Скачать

Подгруппа германия

ПОДГРУППА ГЕРМАНИЯ.

Содержание элементов этой подгруппы в земной коре по ряду германий (2·10-4) — олово (6·10-4) — свинец (1·10-4%) изменяется лишь незначительно.

Германий принадлежит к весьма рассеянным элементам, и образование рудных скоплений для него не характерно. Богатые германием минералы — германит (Cu2S·CuS·GeS2) и аргиродит (4Ag2S·GeS2) — встречается редко. Следы германия были обнаружены во всех исследованных силикатах. Значительно большие количества этого элемента (до 1%) содержится иногда в золе каменных и бурых углей.

Основной формой природного олова является минерал касситерит (SnO2) или оловянный камень. Разработка оловянных руд рентабельна (т.е. экономически выгодна) уже при содержании в них 0,2 вес. % Sn. Важнейшей рудой свинца является галенит (PbS), иначе свинцовый блеск. Меньшее значение имеет минерал церуссит — PbCO3.

Германий был предсказан Д. И. Менделеевым в 1871 г., а открыт в 1886 г. Олово и свинец принадлежат к наиболее давно известным человечеству элементам: египтяне умели выплавлять их из руд более чем за 3000 лет до н. э. В Индии свинец стал известен около 2500 лет, а олово 1500 лет до н. э. Выплавка олова производилась и в древнем Китае.

Изотопный состав: германий — 70 (20,5%), 72 (27,4), 73 (7,8), 74 (36,5), 76 (7,8); олово — 112 (0,9%), 114 (0,7), 115 (0,3), 116 (14,2), 117 (7,6), 118 (24,0), 119 (8,6), 120 (33,0), 122 (4,7), 124 (6,0); обыкновенный свинец — 202 (следы), 204 (1,4%), 206 (25,2), 207 (21,7), 208 (51,7).

Среднее содержание элементов подгруппы германия в живых организмов невелико — порядка 10-6 вес. %. Однако некоторыми растениями свинец концентрируется настолько, что содержание его может доходить до 3 вес. %. Биологическая роль всех трёх элементов неизвестна, но имеется указание на то, что германий стимулирует деятельность костного мозга и селезёнки. Человеческий организм содержит около 2·10-5 олова и 1·10-4 вес. % свинца. Из отдельных частей тела наибольшее содержание Sn — в языке, а Pb — в длинных костях. Средний суточный рацион человека включает в себя около 17 мг Sn и 0,3 мг Pb. Оба элемента выводятся из организма главным образом с калом.

Добыча германия в большом масштабе ещё не производится. Получают его главным образом как побочный продукт при переработке некоторых цинковых руд. Выплавка олова ведётся путём восстановления касситерит углём. Галенит путём прокаливания на воздухе переводят в PbO, после чего полученный оксид восстанавливается до металла.

Из содержащих германий природных материалов выделяют в конечном счёте GeO2, который затем при температурах около 1000 °С восстанавливают водородом до металла. Простейшая схема промышленного восстановления свинца основывается на двух последовательных реакциях:

2 PbS + 3 O2 = 2 SO2 + 2 PbO + 844 кДж и затем

2 PbO + PbS + 234 кДж = SO2 + 3 Pb.

Очистка свинца может быть осуществлена путём электролиза. Электролитом служит раствор PbSiF6, в качестве анода берётся пластина технического металла, а на катоде осаждается чистый свинец (99,99%).

По физическим свойствам олово и свинец являются типичными металлами, а германий похож скорее на кремний. Некоторые их константы сопоставлены ниже.

Ge

Sn

Pb

Цвет

серовато- белый

серебристо- белый

голубоватый

Плотность, г/см3

5,3

7,3

11,3

Температура плавления °С

937

232

328

Температура кипения °С

2850

2720

1751

Электропроводность (Hg = 1)

0,001

8

5

Твёрдость и хрупкость рассматриваемых элементов быстро уменьшается по ряду Ge–Sn–Pb: германий очень тверд и хрупок, свинец царапается ногтём и прокатывается в тонкие листы. Олово занимает промежуточное положение. Все элементы подгруппы германия легко дают сплавы между собой и со многими другими металлами. В некоторых случаях при сплавлении образуются химические соединения (например, типа Mg2Э).

Пары олова и свинца состоят почти исключительно из одноатомных молекул, а у германия (при температурах 1600ч2000 К) содержат также полимеры Gen, где n = 2ч7. Энергия связи GeGe в Ge2 cоставляет 272 кДж/моль.

Элементарный германий имеет структуру алмаза. Под высокими давлениями германий может существовать в трёх других аллотропных формах. Все они имеют различные кристаллические структуры, повышенную плотность (до 6,0 г/см3) и значительно лучшую электропроводность. В обычных условиях эти модификации неустойчивы.

Выше 550 °С германий становится пластичным и поддается механической обработке. Плавление его сопровождается увеличением плотности (на 5%) и электропроводности (примерно в 15 раз). По мере повышения давления температура плавления германия последовательно снижается и при 180 тыс. атм становится равной 347 °С. Электросопротивление чистого германия с повышением давления возрастает (но при 115 тыс. атм. он приобретает свойства металла), а у олова и свинца оно уменьшается.

Для обычной формы олова характерна структура, в которой каждый его атом имеет четырёх соседей на расстояниях 302 пм и ещё двух на расстояниях 318 пм. Для свинца имеет место структура, в которой каждый его атом имеет 12 равноотстоящих на 350 пм соседей. В отличие от германия температуры плавления обоих металлов с повышением давления возрастают (у свинца при 30 тыс. атм. приблизительно до 520 °С).

Сгибание оловянных палочек сопровождается характерным хрустом, обусловленным трением отдельных кристаллов друг о друга. При нагревании Sn выше 160 °С происходит укрупнение этих кристаллов (без изменения структуры), сопровождающееся резким ослаблением их сцепления друг с другом. В результате плотность металла падает (от 7,3 до 6,6 г/см3), он становится очень хрупким и его можно легко растереть в мелкий порошок.

Кроме обычного олова известна устойчивая ниже +13 °С его аллотропическая форма имеющая структуру алмаза (d(SnSn) = 281 пм) и представляющая собой серый порошок с плотностью 5,8 г/см3. Теплота перехода в неё обычного олова составляет лишь 2 кДж/моль, а скорость перехода ничтожно мала. Такой переход, сопровождающийся превращением оловянного предмета в серый порошок, при охлаждении олова обычно не происходит. Однако он наблюдается на некоторых старинных сосудах и медалях из олова.

Скорость перехода в серую модификацию несколько зависит от природы примесей (например, цинк её увеличивает, а свинец уменьшает) и сильно повышается с понижением температуры, достигая максимума при –33 °С. При нахождении Sn в растворе его соли такой переход довольно быстро происходит уже около 0 °С. Превращение гораздо легче наступает при соприкосновении обычного олова с уже превращённым. Поэтому возможно “заражение” оловянных предметов друг от друга и распространение таким образом “болезни”, очень метко названной “оловянной чумой”. Последняя нередко наблюдалась в средние века, когда домашняя посуда зажиточных слоёв населения изготовлялась преимущественно из различных сплавов на основе олова. Чаще всего страдали также делавшиеся из довольно чистого олова органные трубы. Из-за разрушения паянных оловом сосудов с жидким топливом в 1912 г. погибла экспедиция Скотта к Южному полюсу. С оловянной чумой приходится особенно считаться при хранении запасов олова.

Кристаллы серого олова могут быть получены из насыщенного раствора в ртути при –65 °С. Они обладают полупроводниковыми свойствами и характеризуются особой чувствительностью к инфракрасным лучам (до 15 мк). Добавкой 0,75% германия область практической устойчивости серого олова может быть повышена до +60 °С.

Все три элемента весьма важны для современной техники. Значительное применение находят также некоторые соединения олова и свинца. Производные свинца сильно ядовиты.

Германий является типичным полупроводником (n-типа с шириной запрещённой зоны 0,75 эВ) и находит разнообразное использование в электротехнике. Наиболее широко он применяется для изготовления выпрямителей переменного тока. Применение это основано на униполярной проводимости, возникающей при контакте между чистым германием и сплавом германия с индием. Ток (поток электронов) проходит в такой установке практически только от германия к сплаву, но не наоборот. Германиевые выпрямители характеризуются чрезвычайно высоким (порядка 98%) коэффициентом полезного действия и очень большим (при правильной эксплуатации) сроком службы. Основным недостатком таких выпрямителей является их чувствительность к нагреванию — выше 70 °С их эффективность быстро падает.

Важной областью использования германия является инфракрасная оптика, так как лучи с длиной волны больше 2 мк он практически не задерживает. Напротив, в световом и близких к нему диапазонах (0,2 ч 2 мк) германий интенсивно поглощает энергию. Если блестящую металлическую поверхность (которая хорошо хранит тепло, но плохо нагревается) покрыть пленкой германия, то поверхность нагревается гораздо сильнее, чем без плёнки. Сообщалось, что в подготовленной таким образом бочке под действием солнечного света можно получить кипяток.

Для применения германия в качестве полупроводника он должен быть очень чист. Например, содержание As не может превышать 10-7%, т.е. одного атома As на миллиард атомов германия. Достижение столь высокой чистоты требует прежде всего тщательной очистки материала, из которого вырабатывается вещество полупроводника. Однако большей частью дополнительной очистке приходится подвергать и само это вещество.

При частичной кристаллизации расплавленного вещества примеси неодинаково распределяются между твёрдой и жидкой фазами. Чаще они концентрируются в расплаве. Если находящийся в тугоплавкой лодочке расплав последовательно охлаждать с одной стороны, то примеси оттесняются к концу, затвердевающему последним. Удалив затем этот конец слитка, получают вещество более чистое, чем оно было первоначально. При другом, более совершенном варианте — зонной плавке — нагреву до плавления последовательно подвергаются отдельные участки помещённого в тугоплавкой лодочке вещества, и перемещающаяся зона расплава несёт с собой примеси в один конец слитка. Перед простой направленной кристаллизацией зонная плавка имеет то большое преимущество, что с одним и тем же слитком может быть повторяема многократно, причём процесс этот легко поддаётся автоматизации. Во избежание окисления очищаемого вещества кристаллизацию проводят в вакууме или инертной атмосфере.

На том же принципе основан один из способов выращивания монокристалла. Для этого на поверхность расплава, нагретого чуть выше температуры плавления, помещают кристалл данного вещества, который затем медленно поднимают автоматическим устройством. Таким путём может быть не только очищено исходное вещество, но и получен его монокристалл значительной величины (например, были получены образцы Ge диаметром 5 см и длиной 18 см или Si диаметром 2 см и длиной 24 см).

С помощью рассмотренных методик германий удавалось доводить до чистоты в 10 девяток. Те же методики позволяют решать и очень важную обратную задачу — равномерно распределять в очищенном веществе нужное для успешной работы полупроводника заранее задаваемое количество определённых примесей.

Олово используется главным образом для лужения железа с целью предохранения его от ржавления (белая жесть для консервной промышленности). Толщина таких оловянных покрытий очень мала — порядка микронов. В виде тонких листков (т. н. станниоля) олово потребляется для изготовления конденсаторов в электротехнической промышленности. Свинец применяется для изготовления аккумуляторных пластин, обкладок электрических кабелей, пуль и дроби, для защиты от рентгеновского излучения и γ-лучей, а также в химической промышленности (трубопроводы и т. д.). Очень большие количества олова и свинца расходуются на изготовление ряда технически важных сплавов.

Важнейшими из них являются различные бронзы (сплавы Cu и Sn), сплавы для подшипников (баббиты, изготовляемые обычно на основе Pb или Sn и содержащие так же Sb и Cu), типографские сплавы (5—30% Sn, 10—20% Sb, остальное Pb) и обычный “мягкий” припой (30—70% Sn, 70—30% Pb). Его заменителем часто может служить более дешевый сплав состава 90% Pb, 6% Sn, 4% Sb. Большое значение имеют сплавы для подшипников приблизительного состава 98% Pb, 1% Ca, 1% Na.

Ежегодная мировая добыча германия составляет около 100 т. Мировая добыча олова и свинца составляла соответственно (в тысячах тонн): 4 и 30 в 1800 г., 85 и 875 в 1900 г., 166 и 1750 в 1950 г. С тех пор она стабилизировалась примерно на том же уровне.

Летучие соединения свинца окрашивают бесцветное пламя газовой горелки в бледно-синий цвет. Будучи постоянно вводим в организм даже очень небольшими дозами, он накапливается (частично замещая кальций костного скелета), причём ядовитое действие его постоянно усиливается. Свинцовое отравление иногда фигурирует как профессиональная болезнь лиц, постоянно имеющих дело со сплавами или препаратами свинца (например, типографских наборщиков). Первыми симптомами хронического отравления являются образование серой каймы на дёснах и боли в области живота. В дальнейшем развиваются различные расстройства нервной системы. Максимально допустимое содержание Рb в воздухе производственных помещений составляет 10-5 мг/л. Острое отравление свинцовыми препаратами вызывает тяжёлые поражения пищеварительного тракта. В качестве средства первой помощи при остром отравлении применяют разбавленный раствор H2SO4.

Под действием кислорода воздуха германий и олово не изменяются, а свинец окисляется. Поэтому свинцовые предметы всегда покрыты синевато-серым слоем оксида и не имеют блестящего металлического вида. Плёнка оксида в обычных условиях хорошо предохраняет металл от дальнейшего окисления, но при нагревании оно идёт дальше, и свинец постепенно окисляется нацело. При нагревании на воздухе начинает окисляться и олово. Германий взаимодействует с кислородом лишь выше 700 °С. Все три элемента способны соединяться с галогенами и серой. Вода не действует на германий и олово. Со свинца она постепенно снимает оксидную плёнку и тем самым способствует его дальнейшему окислению. Лучшим растворителем свинца является разбавленная азотная кислота, германия и олова — царская водка. Взаимодействие с ней обоих элементов идёт по схеме:

2 Э + 4 HNO3 + 12 HCl = 3 ЭCl4 + 4 NO↑ + 8 H2O.

В ряду напряжений Ge располагается между медью и серебром, а Sn и Pb — непосредственно перед водородом. Поэтому они вытесняются из солей многими металлами (например, цинком).

Отношение элементов подгруппы германия к отдельным кислотам существенно различается. Соляная кислота не действует на германий. Олово лишь очень медленно растворяется в разбавленной НCI, тогда как с концентрированной легко (особенно при нагревании) идёт реакция по схеме:

Sn + 2 HCl = SnCl2 + H2↑.

Свинец при взаимодействии с НСI покрывается слоем труднорастворимого РbCI2, препятствующим дальнейшему растворению металла. Аналогично идёт взаимодействие и с серной кислотой до тех пор, пока крепость её не превышает 80%. При более высоких концентрациях Н2SO4 образуется растворимая кислая соль Pb(HSO4)2 (или комплексная кислота H2(Pb(SO4)2)), уже не защищающая свинец от дальнейшего действия серной кислоты. На германий разбавленная серная кислота не действует, на Sn — почти не действует. В горячей концентрированной H2SO4 оба элемента растворяются по схемам:

Э + 4 H2SO4 = Э(SO4)2 + 2 SO2 + 4 H2O.

При действии на германий азотной кислоты образуется осадок гидрата диоксида — хGeO2·уH2O. Аналогично — по схеме:

Sn + 4 HNO3 = SnO2 + 4 NO2 + 2 H2O

— действует концентрированная кислота и на олово. Напротив, в сильноразбавленной холодной азотной кислоте олово медленно растворяется с образованием Sn(NO3)2. Водород при этом не выделяется, а идёт на восстановление азотной кислоты. При действии НNO3 на свинец по реакции:

3 Pb + 8 HNO3 = 3 Pb(NO3)2 + 2 NO + 4 H2O

образуется Pb(NO3)2. Соль эта нерастворима в концентрированной HNO3 и предохраняет металл от дальнейшего действия кислоты. Напротив, в воде она хорошо растворима, и поэтому в разбавленной азотной кислоте свинец растворяется.

Растворы щелочей на германий почти не действуют (но при одновременном наличии Н2О2 он легко растворяется). При отсутствии окислителей олово и свинец медленно растворяются в сильных щелочах по схеме:

Э + 2 NaOH = Na2ЭО2 + Н2.

Растворимостью олова в щелочах пользуются для снятия его со старых консервных банок, после чего металл выделяют из раствора электролитически. Практически такое растворение (обычно при добавке метанитробензойной кислоты) осуществляется по схеме:

Sn + 2 NaOH + O2 = Na2SnO3 + H2O.

Ввиду высокой стоимости олова его регенерация (обратное получение) имеет большое экономическое значение.

На устойчивость свинца по отношению к воде сильно влияет содержание в последней растворенного углекислого газа. Небольшие его концентрации способствуют устойчивости свинца из-за образования на его поверхности слоя практически нерастворимого PbCO3. Напротив, при более высоких концентрациях СО2 образуется кислый углекислый свинец Pb(HCO3)2­, переходящий в раствор. Использование содержащей его воды для питья ведёт к постепенному развитию свинцового отравления. В древнем Риме, где для водопроводов применялись свинцовые трубы, такое отравление было, по-видимому, весьма распространённым. На это указывают результаты анализа останков древних римлян.

Характерные для германия и его аналогов валентности — 4 и 2. Для германия более типичны те соединения, в которых он четырёхвалентен. При обычных условиях производные четырёхвалентного Sn более устойчивы. Напротив, для свинца значительно более типичны соединения, в которых он двухвалентен.

В связи с этим производные двухвалентных Ge и Sn являются восстановителями (притом очень сильными), а соединения четырёхвалентного Pb — окислителями (также очень сильными). Но переход от более низкой к более высокой положительной валентности, как правило, легче идёт в щелочной среде, а обратный переход — в кислой. Поэтому восстановительные свойства двухвалентных Ge и Sn в щелочной среде выражены сильнее, чем в кислой, а четырёхвалентный Pb, будучи очень сильным окислителем в кислой среде, в щелочной таковым не является.

Для элементов подгруппы германия известны оксиды типов ЭО и ЭО2. При прокаливании на воздухе Ge и Sn образуют их высшие оксиды, а при прокаливании свинца получается низший. Остальные оксиды получают лишь косвенным путём.

Все рассматриваемые оксиды представляют собой твёрдые вещества. Монооксиды германия и олова характеризуются чёрной окраской, PbO — жёлтовато-красной, GeO2 и SnO2 — белой, PbO2 — темно-коричневой. В воде они почти нерастворимы.

Монооксид германия может быть получен по протекающей при 700÷900 °С реакции:

СО2 + Ge = GeO + CO.

При этих температурах он летуч и осаждается на охлаждаемой поверхности в виде аморфного светло-жёлтого порошка. Диоксид германия (т. пл. 1116, т. кип. 1200 °С) является обычным исходным веществом при получении металлического германия. Напротив, SnO2 (т. пл. 1630 °С) и PbO (т. пл. 886, т. кип. 1580 °С) готовят прокаливанием металлов на воздухе. Монооксид олова получают нагреванием раствора SnCl2 cо щёлочью. В твёрдом состоянии он имеет тенденцию к дисмутации по схеме:

2 SnO = SnO2 + Sn,

но в жидком (т. пл. 1040 °С) и газообразном (т. кип. 1425 °С) устойчив. Помимо обычной чёрной известны метастабильные синяя и красная формы SnO. Для получения PbO2 обычно применяется взаимодействие уксуснокислого свинца с белильной известью, протекающее по схеме:

Рb(CH3COO)2 + Ca(Cl)OCl + H2O = PbO2↓ + CaCl2 + 2 CH3COOH.

При нагревании РbO2 происходит последовательное образование низших оксидов свинца:

PbO2 (290-320 °С) → Pb2O3 (390-420 °С) → Pb3O4 (530-550 °С) → РbO.

Диоксид германия имеет большое значение для промышленности оптического стекла, так как при частичной замене им диоксида кремния получаются очень прозрачные и сильно преломляющие свет стёкла. Диоксид олова используется в керамической промышленности при изготовлении эмалей и глазурей, а также употребляется для получения стекла. Стекло с поверхностным слоем из SnO2 обладает полупроводниковой проводимостью. Диоксид свинца (иногда неправильно называемый пероксидом) употребляется в спичечной промышленности. Диоксид олова применяется в стекольном производстве (для получения рубинового стекла) и при ситцепечатании (как восстановитель). Монооксид свинца находит медицинское использование (свинцовый пластырь) и потребляется рядом отраслей промышленности, а также для изготовления в смеси с глицерином замазки для металла, стекла и камня.

Свинцово-глицериновая замазка готовится тщательным смешиванием хорошо высушенного при 300 °С свинцового глёта с безводным глицерином (в весовом соотношении 5:1). Она схватывается через 30-40 минут и через несколько часов твердеет (вследствие образования глицератов свинца). Получающаяся твёрдая масса газо- и водонепроницаема, обладает механической прочностью и выдерживает нагревание почти до 300 °С. Подлежащие соединению поверхности следует перед нанесением замазки протереть глицерином.

Так как с водой эти оксиды почти не соединяются, отвечающие им гидроксиды получают обычно действием сильных щелочей на растворы соответствующих солей, например, по реакциям

SnCl4 + 4 NaOH = 4 NaCl + Sn(OH)4

Pb(NO3)2 + 2 NaOH = 2 NaNO3 + Pb(OH)2.

Они выделяются в виде аморфных осадков белого цвета (кроме бурого Pb(OH)4). В воде Ge(OH)4 заметно растворим, тогда как растворимость остальных очень мала.

По химическим свойствам все эти гидроксиды представляют собой амфотерные соединения. Диссоциация их растворённой части протекает в конечном счёте (если не считаться с её постепенностью) по схемам

Э•• + 2 ОН’ ⇔ Э(ОН)2 ≡ Н2ЭО2 ⇔ 2 Н• + ЭО2”

Э•••• + 4 ОН’⇔ Э(ОН)4 ≡ Н4ЭО4 ⇔ 2 Н• + ЭО3” + Н2О.

Относительная характерность того или иного направления диссоциации отдельных представителей видна из следующего приблизительного сопоставления:

⇐Увеличение кислотных свойств

Ge(OH)4 Sn(OH)4 Pb(OH)4

Ge(OH)2 Sn(OH)2 Pb(OH)2

усиление основных свойств⇒

Наиболее отчётливо кислотные свойства выражены у гидроксида германия (IV), который всё же является очень слабой кислотой. Основные свойства наиболее отчётливо выражены у Pb(OH)2, который сообщает воде заметную щелочную реакцию.

Ввиду своего амфотерного характера рассматриваемые гидроксиды способны растворятся и в сильных щелочах, и в кислотах. При действии на них щелочей образуются соли типа М2ЭО3 или М2ЭО2, содержащие Ge, Sn или Pb в составе аниона, а при действии кислот — соли этих элементов с катионами Э2+ или Э4+.

Гидратные формы Э(ОН)2 и Э(ОН)4 являются простейшими. В действительности осадки гидроксидов содержат переменные количества воды, и их состав выражается более общими формулами хЭО·уН2О и хЭО2·уН2О. Для некоторых гидратных форм известны отвечающие им комплексные соединения. Например, для SnO2·4H2O получены cоли комплексной молибдо-оловянной кислоты типа М8(Sn(Mo2O7)6), где М — одновалентный металл. Аналогичная гетерополикислота известна и для германия.

В процессе постепенной нейтрализации разбавленных (0,01-0,1 М) кислых растворов солей двухвалентных олова и свинца Sn(OH)2 (ПР = 1·10-26) и Pb(OH)2 (ПР = 1·10-15) начинают осаждаться соответственно при рН 2 и 6. Константа первой ступени основной диссоциации Pb(OH)2 равна 1·10-3, а кислотной — 1·10-11, т.е. на каждую диссоциированную по кислотному типу молекулу приходится 100 млн. молекул, диссоциированных по основному типу. Константы второй ступени основной диссоциации (ЭОН• ⇔ Э•• + ОН’) для Sn(OH)2 и Pb(OH)2 равны соответственно 1·10-12 и 2·10-8. Производящиеся от диоксида германия кислоты имеют две формы — Н2GeO3 (К1 = 1·10-9, К2 = 2·10-13) и H2Ge5O11 (К1 = 6·10-7, К2 = 2·10-8), однако существование второй из них не бесспорно.

Гидрат диоксида олова имеет характер геля. Свежеосаждённый (например, действием NaOH на SnCI4) он содержит много воды и при исследовании рентгеновскими лучами не показывает кристаллической структуры. При стоянии над раствором или нагревании происходит его постепенное старение. Процесс заключается в полимеризации молекул хSnO2·yH2O, идущий с отщеплением воды. В результате получаются всё более крупные и бедные водой частицы. На известной стадии старения анализ при помощи рентгеновских лучей уже обнаруживает в геле микроструктуру (отвечающую структуре SnO2). Подобные гели с ясно выраженной внутренней кристаллической структурой могут быть получены и непосредственно — они образуются при действии концентрированной HNO3 на металлическое олово.

По мере старения геля SnO2 идёт изменение не только его физических, но и химических свойств. Различие последних для крайних случаев — свежеосаждённого геля и сильно состарившегося — столь велико, что их приходится рассматривать в отдельности. Свежеосаждённую из солей форму называют обычно α-оловянной кислотой, а сильно состарившуюся (или полученную действием концентрированной HNO3 на олово) — β-оловянной. Тогда как переход α-формы в β-форму постепенно идёт самопроизвольно, обратный переход может быть осуществлён лишь сплавлением β-формы со щёлочью и последующей обработкой сплава кислотой.

Отношение этих форм к HCl и KOH:

α-Оловянная кислота

β-Оловянная кислота

При действии концентрированной HCl легко растворяется с образованием SnCl4

Под действием конц. НCl заметного изменения с осадком не происходит. При последующем разбавлении водой осадок пептизуется и образуется прозрачный золь. Прибавление к последнему конц. HCl, сопровождается коагуляцией и обратным выпадением β-оловянной кислоты в осадок.

При действии раствора КОН (как крепкого, так и разбавленного) легко растворяется с образованием К2SnO3. Соль эта может быть получена и в кристаллическом состоянии (К2SnO3·3H2O).

В крепком растворе КОН не растворяется. При последующем сильном разбавлении водой осадок пептизуется и образует прозрачный золь. Кристаллические соли из последнего получены быть не могут. Упаривание золя ведёт к образованию геля SnO2, cодержащего адсорбированную щёлочь.

Гидроксид четырёхвалентного свинца настолько легко теряет воду, что практически нацело переходит в РbO2 уже при своём образовании.

Гидроксид двухвалентного германия может быть получен восстановлением фосфористой кислотой раствора GeO2 в крепкой HCl с последующим осаждением избытком аммиака. Все операции проводятся в атмосфере азота. Выделяется Ge(OH)2 в виде рыхлого осадка, цвет которого (белый, жёлтый или красный) зависит от условий получения. Растворимость этого гидроксида в HCl выше, чем в NaOH, т.е. основные её свойства преобладают над кислотными. С помощью инфракрасной спектроскопии было показано, что структура сухого гидроксида двухвалентного германия действительно отвечает формуле Ge(OH)2. При нагревании до 350 °С она переходит в коричнево-чёрный GeO.

От гидрата PbO2 как кислоты, и Pb(OH)2 как основания, производятся два смешанных оксида свинца — Pb2O3 оранжевого цвета и Pb3O4 (сурик) ярко-красного цвета. Первый является свинцовой солью метасвинцовой кислоты (H2PbO3), а второй — ортосвинцовой кислоты (H­4PbO4). Таким образом, оба оксида — PbPbO3 и Pb2PbO4 — одновременно содержат в своём составе атомы свинца различной валентности. В воде они практически не растворимы.

Структура обоих промежуточных оксидов свинца может быть обоснована результатами их взаимодействия с разбавленной азотной кислотой. Так, из сурика две трети всего свинца растворяются, переходя в Pb(NO3)2, тогда как остальная треть остаётся в виде PbO2. Этим доказывается наличие в молекуле сурика двух атомов двухвалентного свинца и одного атома четырёхвалентного. Аналогично обосновывается и структура плюмбита свинца.

Оба соединения могут быть получены смешиванием щелочных растворов Pb(OH)2 и Pb(OH)4. В присутствии небольших концентраций избыточной щелочи при этом выпадает плюмбит свинца (в виде гидрата Pb2O3·3H2O), а при её больших концентрациях — сурик. В технике последний получают нагреванием PbO на воздухе до 450-500 °С, причём происходит присоединение к PbO кислорода. Порошок сурика в смеси с льняным маслом иногда употребляется в качестве замазки для придания стыкам труб газо- и водонепроницаемости.

Соли кислот типа Н2ЭО3 носят названия соответственно германатов, станнатов и плюмбатов. Большинство их бесцветно и малорастворимо в воде. Немногие растворимые соли (Na, K и др.) в растворах сильно гидролизованы. Кристаллический станнат натрия (Na2SnO3·3Н2О) находит применение при крашении тканей.

Кроме солей мета-кислот, производных от гидратной формы Н2ЭО3 (т.е. ЭО2·Н2О), для рассматриваемых элементов известны так же соли, отвечающие орто-кислотам Н4ЭО4 (т.е. ЭО2·2Н2О) и комплексным гексагидроксо-кислотам Н2(Э(ОН)6) (т.е. ЭО2·4Н2О). К солям последнего типа принадлежит станнат натрия (Na2(Sn(OH)6)), равно как и многие другие станнаты. Этот тип соединений является основным (по крайней мере в растворе) также для плюмбатов и германатов. При нагревании до 100-150 °С гидроксосоли обезвоживаются по схеме:

Na2(Э(ОН)­6) = 3 Н2О↑ + Na2ЭО3.

Образующиеся безводные соли, весьма тугоплавки (например, Na2GeO3 плавится при 1083 °С). Термическое разложение станната калия (в токе сухого азота) протекает по схемам:

3 K2SnO3 = 2 K2O↑ + K2Sn3O7 (выше 830 °С)

и затем K2Sn3O7 = K2O↑ + 3 SnO2 (выше 900 °С).

Аналогичные соли — K2PbO3 и K2Pb3O7 — известны и для свинца. Так как термическая устойчивость многих плюмбатов гораздо выше, чем у PbO2, они могут быть получены накаливанием на воздухе смеси PbO с оксидом (или гидроксидом) соответствующего металла.

Крашение тканей из естественных волокон осуществляется либо непосредственно за счёт прочной адсорбции краски на их поверхности, либо путём отложения частиц краски внутри имеющихся в волокнах пор. Последнее достигается при помощи различных методов. В одних случаях ткань пропитывают коллоидным раствором краски (каковым и является водный раствор многих органических красителей) и затем действием электролитов вызывают коагуляцию этого раствора, в других — ткань пропитывают раствором того или иного вещества, которое само не является краской, но путём соответствующей химической обработки (например, действием окислителей) может быть затем переведено в нерастворимую краску, остающуюся заключённой внутри пор волокна. Тогда эти приёмы неприменимы, пользуются так называемым протравным крашением, при котором на ткани предварительно осаждают вещества, прочно удерживаемые волокнами, с одной стороны, и хорошо адсорбирующие краску — с другой. К подобным веществам относятся многие гидроксиды (в частности, хSnO2·yH2O); в качестве протрав применяют дающие их при гидролизе соли (например, Na2(Sn(OH)6)). Искусственные волокна могут быть окрашиваемы в жёлтый цвет уже при их получении.

Соли кислот типа Н2ЭО2 носят название соответственно германитов, станнитов и плюмбитов. По свойствам они в общем похожи на германаты, станнаты и плюмбаты, но значительно менее устойчивы и в растворах гидролизуются ещё сильнее. При действии окислителей они легко переходят в соли соответствующих кислот типа Н2ЭО3. Особенно это относится к германитам и станитам, которые являются очень сильными восстановителями. Напротив, гидроксид трёхвалентного висмута восстанавливается станитом до металла:

2 Вi(OH)3 + 3 Na2SnO2 = 3 Na2SnO3 + 2 Bi + 3 H2O.

Реакция эта находит использование в аналитической химии.

Для предупреждения гидролиза станнитов растворы их должны содержать избыток щелочи. Если концентрация последней невелика, в растворе медленно идёт реакция распада по схеме:

NaHSnO2 = NaOH + SnO.

В результате раствор станита при стоянии (быстрее — при нагревании) приобретает чёрную окраску. В присутствии большого избытка щёлочи реакция распада идёт по схеме:

2 NaHSnO2 = Na2SnO3 + Sn + H2O.

Вследствие выделения мелкораздробленного олова раствор при этом направлении процесса окрашивается в чёрный цвет. Аналогичная реакция характерна и для германитов, но в сильнощелочной среде преобладает их распад по схеме:

NaHGeO2 + NaOH = Na2GeO3 + H2

Основной формой существования германитов, станнитов и плюмбитов в растворах щелочей являются, вероятно, M(Sn(OH)3), где М –– одновалентный металл. Некоторые станниты этого типа –– Na(Sn(OH)3), Ba(Sn(OH)3)2 и др. — были выделены в кристаллическом состоянии. Вместе с тем сплавлением PbO с NaOH был получен плюмбит состава Na2PbO2 ( т. пл. 820 °С ).

Для солей типа МНЭО2 элементов четвертой группы, вообще говоря, возможна таутомерия по схеме:

Н-О-Э-О-М ⇔ О=Э(Н)-О-М.

В ряду элементов Pb-Sn-Ge-Si-C производным Pb (плюмбитам) отвечает первая из этих структур, производным С (солям муравьиной кислоты) –– вторая. Из промежуточных элементов для Si также характерна вторая структура, тогда как для Ge и Sn вероятно наличие равновесия обеих форм.

Некоторые физические свойства галогенидов ЭГ4 сопоставлены ниже:

GeF4

GeCl4

GeBr4

GeI4

SnF4

SnCl4

SnBr4

SnI4

PbF4

PbCl4

Теплота образования кДж/моль

1187

539

347

142

527

405

940

330

Длина связи, пм

167

211

229

250

228

244

264

243

Энергия связи Э-Г, кДж/моль

335

284

209

343

272

196

Цвет

бесцв.

бесцв.

бесцв.

красн.

бесцв.

бесцв.

бесцв.

жёлт.

бесцв.

жёлт.

Т плавл., °С

-15 давл.

-50

+26

147

-33

+30

145

600

-15

Т кип., °С

-37 возг.

+83

187

377

разл.

705 возг.

113

205

344

В отличие от газообразного при обычных условиях GeF4, SnF4 и PbF4 представляют собой очень гигроскопичные кристаллические вещества. Молекулы остальных рассматриваемых соединений имеют строение правильных тетраэдров с показанными выше ядерными расстояниями.

Тетрафторид германия имеет резкий (типа чесночного) запах и дымит на воздухе. Для него известен бесцветный, очень гигроскопичный кристаллогидрат GeF4·3H2O. Тетрахлорид германия почти нерастворим в концентрированной НCl, но хорошо растворяется во многих органических растворителях (а также в жидком SO2). Водой он гидролизуется, а с сухим аммиаком реагирует по схеме:

GeCl4 + 6 NH3 = 4 NH4Cl + Ge(NH)2.

Красный цвет GeI4 при охлаждении до -10 °С изменяется на оранжевый, а при температуре жидкого воздуха — на бледно-жёлтый. Выше точки плавления начинается распад по схеме:

GeI4 = GeI2 + I2.

Акцепторные свойства тетрагалогенидов германия выражены сильнее, чем у соответствующих тетрагалогенидов кремния.

Взаимодействием паров GeCl4 с порошком металлического германия при 430 °С был получен бесцветный кристаллический Ge2Cl4 (т. пл. 41 °С). Его давление пара при обычных температурах составляет 3 мм рт. ст. Водой Ge2Cl6 разлагается на НСl и нелетучее белое вещество, имеющее состав (GeOOH)2 аналогичное силикощавелевой кислоте.

Наиболее практически важным из галогенидов ЭГ4 является четырёххлористое олово, которое было впервые описано Либавием. В технике его обычно получают обработкой использованных жестяных консервных банок сухим хлором. Последний не действует на железо, а покрывающее его тонким слоем олово легко образует SnCl4. Четырёххлористое олово дымит на воздухе (вследствие гидролиза за счёт содержащейся в атмосфере влаги). Оно легко смешивается со многими малополярными растворителями и само является хорошим растворителем для многих неэлектролитов (I2, P, S и др.). Из водного раствора четырёххлористое олово выделяется обычно (при температурах 19-56 °С) в виде бесцветного кристаллогидрата SnCl4·5H2O. Из различных продуктов присоединения к хлорному олову кристаллический SnCl4·2OРCl3 (т. пл. 59, т. кип. 117 °С) интересен тем, что дополняющие координацию Sn до октаэдра атомы кислорода находятся в цис-положении друг к другу, т.е. обе молекулы хлороксида фосфора располагаются рядом.

Фторид четырёхвалентного свинца может быть получен действием фтора на PbF2 при 250 °С. Он крайне чувствителен к влаге и на воздухе тотчас буреет (переходя в PbO2). Четырёххлористый свинец образуется в результате взаимодействия PbO2 и крепкой HCl при охлаждении. Он очень неустойчив и распадается на РbCl2 и Cl2 под действием света и в присутствии даже следов влаги. Бромид и иодид четырёхвалентного свинца не получены.

Из производных рассматриваемых элементов, содержащих одновременно кислород и галоген, интересен аналогичный по составу фосгену оксохлорид германия GeOCl2. Это бесцветная маслянистая жидкость, нерастворимая в обычных растворителях (т. пл. -56 °С). Водой GeOCl2 быстро разлагается с образованием Ge(OH)4. Продуктами термического разложения GeOCl2 являются хлор и GeO. Последний получается в виде жёлтой модификации, которая выше 650 °С переходит в обычную чёрную.

Существование GeOCl2 было поставлено под сомнение. При этом имеется указание на возможность образования GeOF2 при взаимодействии GeF4 c SO2, а по схеме:

ЭСl4 + Cl2O = 2 Cl2 + ЭОСl2

были получены оксохлориды олова и свинца. Лучше изученный SnOCl2 представляет собой белый, весьма гигроскопичный порошок, при 155 °С разлагающийся на SnO2 и SnCl4. Он тримерен и имеет циклическое строение.

Цианид четырёхвалентного германия был получен по схеме:

GeI4 + 4 AgCN = 4 AgI + Ge(CN)4.

Он представляет собой белое твёрдое вещество, при взаимодействии с водой или нагревании выше 80 °С разлагающееся. В растворе КСN могут образовываться ионы (Ge(CN)6)”.

Самым характерным свойством галогенидов ЭГ4 является их сильно выраженная склонность к реакциям присоединения. Так, SnCl4 легко образует комплексы с НСl, H2O, NH3, оксидами азота, PCl3 и т. д., равно как со спиртами, эфирами и многими другими органическими соединениями. Весьма устойчивы соли комплексных кислот типа Н2SnГ6. Например, из смеси растворов SnCl4 и NH4Cl кристаллизуется соль состава (NH4)2(SnCl6), раствор которой показывает нейтральную реакцию на лакмус. Будучи взята в достаточно высоких концентрациях, Н2SnCl6 заметно не разлагается даже при кипячении.

Образование в растворе кислот типа Н2(ЭГ6) обуславливает неполноту гидролиза галогенидов ЭГ4. Так, уравнение гидролиза тетрахлорида олова имеет вид:

2 SnCl4 + 4 H2O ⇔ 2 H2SnCl6 + Sn(OH)4.

Таким образом, гидролизу подвергается лишь одна треть общего количества SnCI4, но гидролиз этой трети идёт до свободного основания, т.е. протекает практически нацело.

Для германия (как и для кремния) характерны германофтористоводородная кислота (Н2GeF6) и её соли. Например, термически устойчивый К2GeF6 (т. пл. 730, т. кип. 835 °С). Германийтетрахлорид не проявляет кислотных свойств в жидком хлористом водороде.

В виде кристаллогидратов были выделены и некоторые свободные комплексные кислоты, например, Н2SnCl6·6H2O (т. пл. 20 °С). Для Sn и Pb известны также производные кислот типа Н4(ЭF8), например, (NH4)4SnF8. Однако было установлено, что в некоторых из этих соединений истинное координационное число центрального атома равно не восьми, а лишь шести. Так, кристаллы кислых солей типа К3НЭF8 слагаются из ионов К+, ЭF62- и HF2-. Вместе с тем и для германия и для олова были получены кристаллические производные состава 4 ХеF6·ЭF4, для которых вероятна структура (ХеF5)4ЭF8.

Соли кислородных кислот для четырёхвалентных Ge, Sn и Pb малохарактерны. Получены, в частности, сульфаты Э(SO4)2 и ацетаты Э(CH3COO)4. Все они легко гидролизуются.

Cульфат четырёхвалентного олова Sn(SO4)2­ образуется при взаимодействии Sn с горячей крепкой Н2SO4. Из раствора он выделяется в виде бесцветных игл состава Sn(SO4)2·2H2O. Константа диссоциации по схеме

Sn(SO4)2 ⇔ SnSO42+ + SO42-

равна 5·10-3. Жёлтый кристаллический порошок Рb(SO4)2 может быть получен электролизом 80%-ной Н2SO4 со свинцовыми электродами. С сульфатами К, Na и некоторых других металлов он образует жёлтые двойные соли состава М2(Pb(SO4)3). Водой Рb(SO4)2 полностью гидролизуется с выделением РbO2. Аналогичный гидролиз претерпевает Ge(SO4)2, который может быть получен нагреванием смеси GeCI4 c SO3 в запаянной трубке.

Взаимодействием SnCl4 c N2O5 был получен нитрат четырёхвалентного олова — Sn(NO3)4. Он представляет собой прозрачные кристаллы (т. пл. 91 °С), способные возгоняться в вакууме. Водой Sn(NO3)4 тотчас гидролизуется, в ССl4 растворяется без разложения, а углеводороды окисляет. Также используемая для получения этой соли реакция по схеме

SnCl4 + 4 ClNO3 = 4 Cl2 + Sn(NO3)4

интересна как пример взаимодействия разно поляризованных (отрицательно в SnCl4 и положительно в ClNO3) атомов хлора.

Тетраацетат свинца Pb(CH3COO)4 образуется при действии тёплой уксусной кислоты и хлора на сурик по реакции:

Pb3O4 + 8 CH3COOH + Cl2 = PbCl2↓ + 2 Pb(CH3COO)4 + 4 H2O.

При охлаждении раствора Pb(CH3COO)4 кристаллизуется в виде белых игл (т. пл. 175 °С). Подобный же характер имеют кристаллы Ge(CH3COO)4 (т. пл. 156 °С) и Sn(CH3COO)4 (т. пл. 253 °С). Для четырёхвалентного свинца известны соли ряда органических кислот.

Производные четырёхвалентного свинца являются исключительно сильными окислителями (в кислой среде). Так, при кипячении с 30%-ной серной кислотой РbO2 окисляет двухвалентный Мn до марганцовой кислоты, несмотря на то, что последняя сама является очень сильным окислителем. Реакция идёт по уравнению:

5 PbO2 + 2 MnSO4 + 3 H2SO4 = 5 PbSO4 + 2 HMnO4 + 2 H2O.

На окислительных свойствах четырёхвалентного свинца основана работа свинцового аккумулятора.

Свинцовый аккумулятор составляется из решетчатых свинцовых пластин, заполненных пастой из PbO и воды и опущенных в 30%-ную серную кислоту (с плотностью 1,2 г/см3). По реакции

PbO + H2SO4 = PbSO4 + H2O

на поверхности пластин образуется слой труднорастворимого сернокислого свинца. Если теперь через всю систему пропускать постоянный электрический ток в определённом направлении, то у пластин идут следующие реакции (процессы при зарядке):

отрицательный электрод положительный электрод

PbSO4 + 2 e- + 2 H• = Pb + H2SO4 PbSO4 + SO4” - 2 e- = Pb(SO4)2

(Pb•• + 2 e- = Pb) (Pb•• - 2 e- = Pb••••)

Pb(SO4)2 + 2 H2O ⇔ PbO2 + 2 H2SO4

Таким образом, при зарядке аккумулятора отрицательные пластины превращаются в губчатую массу металлического свинца, положительные — в PbO2, а концентрация серной кислоты в растворе повышается.

Если оба электрода не соединены друг с другом проводником, аккумулятор может в заряженном виде сохраняться весьма долго. Напротив, при включении их в цепь через последнюю начинает идти электрический ток в обратном направлении. Возникновение тока обусловлено следующими реакциями у электродов (процессы при разрядке):

отрицательный электрод положительный электрод

Pb + SO4” = PbSO4 + 2 e- PbO2 + 2 H2SO4 ⇔ Pb(SO4)2 + 2 H2O

(Pb = Pb•• + 2 e-) Pb(SO4)2 + 2 e- + 2 H• = PbSO4 + H2SO4

(Pb•••• + 2 e- = Pb••)

Процессы эти обратны имеющим место при зарядке аккумулятора. Получаемый при разрядке свинцового аккумулятора электрический ток имеет напряжение около 2 В. Соединением ряда таких аккумуляторов друг с другом могут быть образованы батареи, достаточно мощные для обеспечения работы электровозов и т. д.

Интересна реакция плюмбодиоксида с хлорноватистой кислотой, протекающая по схеме:

2 PbO2 + 4 HOCl = 2 PbCl2 + 2 H2O + 3 O2.

В щелочной среде окислительные свойства PbO2 проявляются лишь под действием веществ, способных достаточно легко окисляться. Примером может служить реакция по уравнению:

2 Cr(OH)3 + 3 PbO2 + 10 KOH = 3 K2PbO2 + 2 K2CrO4 + 8 H2O.

В противоположность галогенидам ЭГ4 галогенпроизводные двухвалентных Sn и Pb имеют отчётливо выраженный характер солей. Все они хорошо кристаллизуются, плавятся лишь при сравнительно высоких температурах и подвергаются в растворе значительно меньшему гидролизу, чем соответствующие галогениды ЭГ4. Несколько ближе к последним по свойствам малоустойчивые галогениды двухвалентного германия.

В парах SnF2, помимо мономеров, обнаружено наличие димеров и тримеров, а плюмбофторид имеет в парах тенденцию к дисмутации по схеме:

2 PbF2 = PbF4 + Pb.

Галогениды олова хорошо растворимы в воде (кроме SnI2), галогениды свинца — плохо. По ряду Сl-Br-I растворимость и тех и других уменьшается.

Расплавом безводного SnCl2 пользуются иногда для освобождения чернового олова от свинца (по реакции: SnCl2 + Pb = PbCl2 + Sn). Оно растворимо в ацетоне (приблизительно 1:2 по массе) и некоторых других органических растворителях (спирт, эфир), а из водных растворов выделяется в виде бесцветного, плавящегося при 40 °С кристаллогидрата SnCl2·2H2O (“оловянная соль”). Фтористое олово является одной из наиболее эффективных фторирующих добавок в зубные пасты.

Общим способом образования галогенидов двухвалентного германия является реакция по схеме:

GeГ4 + Ge = 2 GeГ2.

Галогениды германия представляют собой бесцветные (кроме жёлтого GеI2) твёрдые вещества, весьма склонные к дисмутации на GeГ4 и Ge. По ряду F-Cl-Br-I устойчивость возрастает. Водой они очень сильно гидролизуются.

Термическим разложением GeCI4 около 1000 °С был получен коричневый (после очистки — жёлтый) субхлорид германия состава GeCl (точнее, GeCl0,9). Это микрокристаллическое вещество устойчиво в вакууме до 360 °С, а при дальнейшем нагревании подвергается дисмутации на Ge и GeCl4.

Частичное образование аналогичных субгалогенидов Sn и Pb является вероятной причиной растворимости этих металлов в их расплавленных галогенидах ЭГ2. Такая растворимость возрастает по ряду галогенидов Сl-Br-I и при повышении температуры.

Подобно ЭГ4, двухвалентные галогениды Ge, Sn и Pb способны образовывать комплексные соединения, которые, однако, значительно менее устойчивы. Характерны для них комплексы типов M(ЭГ3) и M2(ЭГ4). В разбавленных растворах все они почти нацело разложены на соответствующие простые ионы. Напротив, в более крепких растворах (или при избытке иона Г-) образуется заметное количество комплексных ионов. Этим обусловлена лучшая растворимость галогенидов свинца в крепких растворах галогеноводородных кислот или их солей по сравнению с чистой водой. По структуре интересна двойная соль состава 2SnF2·NaF. Её кристаллы содержат анионы (F(SnF2)2)- с фторидными мостиками (d(FSn) = 222 пм) между двумя ионами SnF2 (d(SnF) = 207 пм).

Почти бесцветный в безводном состоянии КPbI3 (т. пл. 349 °С), или раствор его в ацетоне, является чувствительным реактивом на влагу, так как под действием воды он тотчас желтеет вследствие разложения с выделением PbI2. Константа нестойкости (PbI3)” равна 2·10-6.

В связи с ослаблением основных свойств по ряду гидрокcидов Pb(OH)2-Sn(OH)2-Ge(OH)2 гидролиз производящихся от них солей по этому ряду увеличивается: в то время как соли двухвалентного Pb гидролизованы незначительно, производные двухвалентного Ge в разбавленных растворах разлагаются водой почти нацело. Соли Sn2+ обладают промежуточными свойствами.

Большинство солей Sn2+ бесцветно и хорошо растворимо в воде. Производные двухвалентного олова (в ещё большей степени — германия) являются сильными восстановителями. Растворы их постепенно окисляются уже кислородом воздуха.

Наибольшее практическое значение из солей Sn2+ имеет хлористое олово (SnCI2). Применяется оно главным образом как восстановитель. Например, соли ртути восстанавливаются им до металла:

HgCl2 + SnCl2 = SnCl4 + Hg.

Cоли кислородных кислот для двухвалентного олова (и германия) малохарактерны. Из них SnSO4 используется при электролитическом лужении (т. е. покрытии других металлов оловом).

Соли двухвалентного свинца восстановителями не являются. Большинство их бесцветно и малорастворимо в воде. Из часто встречающихся в практике хорошо растворяются только азотнокислая Pb(NO3)2 и уксуснокислая Pb(CH3COO)2 соли.

Белые игольчатые кристаллы SnSO4 хорошо растворимы в воде (около 1:2 по массе). Их термическое разложение по схеме SnSO4 = SnO2 + SO2 идёт (в атмосфере азота) выше 360 °С. Термическое разложение оксалата олова по схеме:

SnC2O4 = CO2 + CO + SnO

может служить методом получения его оксида.

Нитрат и ацетат свинца (свинцовый сахар — Pb(CH3COO)2·3H2­O, т. пл. 58 °С) получают обычно растворением свинца в соответствующих кислотах. Первая из этих солей применяется главным образом как исходный материал для получения других соединений Pb, вторая — в красильном деле и медицине (“свинцовая примочка” и др.). Нитрат свинца в растворе довольно сильно диссоциирован (константа диссоциации иона PbNO3• равна 0,7), а молекула Pb(CH3COO)2 малодиссоциирована (К1 = 3·10-2, К2 = 4·10-3). Пропитанная раствором ацетата свинца и затем высушенная бумага при поджигании не горит, а тлеет, как трут. Расплавленный PbCl2 обладает значительной электропроводностью, а при застывании образует роговидную массу (“роговой свинец”).

На галогениды свинца похожи по свойствам бесцветные Pb(CN)2 и Pb(NCS)2. Очень малая растворимость в воде PbI2, PbSO4 и PbCrO4 используется при химических анализах. Хромовокислый свинец применяется также в качестве жёлтой минеральной краски (“хромовая жёлтая”). Цианамид свинца PbNCN находит использование в составах для антикоррозионных покрытий. При нагревании выше 250 °С (в отсутствие воздуха) соль эта разлагается по схеме:

2 PbNCN = 2 Pb + (CN)2 + N2.

При медленном охлаждении горячего насыщенного (лучше слегка подкисленного) раствора PbI2 соль эта выделяется в виде очень красивых золотистых листочков. Йодистый свинец светочувствителен: во влажном воздухе он постепенно разлагается на свету с образованием PbO и I2.

Практически важной основной солью двухвалентного свинца долгое время был карбонат приблизительного состава 2PbCO3·Pb(OH)2, служащий для изготовления белой масляной краски — свинцовых белил. Последние применялись как самостоятельно, так и в смеси с другими красками. Процесс получения основного карбоната свинца детально описан в “Трактате о камнях” Теофраста (315 г. н. э.). Имеется указание на возможность использования этого вещества как исходного сырья для производства искусственного перламутра.

Достоинством свинцовых белил является их большая кроющая способность, серьёзным недостатком — постепенное потемнение окрашенных предметов на содержащем следы Н2S воздухе (каков, в частности, воздух городов) вследствие перехода белого основного карбоната в чёрный PbS. Из-за ядовитости свинцовых белил применение их в настоящее время запрещено.

Как свинцовые белила, так и другие масляные краски приготовляются путём растирания тех или иных окрашенных твёрдых веществ с высыхающими на воздухе растительными маслами (обычно — льняным или конопляным). Высыхание этих масел обусловлено их окислением кислородом воздуха. Оно значительно ускоряется, если в масле присутствуют небольшие количества некоторых оксидов (PbO, MnO2 и др.), служащих катализаторами. Содержащее такие оксиды (“сиккативы”) высыхающее растительное масло называется олифой.

Приготовленная на олифе цветная масляная краска, кроме придающих ей ту или иную окраску веществ (“пигментов”), всегда содержит какой-либо тонкий белый порошок, сообщающий краске непрозрачность и не допускающий образования пор при высыхании масла. Такой “основой” может служить основной карбонат свинца. Он придаёт краске большую кроющую способность, что позволяет довольствоваться нанесением на предмет очень тонкого её слоя.

Почти все картины старых мастеров писаны красками, приготовленными на основе свинцовых белил. Вследствие потемнения с течением времени многие из этих картин уже утратили первоначальные оттенки. Последние часто могут быть восстановлены путём осторожной обработки картин разбавленным раствором перекиси водорода, так как под её действием чёрный PbS переходит в белый PbSO4, почти не отличающийся по цвету от основного карбоната свинца.

Отвечающие типам ЭS и ЭS2 сульфиды могут быть получены (кроме PbS2) как сухим путём (из элементов), так и действием сероводорода на содержащие ионы Э•• или Э•••• растворы соответствующих солей. В последнем случае образуются осадки следующих цветов:

GeS2 SnS2 GeS SnS PbS

белый жёлтый буро-красный бурый чёрный

В воде и разбавленных кислотах эти сульфиды практически нерастворимы. Исключение представляет GeS2, слегка растворимый в воде и гидролитически разлагающийся ею.

Сульфиды типов ЭS и ЭS2 существенно отличаются друг от друга по своему отношению к сернистому аммонию. В то время как на первые он не действует, вторые переводятся им в раствор с образованием аммонийных солей тиогерманиевой (H2GeS3) и тиооловянной (H2SnS3) кислот по схеме:

(NH4)2S + ЭS2 = (NH4)2ЭS3

Ввиду неустойчивости этих кислот в свободном состоянии при подкислении растворов их солей происходит отщепление Н2S и осаждение сульфида ЭS2.

Кристаллы PbS (т. пл. 1114 °С) имеют решётку типа NaCl. Подобно металлическому германию, вещество это интенсивно поглощает энергию в световом и близких к нему диапазонах, но практически прозрачно для теплового излучения. Аналоги сернистого свинца — PbSe (т. пл. 1065 °С) и PbTe (т. пл. 924 °С) — обладают полупроводниковыми свойствами, причём селенид свинца очень чувствителен к инфракрасным лучам.

Непосредственное применение из рассмотренных сульфидов находит главным образом кристаллическое SnS2, порошок которого под названием “муссивного золота” входит в состав красок для золочения. Выработку его ведут обычно путём постепенного нагревания до 300 °С смеси амальгамы олова с серным цветом и NH4Cl, причём SnS2 получается в виде золотисто-жёлтых пластинок. Наиболее древнее дошедшее до нас описание муссивного золота содержится в сочинениях китайского химика Ко Хуна.

Соединения с азотом из всех элементов рассматриваемой подгруппы наиболее характерны для германия. Его серый нитрид (Ge3N4) может быть получен действием NH3 на металлический германий (или GeO2) при 700 °С. Вода, щёлочи и разбавленные кислоты на нитрид германия не действуют, а распад его на элементы идёт лишь около 800 °С. Аналогичный по составу коричневый нитрид олова (Sn3N4) распадаются на элементы уже при 360 °С.

Помимо описанного выше, для Ge (и Sn) известен нитрид состава Ge3N2, являющийся производным двухвалентного германия. Он представляет собой тёмно-коричневый порошок, легко подвергающийся гидролизу. Распад Ge3N2 на элементы начинается около 500 °С.

Нитриды Pb неизвестны. Оранжево-красный имид свинца PbNH может быть получен взаимодействием Pb(NO3)2 и KNH2 в жидком аммиаке. Вещество это крайне неустойчиво и легко взрывается при нагревании или контакте с жидкой водой. Водяным паром оно разлагается на Pb(OH)2 и аммиак.

Несколько особняком в химии Ge, Sn и Pb стоят их водородные соединения. Для двухвалентных элементов они не характерны, а для четырёхвалентных устойчивость их по ряду Ge-Sn-Pb уменьшается настолько быстро, что существование PbH4 доказано, но свойства его не изучены. Все три гидрида образуются как незначительные примеси к водороду при разложении кислотами сплавов этих элементов с магнием. От водорода они могут быть отделены охлаждением смеси газов жидким воздухом.

Пространственная структура гидридов ЭН4 отвечает тетраэдру с атомом Э в центре. По физическим свойствам GeH4 и SnH4 похожи на аналогичные соединения Si и С. Они также представляют собой бесцветные газы с низкими температурами плавления и кипения, как это видно из приводимого ниже сопоставления:

СН4

SiH4

GeH4

SnH4

Теплота образования, кДж/моль

+75

-33

-92

-163

d(ЭН), пм

109

148

153

170

Энергии связи Э-Н, кДж/моль

414

318

309

297

Температура плавления, °С

-184

-185

-166

-146

Температура кипения, °С

-161

-112

-88

-52

При хранении гидриды германия и олова постепенно разлагаются на элементы. Быстро такой распад GeH4 идёт около 350 °С, а SnH4 — уже около 150 °С. Вода, а также разбавленные растворы кислот и щелочей разлагают их сравнительно медленно. Оба гидрида по ядовитости близки к мышьяковистому водороду.

Образование станнометана (SnH4) может производиться в жестяных консервных банках за счёт действия на их полуду органических кислот содержимого. Возможно, что с этим связаны имеющие иногда место случаи тяжёлых отравлений при употреблении в пищу давно изготовленных консервов. Предельно допустимое содержание в них олова составляет 0,02 %.

Из гомологов SnH4 в очень небольших количествах был получен лишь крайне неустойчивый Sn2H6, но свойства его не описаны. Моногерман (GeH4) может быть получен обработкой Мg2Ge раствором бромистого аммония в жидком аммиаке. По отношению к растворам кислот и щелочей он значительнее устойчивее силана. Реакция термического разложения моногермана, как и SnH4, является аутокаталитической. Однако энергия её активации гораздо больше, чем у олова (213 в объёме и 171 кДж/моль на германии). Поэтому с заметной скоростью реакция протекает лишь при повышенных температурах (примерно с 220 °С). Термическим разложением моногермана могут быть получены тонкие плёнки германия на стекле и других изоляторах, что используется при изготовлении высокоомных электрических сопротивлений.

В отличие от СН4 и SiH4 моногерман сравнительно легко образует продукты замещения водорода на металл. Так, действием GeH4 на раствор металлического натрия (или калия) в жидком аммиаке может быть получен натрийгерманил — NaGeH3. Он представляет собой твёрдое вещество, хорошо растворимое в жидком аммиаке с частичной диссоциацией на Na+ и GeH3-. При -33 °С натрийгерманил постепенно желтеет, а дальнейшее его нагревание вызывает распад по схеме:

2 NaGeH3 = 2 NaGe + 3 H2.

В форме желтовато-серого аммиаката LiGeH3·2NH3 получено и аналогичное производное лития.

Из других реакций замещения атомов водорода GeH4 на металл интересно взаимодействие его с раствором AgNO3 протекающее по уравнению:

GeH4 + 4 AgNO3 = GeAg4 + 4 HNO3.

Раствор AgNO3 разлагает и SnH4. Разрушение последнего быстро протекает также при соприкосновении его с твёрдыми щелочами и концентрированной Н2SO4.

Будучи по атомной структуре непосредственными аналогами С и Si, элементы подгруппы германия дают в общем соединения тех же типов. Однако свойства этих соединений более или менее закономерно изменяются в связи с изменением химического характера самих элементов.

В частности, по ряду С-Pb уменьшается энергия связей Э-Э: 347 (С-С), 222 (Si-Si), 188(Ge-Ge), 155 кДж/моль(Sn-Sn). С другой стороны, по тому же ряду увеличиваются координационные числа элементов. Например, у фтористых соединений максимальное координационное число углерода составляет четыре (в СF4), кремния и германия — шесть (в солях Н2ЭF6). По отношению к более объёмистым галогенам максимальное координационное число кремния (и углерода) не превышает четырёх, у Ge оно возрастает до шести только для хлора, а у Sn и Pb - даже для иода. Как уменьшение устойчивости связей Э-Э, так и повышение координационного числа по ряду С-Pb обусловлены увеличением в том же ряду размеров соответствующих атомов и ионов.

Одинаковость значений валентности и координационного числа углерода имеет большое значение для химии его соединений, так как ведёт к повышению химической устойчивости многих из них. Последнее стоит в связи с тем обстоятельством, что при химических процессах (особенно между молекулами с малополярными связями) первой стадией часто является присоединение одной из реагирующих частиц к другой и лишь вслед за тем идёт обмен атомами (или ионами) с образованием новых соединений. Очевидно, что в тех случаях, когда координационное число элемента совпадает с его валентностью, внутренняя сфера уже заполнена и присоединение к центральному атому какой-либо посторонней молекулы (или иона) затруднено. Комплексообразователь оказывается экранированным, т.е. как бы “защищённым” окружающими его атомами от внешних воздействий, что и ведёт к медленности протекания всего процесса в целом или даже к практически полному его отсутствию, несмотря на то, что по сути дела он должен был бы иметь место. Именно так следует, по-видимому, понимать многие характерные отличия соединений углерода от аналогичных им производных Si, например большую устойчивость ССl4 по отношению к другим реактивам, легко разлагающим SiCl4. Несомненно, что и химическая инертность насыщенных углеводородов в известной степени обусловлена равенством валентности и координационного числа углерода.