. Девять из них используются для обозначения первых девяти натуральных чисел, а десятый - нуль - не обозначает никакого числа, он представляет собой так называемую "позиционную пробку". Этот язык называется десятичной системой счисления.

Однако не во все времена и не везде люди пользовались десятичной системой. С точки зрения чисто математической она не имеет специальных преимуществ перед другими системами счисления, и своим повсеместным распространением эта система обязана вовсе не общим законам математики, а причинам совсем иного характера.

В последнее время с десятичной системой серьезно конкурируют двоичная и, отчасти, троичная системы, которыми "предпочитают" пользоваться современные вычислительные машины.

Как люди считали и как называли числа до изобретения письменности, мы точно не знаем. Об этом можно только догадываться. Несомненно, одно: человечество овладевало счетом очень медленно. Однако ко времени изобретения письменности люди уже умели неплохо считать.

Четыре тысячи лет назад наиболее развитые народы (египтяне, халдеи) умели писать и пользоваться не только целыми, но и простейшими дробными числами. Более того, тогда уже существовали школы, в которых обучали искусству счета.

В первобытном письме букв не было. Каждая вещь, каждое действие изображалось картинкой. Постепенно картинки упрощались. Наряду с изображением предметов и действий появились особые фигуры, обозначающие различные свойства вещей, а так же значки для слов, соответствующих нашим предлогам и союзам.

Так возникла письменность, называемая иероглифами; при иероглифической записи каждому значку соответствует не звук, как у нас, а целое слово.

Специальных знаков (цифр) для записи чисел тогда не было. Но словам "один", "два", ... "семнадцать" и так далее соответствовали определенные иероглифы. Их было не так уж много, так как больших чисел люди тогда не знали.

В некоторых странах (например, Китае и Японии) иероглифическое письмо сохранилось и до наших дней. Вот, для примера, несколько иероглифов:

У славян порядок цифр при записи числа был такой же, как в его устном названии. Мы говорим, например, "пятнадцать" (по-славянски - "пять на десять"), называя вперед цифру единиц, потом десяток. Славяне так и писали, то есть впереди писали пятерку, а за нею десяток. Наоборот, в числе "двадцать три" мы сначала называем десятки, потом единицы, у славян сначала три потом двадцать это отображалось в письме.

Чтобы отличить числа от букв, над ними ставили особый значок - титло. Оно ставилось только над одной из цифр. Место цифры, ее положение в записи числа не имело значения.

С помощью этих знаков легко записывались большие числа. Знак титлообозначал тысячи. С помощью повторения этого знака можно было записывать очень большие числа

Числа до тысячи в Древней Руси назывались почти так же, как сейчас. Существовала небольшая разница в произношении (например, "один" называли "един" и тому подобное). Десять тысяч называлось "тьма", и число это считалось столь огромным, что тем же словом обозначалось всякое, не поддающееся учету множество.

В более позднее время (XVI - XVII вв.) появилась своеобразная система наименования чисел, так называемое "великое славянское число", в этой системе числа до 999999 назывались почти так же, как теперь. Слово "тьма" обозначает уже миллион. Кроме того, появляются следующие названия: "тьма тем", или "легион" (то есть миллион миллионов, или триллион, равен 10); "легион легионов", или "модр" (септиллион, 1024); наконец, "модр модров", или "ворон" (то есть 1048).

Позиционная нумерация возникла, по - видимому, в древнем Вавилоне (примерно четыре тысячи лет назад). О ней будет сказано чуть позднее. В Индии она приняла форму позиционной десятичной нумерации с применением нуля. У индусов эту систему чисел заимствовали арабы, ставшие в VIII - IX вв. одним из самых культурных народов мира. От арабов переняли ее европейцы (отсюда название - "арабские цифры").

Особый интерес представляет вавилонская математика. Вавилонская нумерация просуществовала полторы тысячи лет (с XVIII до III в. до нашей эры) и пользовалась широким распространением на всем Ближнем Востоке. Она оказала влияние на китайскую, индийскую и греческую математику.

Вавилоняне писали палочками на пластинках из мягкой глины и обжигали потом свои "рукописи". Получались прочные кирпичные "документы", частично уцелевшие до нашего времени, их нередко находят при раскопках в Месопотамии (теперь Ирак). Поэтому изучить вавилонскую историю и математику в частности удалось довольно хорошо.

На рубеже XIX - XVIII вв. до нашей эры произошло слияние двух народов: сумерийцев и аккадян. Каждый из этих народов имели достаточно развитую торговлю, весовые и денежные единицы, однако разработанной нумерации ни один из этих народов не имел.

У аккадян основная единица - "мекель" - была примерно в 60 раз меньше единицы у сумерийцев - "мины" (примерно пол килограмма). Денежной единицей служила мина серебра.

После слияния этих народов "имели хождение" обе системы единиц: минами и мекелями пользовались так, как мы теперь пользуемся килограммами и граммами (рублями и копейками) с той лишь разницей, что более крупная единица равнялась не 100, а 60 мелким единицам. Со временем появилась более крупная единица - "талант": 1 талант = 60 мин, 1 мина = 60 мекелей.

Как же вавилоняне записывали числа? Они писали палочками, вдавливая их в глину, поэтому основными графическими элементами были у них клинья. Первый обозначал единицы, второй - десятки.

Описание: хронология мат-ка 2

Эти знаки очень наглядны, количество клинышков бросается в глаза, так что пересчитывать их не приходится. Но клинописное письмо очень неудобно для оценки величины промежутков между числами, а необходимость переписывать все от руки приводила к частым опискам. Знак разделения был необходим, и он появился. Начиная с некоторого времени, на вавилонских кирпичиках появляется значок ^ , соответствующий нашему нулю

Однако, введя "позиционную пробку" в середине чисел, вавилоняне так и не додумались ставить ее на конце. И до самого падения вавилонской культуры числа 1, 60, 3000 записывались одинаково.

Только индусы, заимствовавшие у них позиционную нумерацию, научились правильно использовать знак нуля, и, введя вместо 60 основание 10, дали счислению его современную форму.

Три тысячи лет назад индусы уже пользовались современной нумерацией, хотя в памятниках того времени и не упоминаются числа, большие 100000. В более поздних источниках встречаются значительно большие числа - до ста квадриллионов (1017). В одной из сравнительно молодых легенд о Будде говорится, что он знал названия чисел до 1054. Впрочем, индусы, по - видимому, не представляли себе бесконечности натурального ряда, они полагали, что существует какое -то наибольшее число, известное только богам.

Доказательство бесконечности числового ряда — заслуга древнегреческих ученых.

1.2 Непозиционные и позиционные системы счисления

Система счисления (Нумерация) - это способ представления числа символами некоторого алфавита, которые называются цифрами.

Путем длительного развития человечество пришло к двум видам систем счисления: позиционной и не позиционной.

1.2.1 Непозиционная система счисления

В самой древней нумерации употреблялся лишь знак "|" для единицы, и каждое натуральное число записывалось повторением символа единицы столько раз, сколько единиц содержится в этом числе. Сложение в такой нумерации сводилось к приписыванию единиц, а вычитание - к их вычеркиванию. Для изображения сколько – нибуть больших чисел этот способ нумерации непригоден из - за своей громоздкости.

При начальном обучении в школе, когда счет ведется в пределах одного - двух десятков, этот способ нумерации успешно применяется (счет на палочках).

В непозиционных системах счисления смысл каждого знака сохраняется и не зависит от его места в записи числа.

К более современным непозиционным системам относят египетскую иероглифическую систему нумерации, в которой имелись определенные знаки для чисел: единица - I, десять - n, сто - ρ и так далее; эти числа называются узловыми. Все остальные натуральные числа, называемые алгоритмическими числами, записываются единообразно при помощи единственной арифметической операции - сложения. Например ,число 243 запишется в виде ρρ nnnn III, 301 - в виде ρρρ I.

К непозиционным системам относят римскую нумерацию. За узловые числа в этой системе принимают числа: единица - I, пять - V, десять - X, пятьдесят - L, сто - С, пятьсот - D, тысяча - М. Все алгоритмические числа получаются при помощи двух арифметических операций: сложения и вычитания. Вычитание производится тогда, когда знак, соответствующий меньшему узловому числу, стоит перед знаком большего узлового числа, например, VI - шесть (5+1= 6), ХС – девяносто(100-10=90), 1704 - МОССIV, 193 -СХСШ, 687 - DCLXXXII.

В римской нумерации заметны следы пятеричной системы счисления, так как в ней имеются специальные знаки для чисел 5, 50 и 500.

При записи чисел использовался не только принцип сложения, но и принцип умножения.

Например, в старо — китайской системе счисления числа 20 и 30 изображались схематически, как 2,10 и 3,10. числа 10, 100, 1000 имели определенные специальные обозначения. Число 528 записывалось так: 5,100,2,10,8.

Наиболее удобными среди непозиционных систем счисления являются алфавитные системы нумерации. Примерами таких систем могут служить ионийская система (Древняя Греция), славянская, еврейская, грузинская и армянская.

Во всех алфавитных системах существенным является обозначение специальными символами - буквами в алфавитном порядке всех чисел от 1 до 9, всех десятков от 10 до 90 и всех сотен от 100 до 900. Чтобы отличать запись чисел от слов над буквами, обозначающими цифры, в греческой и славянской нумерации ставилась черта.

В греческой системе счисления число 543 записывалось: φμγ (φ - 500, μ- 40, γ- 3). В римской системе счисления это число записывается в виде DXLIII, в египетской иероглифической - в виде ρρρρρ nnn III.

Из этого примера видно преимущество алфавитной нумерации, в которой используется цифровой принцип обозначения единиц, десятков, сотен.

В записи больших чисел в алфавитной системе уже виден переход к позиционной системе записи. Например, 32543 записывалось так


Наиболее удобными системами счисления оказались позиционные или поместные системы.


1.2.2 Позиционные системы счисления

Позиционная система счисления - это совокупность определений и правил, позволяющих записывать любое натуральное число с помощью некоторых значков или символов, каждый из которых имеет определенный смысл в зависимости от его места в записи числа (от его позиции). Чаще всего применяют позиционную систему счисления с фиксированным основанием. Основанием системы может быть любое натуральное число ρ, ρ>1

Систематической записью натурального числа N по основанию ρназывают представление этого числа в виде суммы:

N = аnρn+...+а1ρ, + а0

где аn, ..., а1, а0 - числа принимающие значения 0, 1, ..., ρ - 1, причем, аn≠0.

Позиционная система счисления с основанием ρ называется ρ — ичной (двоичной, троичной и так далее). На практике чаще всего применяется десятичная ρ= 10).

Для обозначения чисел 0, 1, ..., ρ - 1 в ρ - ичной системе счисления используют особые знаки, называемые цифрами. Древнеиндийские математики открыли нуль - особый знак, который должен был показать отсутствие единиц определенного разряда.

Для ρ - ичной системы счисления нужно ρ цифр. Если ρ < 10, то применяются те же обозначения цифр, что и в десятичной системе счисления (только берутся цифры, меньше основания системы).

В системах с основанием ρ > 10 для чисел, больших или равных 10, не вводят специальных символов, а используют десятичную запись этих чисел, заключая эту запись в скобки. Например, в четырнадцатеричной системе имеется четырнадцать цифр: 0, 1, 2, 3 ... 9, (10), (11), (12), (13).

В системе счисления с основанием ρ, так же как и в десятичной системе счисления, место, занимаемое цифрой, считая, справа налево, называется разрядом.

Число N= аnρ n+ . . . +a1ρ +а0 содержит а0 единиц первого разряда, а1 единиц второго разряда, а2 единиц третьего разряда и так далее. Единица следующего разряда в ρ раз больше единицы предыдущего разряда.

Позиционные системы счисления удовлетворяют требованию возможности и однозначности записи любого натурального числа.

Теорема. Любое натуральное число N может быть записано в системе с основание ρ и притом единственным образом.

Доказательство:

1. Докажем существование представления любого натурального числа в виде

N=anρn+a n-1 ρn-1 + ... +аρ+а0 (1)

Доказательство проведем методом полной математической индукции.

Представление числа N в виде (1) возможно для первых р-1 натуральных чисел 1, 2,..., ρ-1, так как n=1 и число совпадает с данным числом. Представление числа в виде (1) для чисел 1, 2, . . . ,ρ-1, очевидно, возможны только единственным способом: 1=1, 2=2,. . . ,ρ-1=ρ-1.

Предположим, что все натуральные числа N≤k (к≥1) представимы в виде (1). Докажем что число к+1 так же представимо в виде (1). Для этого разделим с остатком число к+1 на ρ:

K+l=sρ+r, 0<г<ρ-1 (2)

где s - неполное частное и г - остаток.

Так как число s≤k, то оно по предположению индукции представимо в виде (1):

s = аnρn+ . . . +a1ρ +а0 (3)

где 1≤аn≤ρ -1, 0≤ ai≤ρ -l, (i=0,1,..,n-1)

Подставим выражения (2) и (3), получим:

k+l= (anρ+ ... +аiρ +а0) ρ + г = аnρ +... + aiρ +a0ρ +г (4)

где 1 ≤ an ≤ρ -1, 0≤ aj ≤ ρ -1, 0 ≤ г ≤ ρ -1 0=0,1,. . ,n-1)

Это выражение (4) дает представление числа к+1 в виде (1):

К+1=b n+1ρ n+1 + bn ρ n + ... + b1ρ +b0

где b0 =r, bi+1- ai (i=0,l,.. ,n-l)

2. Докажем единственность представления любого натурального числа в виде (1).

Доказательство проведем методом математической индукции.

Для чисел 1, 2,... , ρ -1 представление в виде (1) единственно.

Предположим что для всех натуральных N≤k (к≥1) представление в виде (1) единственно. Докажем, что число к+1 может быть представлено в виде (1) только одним способом. Для этого разделим с остатком число к+1 на ρ:

K+l=sρ+r, 0<г< ρ -1 (5)

Предположим, что к+1 имеет два различных способа представления:

к+1=а nρ n + аn-1 ρ n-1+ ....+ а1ρ +а() (6)

к+1 =b mρ m + bm-1 ρ m-1 + ... + b1ρ +b0 (7)

Представим: равенства (6) и (7) в виде:

k+1= (а nρ n-1 + an-1 ρ n-2+ ... + а1)ρ+а0 (6*)

k+1 = (b mρ m-1 + bm-1 ρ m-2+ ... + b)ρ+b0 (7*)

Так как 0 ≤ а0 ≤ρ -1 и 0 ≤ b0 ≤ρ -1, то из (6*) и (7*) следует, что неполное частное s и остаток г в формуле (5) будут:

S= аnρ n-1 + аn-1 ρ n-2 + ... + a1=bmρ m-1 + bm-1 ρ m-2+ ... + b1. r = a0 = b0

Так как s ≤ k, из индуктивного предположения следует, что число s имеет единственно представление в виде (1), то есть

n-l = m-l, ai=bi , (i=0,1, . . ,n-1).

Из последнего равенства имеем а0=bо. Таким образом, n=m, ai=bi (i=0,l, . . ,n-l), но это противоречит допущению, что число k+1. имеет два различных представления (6) и (7). Следовательно, число к+1 представляется в виде (1) единственным образом. На основании принципа математической индукции утверждение справедливо для любого N . Теорема доказана.

1.3 Десятичная система счисления, ее происхождение и применение.

Представьте, что вы пересчитываете большое число одинаковых предметов, например, спичек. Удобнее всего будет разложить эти предметы как кучки по десять в каждой. Получится некоторое количество десятков (и, может быть, останутся несколько предметов, не вошедших в целые десятки). Далее придется пересчитывать кучки (десятки). Если кучек (десятков) будет очень много, можно их тоже сгруппировать в десятки, и так далее.

Таким путем мы приходим к основной идее нашей системы счисления — к мысли о единицах различных разрядов. Десять единиц образуют один десяток, то есть десять единиц первого разряда образуют одну единицу второго разряда, десять единиц второго - единицу третьего и так далее.

Несмотря на свою кажущуюся простоту, такая система счисления прошла очень долгий путь исторического развития. В ее создании принимали участие многие народы.

Возникает вопрос - почему стали раскладывать предметы на десятки, а не на пятки или дюжины? Почему единицы каждого разряда в десять, а не в восемь или три раза больше единиц предыдущего разряда?

Счет десятками получил широкое распространение потому, что люди располагают естественной "счетной машиной", связанной с числом десять -десятью пальцами на руках.

Десятичная нумерация "изобретена" индусами; в Европу ее занесли арабы, вторгшиеся в Испанию в VIII в. нашей эры. Арабская нумерация распространилась по всей Европе, и, будучи проще и удобнее остальных систем счисления, быстро их вытеснила. До сих пор наши цифры принято называть арабскими. Впрочем, за тысячу лет все цифры, кроме 1 и 9, сильно изменились. Вот, для сравнения, наши (называемые арабскими) и настоящие арабские цифры:

Названия первых шести разрядов (единицы, десятки, сотни, тысячи и так далее) очень древние и у разных народов звучат по-разному.

Слово "миллион" сравнительно недавнего происхождения. Придумал его известный венецианский путешественник Марко Поло, которому не хватало обыкновенных чисел, чтобы рассказать о необычайном изобилии людей и богатств далекой Небесной Империи (Китай). По-русски слову "миллион" могло бы соответствовать несуществующее слово "тысячища".

Для построения числовых наименований более высоких порядков используются латинские числительные (биллионы, триллионы). Построенные таким образом названия мало удобны, латынь знают не все. Да и вообще такие числа встречаются только в сборниках математических курьезов, да в некоторых отделах теории чисел. Нет необходимости придумывать им рациональные названия. Здесь на помощь приходит понятие степени. Число, изображаемое единицей с нулями, является степенью десятки: 100= 102, 1000= 103, 10...00...00= 10n.

Эти соображения позволяют нам очень коротко и удобно записывать все числа, которые даются нам наукой и жизнью. Например, масса Земного шара - 6 000 000 000 000 000 000 000 тонн. Мы можем записать: 6 • 1021 тонн, и назвать "шесть на десять в двадцать первой степени", это коротко и удобно.

В практической жизни при счете предметов, которых очень много, например, жителей страны, при измерении различных величин, удается определить только первые несколько цифр результата. Любое число, данное практически, удается записать как произведение не более чем восьмизначного (чаще трех - четырехзначного) числа на "единицу с нулями". Например, поверхность Земли - 509 000 000 км2. Можно записать так: 509 • 106км2.

Классическим примером числового гиганта является награда, которую, если верить старинной легенде, потребовал себе изобретатель шахматной доски: за первую клетку доски — одно зерно риса, за вторую — два, за третью - четыре и так далее, за каждую последующую - в два раза больше, чем за предыдущую. Эта скромная на вид просьба оказалась невыполнимой: все житницы мира не смогут вместить риса, затребованного хитрым изобретателем.

Таким образом, для обозначения и записи чисел мы пользуемся позиционной десятичной нумерацией. Позиционной она называется потому, что значение цифры зависит от ее положения - места в ряду других цифр в записи числа; десятичной - потому, что из двух написанных рядом цифр левая обозначает единицы в десять раз большие, чем правая. Для обозначения и записи чисел в пределах миллиарда эта система очень удобна. При записи очень больших чисел пользуются понятием степени числа.

1.4 Системы счисления с другими основаниями, их происхождение и применение

Кроме десятичной системы счисления возможны позиционные системы счисления с любым другим натуральным основанием. В разные исторические периоды многие народы широко использовали различные системы счисления.

Двенадцатеричная система счисления - ее происхождение тоже связано со счетом на пальцах: так как четыре пальца руки (кроме большого) имеют в совокупности двенадцать фаланг, то по этим фалангам, перебирая их по очереди большим пальцем, и ведут счет от одного до двенадцати. Затем двенадцать принимается за единицу следующего разряда и так далее. В устной речи остатки двенадцатеричной системы сохранились и до наших дней: вместо того, чтобы сказать "двенадцать" часто говорят "дюжина". Многие предметы (ножи, вилки, тарелки) очень часто считают именно дюжинами, а не десятками; сервизы бывают, как правило, на двенадцать или шесть персон. Другой пример: двенадцать месяцев в году, двенадцать цифр на циферблате часов.

Восьмеричная система счисления - позиционная система счисления с основанием 8. Для представления чисел в ней используются арабские цифры. Используется всего восемь цифр - 0, 1, 2, 3, 4, 5, 6, 7.Восьмеричная система часто используется в областях, связанных с цифровыми устройствами. Характеризуется лёгким переводом восьмеричных чисел в двоичные и обратно, путём замены восьмеричных чисел на триады двоичных. Широко использовалась в программировании в 1950-70-ые гг. и вообще в компьютерной документации, однако в настоящее время почти полностью вытеснена шестнадцатеричной.

Шестидесятеричная система счисления существовала и возникла в Древнем Вавилоне. Мнения историков по поводу того, как именно возникла эта система, расходятся. Одна из гипотез, состоит в том, что произошло слияние двух племен, одно из которых пользовалось шестеричной системой счисления, я второе - десятичной. Шестидесятеричная система возникла как компромисс между этими двумя системами. Другая гипотеза состоит в том, что вавилоняне считали продолжительность года равной 360 суткам, что, естественно, связывалось с числом 60. однако это предположение тоже нельзя считать достаточно обоснованным: астрономические познания древних вавилонян были довольно значительны, поэтому следует думать, что погрешность, с которой они определяли продолжительность года, была значительно меньше, чем пять суток.

Пятеричная система счисления была распространена у ряда африканских племен. Связь этой системы со строением человеческой руки - первоначальной "счетной машины" - достаточно очевидна. В Китае принято считать пятками, причем пятки группируются в пары; получается своеобразная система счисления, в которой каждая единица четного порядка в пять, а нечетного - в два раза больше предыдущей. Однако эта система счисления с двойным основанием, отражающая счет с помощью двух рук, довольно сложна. Гораздо чаще используется чистая пятеричная система, то есть позиционная система с основанием пять.

Двадцатеричная система счисления была принята у ацтеков и майя -народов, населявших в течение многих столетий обширные области американского континента и создавших там высокую культуру, почти полностью уничтоженную испанскими завоевателями в XVI - XVII вв. Та же двадцатеричная система была принята и у кельтов, населявших Западную Европу, начиная со II в. до нашей эры.

Из пяти перечисленных выше систем счисления, сыгравших, наряду с десятичной, заметную роль в развитии человеческой культуры, все, кроме шестидесятеричной, источники которой не ясны, связаны с тем или иным способом счета по пальцам рук (или и рук, и ног), то есть имеют несомненное "анатомическое" происхождение.

Все позиционные системы с любым натуральным основанием устроены одинаково. В любой позиционной системе счисления основание записывается в виде десяти, поскольку оно есть единица второго разряда. Все натуральные числа, меньше основания, должны быть однозначными и изображаться разными знаками. Поэтому количество цифр, используемых в данной позиционной системе, совпадает с основанием системы.

1.5 Арифметические операции в различных системах счисления

1.5.1 Сложение и вычитание

В системе с основанием я для обозначения нуля и первых ρ-1 натуральных чисел служат цифры 0, 1, 2, ..., ρ - 1. Для выполнения операции сложения и вычитания составляется таблица сложения однозначных чисел.

+

0

1

2

·

·

·

q-1

0

0

1

2

***

***

***

q-1

1

1

2

3

***

***

***

10

2

2

3

4

***

***

***

11

***

***

***

***

***

***

***

***

q-1

q-1

10

11

***

***

***

1(q-2)