Скачать

Нефть: происхождение, состав, методы и способы переработки

Бурный научно-технический прогресс и высокие темпы развития различных отраслей науки и мирового хозяйства в XIX – XX вв. привели к резкому увеличению потребления различных полезных ископаемых, особое место среди которых заняла нефть.

Считают, что современный термин “нефть” произошел от слова “нафата”, что на языке народов Малой Азии означает просачиваться.

Нефть начали добывать на берегу Евфрата за 6 – 4 тыс. лет до нашей эры. Использовалась она и в качестве лекарства. Древние египтяне использовали асфальт (окисленную нефть) для бальзамирования. Нефтяные битумы использовались для приготовления строительных растворов. Нефть входила в состав “греческого огня”. В средние века нефть использовалась для освещения в ряде городов на Ближнем Востоке, Южной Италии. В начале XIX века в России, а в середине XIX века в Америке из нефти путем возгонки был получен керосин. Он использовался в лампах. До середины XIX века нефть добывалась в небольших количествах из глубоких колодцев вблизи естественных выходов ее на поверхность. Изобретение парового, а затем дизельного и бензинового двигателя привело к бурному развитию нефтедобывающей промышленности.

Современный уровень цивилизации и технологии был бы немыслим без той дешевой и обильной энергии, которую предоставляет нам нефть. Сегодня она имеет несколько значений для народного хозяйства страны:

· сырье для нефтехимии в производстве синтетического каучука, спиртов, полиэтилена, полипропилена, широкой гаммы различных пластмасс и готовых изделий из них, искусственных тканей;

· источник для выработки моторных топлив (бензина, керосина, дизельного и реактивных топлив), масел и смазок, а также котельно-печного топлива (мазут), строительных материалов (битумы, гудрон, асфальт);

· сырье для получения ряда белковых препаратов, используемых в качестве добавок в корм скоту для стимуляции его роста.

Нефть – наше национальное богатство, источник могущества России, фундамент ее экономики.


II. Основные нефтегазоносные провинции в Российской Федерации.

Россия занимает промежуточное положение между полюсами “сверх потребителя” – США и “сверх добытчика” – Саудовской Аравии. В настоящее время нефтяная промышленность Российской Федерации занимает 2 место в мире. По уровню добычи мы уступаем только Саудовской Аравии. В 2002 году добыто углеводородов: нефти – 379,6 млн.тонн, природного газа – 594 млрд.м3.

На территории Российской Федерации находятся три крупные нефтегазоносные провинции: Западно-Сибирская, Волго-Уральская и Тимано-Печерская.

1. Западно-Сибирская провинция.

Западно-Сибирская – это основная провинция РФ. Крупнейший нефтегазоносный бассейн в мире. Расположен он в пределах Западно-Сибирской равнины на территории Тюменской, Омской, Курганской, Томской и частично Свердловской, Челябинской, Новосибирской областей, Красноярского и Алтайского краев, площадью около 3,5 млн. км2 Нефтегазоносность бассейна связана с отложениями юрского и мелового возраста. Большая часть нефтяных залежей находиться на глубине 2000-3000 метров. Нефть Западно-Сибирского нефтегазоносного бассейна характеризуется низким содержанием серы (до 1,1%), и парафина (менее 0,5%), содержание бензиновых фракций высокое (40-60%), повышенное количество летучих веществ.

Сейчас на территории Западной Сибири добывается 70% российской нефти. Основной ее объем извлекается насосным способом, на долю фонтанной добычи приходится не более 10%. Из этого следует, что основные месторождения находятся на поздней стадии разработки, что заставляет задуматься над важной проблемой топливной промышленности - старением месторождений. Этот вывод подтверждается и данными по стране в целом.

В Западной Сибири находятся несколько десятков крупных месторождений. Среди них такие известные, как Самотлорское, Мамонтовское, Федоровское, Усть-Балыкское, Убинское, Толумское, Муравленковское, Суторминское, Холмогорское, Талинское, Мортымья-Тетеревское и другие. Большая часть из них расположена в Тюменской области – своеобразном ядре района. В республиканском разделении труда она выделяется как главная база России по снабжению ее народнохозяйственного комплекса нефтью и природным газом. В Тюменской области добывается более 220 млн. тонн нефти, что составляет более 90% всей добычи Западной Сибири и более 55% от всего объема добычи по России. Анализируя данную информацию, нельзя не сделать следующий вывод: нефтедобывающей промышленности Российской Федерации свойственна чрезвычайно высокая концентрация в ведущем районе.

Для нефтяной промышленности Тюменской области характерно снижение объемов добычи. Достигнув максимума в 1988 году 415,1 млн. т, к 1990 году нефтедобыча снизилась до 358,4 млн. т, то есть на 13.7%, причем тенденция падения добычи сохраняется и сейчас.

Основные нефтяные компании работающие на территории Западной Сибири, это – ЛУКОЙЛ, ЮКОС, Сургутнефтегаз, Сибнефть, СИДАНКО, ТНК.

2. Волго-Уральская провинция.

Вторая по значению нефтяная провинция – Волго-Уральская. Она расположена в восточной части Европейской территории Российской Федерации, в пределах республик Татарстан, Башкортостан, Удмуртия, а также Пермской, Оренбургской, Куйбышевской, Саратовской, Волгоградской Кировской и Ульяновской областей. Нефтяные залежи находятся на глубине от 1600 до 3000 м, т.е. ближе к поверхности по сравнению с Западной Сибирью, что несколько снижает затраты на бурение. Волго-Уральский район дает 24% нефтедобычи страны.

Подавляющую часть нефти и попутного газа (более 4/5) области дают Татария, Башкирия, Куйбышевская область. Добыча нефти ведется на месторождениях Ромашкинское, Ново-Елховское, Чекмагушское, Арланское, Краснохолмское, Оренбургское и другие. Значительная часть нефти, добываемая на промыслах Волго-Уральской нефтегазоносной области, поступает по нефтепроводам на местные нефтеперерабатывающие заводы, расположенные главным образом в Башкирии и Куйбышевской области, а также в других областях (Пермской, Саратовской, Волгоградской, Оренбургской).

Основные нефтяные компании работающие на территории Волго-Уральской провинции: ЛУКОЙЛ, Татнефть, Башнефть, ЮКОС, ТНК.

3. Тимано-Печерская провинция.

Третья по значимости нефтяная провинция – Тимано-Печерская. Она расположена в пределах Коми, Ненецкого автономного округа Архангельской области и частично на прилегающих территориях, граничит с северной частью Волго-Уральского нефтегазоносного района. Вместе с остальными Тимано-Печерская нефтяная область дает лишь 6% нефти в Российской Федерации (Западная Сибирь и Урало-Поволжье – 94%). Добыча нефти ведется на месторождениях Усинское, Харьягинское, Войвожское, Верхне-грубешорское, Ярегское, Нижне-Омринское, Возейское и другие. Тимано-Печорский район, как Волгоградская и Саратовская области, считается достаточно перспективным. Добыча нефти в Западной Сибири сокращается, а в Ненецком автономном округе уже разведаны запасы углеводородного сырья, соизмеримые с западносибирскими. По оценке американских специалистов, недра арктической тундры хранят 2,5 млрд. тонн нефти.

Почти каждое месторождение, а тем более каждый из нефтегазоносных районов отличаются своими особенностями по составу нефти и поэтому вести переработку, используя какую-либо “стандартную” технологию нецелесообразно. Нужно учитывать уникальный состав нефти для достижения максимальной эффективности переработки, по этой причине приходиться сооружать заводы под конкретные нефтегазоносные области. Существует тесная взаимосвязь между нефтяной и нефтеперерабатывающей промышленностью. Однако развал Советского Союза обусловил появление новой проблемы – разрыв внешних хозяйственных связей нефтяной промышленности. Россия оказалась в крайне невыгодном положении, т.к. вынуждена экспортировать сырую нефть ввиду дисбаланса нефтяной и нефтеперерабатывающей промышленности (объем переработки в 2002 году составил – 184 млн. тонн), в то время как цены на сырую нефть гораздо ниже, чем на нефтепродукты. Кроме того, низкая приспособляемость российских заводов, при переходе на нефть, которая ранее транспортировалась на заводы соседних республик, вызывает некачественную переработку и большие потери продукта.

4. Нефтяной комплекс России.

Следует учитывать, что в Российской Федерации после семидесятых годов не было открыто ни одного крупного высокопродуктивного месторождения, а вновь приращиваемые запасы по своим кондициям резко ухудшаются. Так, например, по геологическим условиям средний дебит одной новой скважины в Тюменской области упал с 138 т в 1975 г. до 10-12т в 1994 г., т.е. более чем в 10 раз. Значительно возросли затраты финансовых и материально-технических ресурсов на создание 1 т новой мощности.

Нефтяной комплекс России включает 148 тыс. нефтяных скважин, 48,3 тыс. км магистральных нефтепроводов, 28 нефтеперерабатывающих заводов (НПЗ) общей мощностью около 300 млн.т/год нефти, а также большое количество других производственных объектов. На предприятиях нефтяной промышленности и обслуживающих ее отраслей занято около 900 тыс. работников, в том числе в сфере науки и научного обслуживания – около 20 тыс. человек.

Высокопродуктивные запасы крупных месторождений выработаны более, чем на половину, и по крупным залежам происходит интенсивное снижение объемов добычи нефти. Например, Арланское месторождение (Башкирия) выработано на 77,5%, а Мортымья-Тетеревское (Западная Сибирь) – на 95%. Практически весь фонд нефтяных скважин переведен с фонтанного на механизированный способ добычи. Начался массовый ввод в разработку мелких, низкопродуктивных месторождений. Указанные факторы вызвали резкий рост потребностей отрасли в материальных и финансовых ресурсах для своего освоения, выделение которых в условиях экономического и политического кризиса России в 90-х годах было сокращено.

Геологический разрез нефтеносной залежи.

Нефть залегает в земле, заполняя пустоты между частицами различных горных пород. Для добывания её бурят скважины. Если нефть богата газами, она под их давлением сама поднимается на поверхность, если же давление газов для этого недостаточно, в нефтяном пласту создают искусственное давление путём нагнетания туда газа, воздуха или воды.

5. Транспортировка нефти трубопроводами.

В настоящее время география нефтеперерабатывающей промышленности не всегда совпадает с районами ее переработки. Поэтому задачи транспортировки нефти привели к созданию большой сети нефтепроводов. Нефтеперерабатывающие заводы располагаются во всех районах страны, т.к. выгоднее транспортировать сырую нефть, чем продукты ее переработки, которые необходимы во всех отраслях народного хозяйства. В прошлом она из мест добычи в места потребления перевозилась по железным дорогам в цистернах. В настоящее время большая часть нефти перекачивается по нефтепроводам и их доля в транспортировке продолжает расти. В состав нефтепроводов входят трубопроводы, насосные станции и нефтехранилища. Пропускная способность нефтепровода диаметром 1200 мм составляет 80-90 млн. тонн в год при скорости движения потока нефти 10-12 км/ч. По эффективности с нефтепроводами могут соперничать только морские перевозки танкерами. Кроме того, они менее опасны в пожарном отношении и резко снижают потери при транспортировке (доставке). По размеру грузооборота нефтепроводный транспорт в 2,5 раза превзошел железнодорожный в части перевозок нефти и нефтепродуктов. Транспортировка нефти по нефтепроводам стоит в настоящее время дороже, чем перевозка по воде, но значительно дешевле, чем перевозка по железной дороге.

Стоимость строительства магистрального нефтепровода обычно окупается за 2-3 года. Характерной особенностью развития нефтепроводного транспорта России является увеличение удельного веса трубопроводов большого диаметра, что объясняется их высокой рентабельностью.

Сейчас по грузообороту трубопроводного транспорта Россия стоит на первом месте. Протяженность нефтепроводов составляет 66000 км. Строительство магистральных нефтепроводов продолжается и в настоящее время. Так, например, в 2001 году введена в эксплуатацию первая очередь нефтепровода КТК на 28 млн.т/год (максимальная мощность – 65 млн.тонн), диаметром 1490 мм и протяженностью 1500 км, связывающая нефтяные месторождения юга России и западного Казахстана с терминалом на Черноморском побережье в г.Новороссийске.


III. Происхождение нефти.

1. Современный взгляд.

Вопросы об исходном веществе, из которого образовалась нефть, о процессах нефтеобразования и формирования нефти в концентрированную залежь, а отдельных залежей в месторождения до сего времени ещё не являются окончательно решёнными. Существует множество мнений как об исходных для нефти веществах, так и о причинах и процессах, обусловливающих её образование. В последние годы благодаря трудам главным образом советских геологов, химиков, биологов, физиков и исследователей других специальностей удалось выяснить основные закономерности в процессах нефтеобразования. В настоящее время установлено, что нефть органического происхождения, т.е. она, как и уголь, возникла в результате преобразования органических веществ.

Наиболее благоприятные условия для формирования нефти – морские, с так называемым некомпенсированным прогибанием. В теплых водах, на дне доисторического моря, веками накапливалась сапропель – глинистая почва, перемешанная с органическими останками умерших рыб, водорослей, моллюсков и прочей живности. В ней шла биохимическая стадия образования нефти. Микроорганизмы при ограниченном доступе кислорода перерабатывали белки, углеводы и т.д. При этом образовывался метан, углекислый газ, вода и немного углеводородов. Данная стадия происходила в нескольких метрах от дна моря. Затем осадок уплотнился: произошел диагенез. Вследствие природных процессов дно моря опускалось, а сапропель накрывали материалы, которые из-за природных разрушений или потоками воды сносились с гор. Органика попадала в застойные, бескислородные условия. Когда сапропель опустилась до глубины в 1,5 км, подземная температура достигла 100°C и стала достаточной для нефтеобразования. Начинаются химические реакции между веществами под действием температуры и давления. Сложные вещества разлагаются на более простые. Биохимические процессы затухают. Потом породу должна накрыть соль (в Прикаспийской впадине ее толщина достигает 4 км) или глина. С увеличением глубины растет содержание рассеянной нефти. Так, на глубине до 1,5 км идет газообразование, на интервале 1,5-8,5 км идет образование жидких углеводородов – микронефти – при температуре от 60 до 160°С. А на больших глубинах при температуре 150-200°С образуется метан. По мере уплотнения сапропели микронефть выжимается в вышележащие песчаники. Это процесс первичной миграции. Затем под влиянием различных сил микронефть перемещается вверх по наклону. Это вторичная миграция, которая является периодом формирования самого месторождения.

Весь процесс занимает сотни миллионов лет.

2. Другие теории образования нефти.

Один из первых, кто высказал научно обоснованную концепцию о происхождении нефти, был М.В. Ломоносов. В середине XVIII века в своём тракте «О слоях земных» великий русский учёный писал, что нефть произошла из каменного угля. Исходное вещество было одно: органический материал, преобразованный сначала в уголь, а потом в нефть. М.В. Ломоносов первый указал на связь между горючими полезными ископаемыми – углём и нефтью и выдвинул первую в мире гипотезу о происхождении нефти из растительных остатков.

В XIX в. среди ученых были распространены идеи, близкие к представлениям М.В. Ломоносова. Споры велись главным образом вокруг исходного материала: животные или растения? Немецкие ученые Г. Гефер и К. Энглер в 1888 г. поставили опыты, доказавшие возможность получения нефти из животных организмов. Была произведена перегонка сельдевого жира при температуре 400 °С и давлении 1 МПа. Из 492 кг жира было получено масло, горючие газы, вода, жиры и разные кислоты. Больше всего было отогнано масла (299 кг, или 61 %) плотностью 0,8105 г/см3, состоящего на 9/10 из УВ коричневого цвета. Последующей разгонкой из масла получили предельные УВ (от пентана до нонана), парафин, смазочные масла, в состав которых входили олефины и ароматические УВ. Позднее, в 1919 г. академиком Н.Д. Зелинским был осуществлен похожий опыт, но исходным материалом служил органогенный ил преимущественно растительного происхождения (сапропель) из озера Балхаш. При его перегонке были получены: сырая смола – 63,2 %; кокс – 16,0%; газы (метан, оксид углерода, водород, сероводород) – 20,8 %. При последующей переработке смолы из нее извлекли бензин, керосин и тяжелые масла.

В конце XIX в., когда в астрономии и физике получило развитие применение спектральных методов исследования и в спектрах различных космических тел были обнаружены не только углерод и водород, но и углеводороды, русский геолог Н.А. Соколов выдвинул космическую гипотезу образования нефти. Он предполагал, что когда земля была в огненно-жидком состоянии, то углеводороды из газовой оболочки проникли в массу земного шара, а впоследствии при остывании выделились на его поверхности. Эта гипотеза не объясняет ни географического, ни геологического распределения нефтяных месторождений.

Академик В.И. Вернадский обратил внимание на наличие в нефти азотистых соединений, встречающихся в органическом мире.

Предшественники академика И.М. Губкина, русские геологи Андрусов и Михайловский также считали, что на Кавказе нефть образовалась из органического материала. По мнению И.М. Губкина, родина нефти находится в области древних мелководных морей, лагун и заливов. Он считал, что уголь и нефть – члены одного и того же генетического ряда горючих ископаемых.

Уголь образуется в болотах и пресноводных водоёмах, как правило, из высших растений. Нефть получается главным образом из низших растений и животных, но в других условиях. Нефть постепенно образовывалась в толще различных по возрасту осадочных пород, начиная от наиболее древних осадочных пород – кембрийских, возникших 600 млн. лет назад, до сравнительно молодых – третичных слоёв, сложившихся 50 млн. лет назад. Накопление органического материала для будущего образования нефти происходило в прибрежной полосе, в зоне борьбы между сушей и морем.

По вопросу об исходном материале существовали разные мнения. Некоторые учёные полагали, что нефть возникла из жиров погибших животных (рыбы, планктона), другие считали, что главную роль играли белки, третьи придавали большое значение углеводам. Теперь доказано, что нефть может образоваться из жиров, белков и углеводов, т.е. из всей суммы органических веществ.

И.М. Губкин дал критический анализ проблемы происхождения нефти и разделил органические теории на три группы: теория, где преобладающая роль в образовании нефти отводится погибшим животным; теория, где преобладающая роль отводится погибшим растениям, и, наконец, теория смешанного животно-растительного происхождения нефти.

Последняя теория, детально разработанная И.М. Губкиным, носит название сапропелитовой от слова “сапропель” – глинистый ил – и является господствующей. В природе широко распространены различные виды сапропелитов.

Различие в исходном органическом веществе является одной из причин существующего разнообразия нефтей. Другими причинами являются различие температурных условий вмещающих пород, присутствие катализаторов и др., а также последующие преобразования пород, в которых заключена нефть.

В СССР были проведены исследования, в результате которых удалось установить роль микроорганизмов в образовании нефти. Т.Л. Гинзбург-Карагичева, открывшая присутствие в нефти разнообразнейших микроорганизмов, привела в своих исследованиях много новых, интересных сведений. Она установила, что в нефтях, ранее считавшихся ядом для бактерий, на больших глубинах идёт кипучая жизнь, не прекращавшаяся миллионы лет подряд.

Целый ряд бактерий живёт в нефти и питается ею, меняя, таким образом, химический состав нефти. Академик И.М. Губкин в своей теории нефтеобразования придавал этому открытию большое значение. Гинзбург-Карагичевой установлено, что бактерии нефтяных пластов превращают различные органические продукты в битуминозные.

Под действием ряда бактерий происходит разложение органических веществ и выделяется водород, необходимый для превращения органического материала в нефть.


IV. Состав нефти.

1. Состав нефти и химические свойства.

Нефть – это горная порода. Она относится к группе осадочных пород вместе с песками, глинами, известняками, каменной солью и др. Мы привыкли считать, что порода – это твердое вещество, из которого состоит земная кора и более глубокие недра Земли. Оказывается, есть и жидкие породы, и даже газообразные. Одно из важных свойств нефти – способность гореть.

В зависимости от месторождения нефть имеет различный качественный и количественный состав. Нефти состоят главным образом из углерода – 79,5-87,5% и водорода – 11,0-14,5% от массы нефти. Кроме них в нефтях присутствуют еще три элемента – сера, кислород и азот. Их общее количество обычно составляет 0,5-8%. В незначительных концентрациях в нефтях встречаются элементы: ванадий, никель, железо, алюминий, медь, магний, барий, стронций, марганец, хром, кобальт, молибден, бор, мышьяк, калий. Их общее содержание не превышает 0,02-0,03% от массы нефти. Указанные элементы образуют органические и неорганические соединения, из которых состоят нефти. Кислород и азот находятся в нефтях только в связанном состоянии. Сера может встречаться в свободном состоянии или входить в состав сероводорода.

В состав нефти входит около 425 углеводородных соединений. Главную часть нефтей составляют три группы УВ: метановые, нафтеновые и ароматические. По углеводородному составу все нефти подразделяются на: 1) метаново-нафтеновые, 2) нафтеново-метановые, 3) ароматическо-нафтеновые, 4) нафтеново-ароматические, 5) ароматическо-метановые, 6) метаново-ароматические и 7) метаново-ароматическо-нафтеновые. Первым в этой классификации ставится название углеводорода, содержание которого в составе нефти меньше.

Метановые УВ (алкановые или алканы) химически наиболее устойчивы, они относятся к предельным УВ и имеют формулу CnH2n+2. Если количество атомов углерода в молекуле колеблется от 1 до 4 (СН44Н10), то УВ представляет собой газ, от 5 до 16 (C5H16-C16H34) то это жидкие УВ, а если оно выше 16 (С17Н36 и т.д.) – твердые (например, парафин).

Нафтеновые (циклановые или алициклические) УВ (CnH2n) имеют кольчатое строение, поэтому их иногда называют карбоциклическими соединениями. Все связи углерода с водородом здесь также насыщены, поэтому нафтеновые нефти обладают устойчивыми свойствами.

Ароматические УВ, или арены (СnНn), наиболее бедны водородом. Молекула имеет вид кольца с ненасыщенными связями углерода. Они так и называются – ненасыщенными, или непредельными УВ. Отсюда их неустойчивость в химическом отношении.

Наряду с углеводородами в нефтях присутствуют химические соединения других классов. Обычно все эти классы объединяют в одну группу гетеросоединений (греч. “гетерос” – другой). В нефтях также обнаружено более 380 сложных гетеросоединений, в которых к углеводородным ядрам присоединены такие элементы, как сера, азот и кислород. Большинство из указанных соединений относится к классу сернистых соединений – меркаптанов. Это очень слабые кислоты с неприятным запахом. С металлами они образуют солеобразные соединения – меркаптиды. В нефтях меркаптаны представляют собой соединения, в которых к углеводородным радикалам присоединена группа SH.


Метилмеркаптан.

Меркаптаны разъедают трубы и другое металлическое оборудование буровых установок и промысловых объектов.

В нефтях так же выделяют неуглеводородные соединения: асфальто-смолистую части, порфирины, серу и зольную часть.

Асфальто-смолистая часть нефтей – это темноокрашенное вещество. Оно частично растворяется в бензине. Растворившаяся часть называется асфальтеном, нерастворившаяся – смолой. В составе смол содержится кислород до 93 % от общего его количества в нефтях.

Порфирины – особые азотистые соединения органического происхождения. Считают, что они образованы из хлорофилла растений и гемоглобина животных. При температуре 200-250оС порфирины разрушаются.

Сера широко распространена в нефтях и в углеводородном газе и содержится либо в свободном состоянии, либо в виде соединений (сероводород, меркаптаны). Количество ее колеблется от 0,1% до 5%, но бывает и значительно больше. Так, например, в газе Астраханского месторождения содержание Н2S достигает 24 %.

Зольная часть – остаток, получающийся при сжигании нефти. Это различные минеральные соединения, чаще всего железо, никель, ванадий, иногда соли натрия.

Кислород в нефтях встречается в связанном состоянии также в составе нафтеновых кислот (около 6%) – CnH2n-1(COOH), фенолов (не более 1%) – C6H5OH, а также жирных кислот и их производных – C6H5O6(P). Содержание азота в нефтях не превышает 1%. Основная его масса содержится в смолах. Содержание смол в нефтях может достигать 60% от массы нефти, асфальтенов – 16%.

Асфальтены представляют собой черное твердое вещество. По составу они сходны со смолами, но характеризуются иными соотношениями элементов. Они отличаются большим содержанием железа, ванадия, никеля и др. Если смолы растворяются в жидких углеводородах всех групп, то асфальтены нерастворимы в метановых углеводородах, частично растворимы в нафтеновых и лучше растворяются в ароматических. В “белых” нефтях смолы содержатся в малых количествах, а асфальтены вообще отсутствуют.

2. Физические свойства.

Нефть – это вязкая маслянистая жидкость, темно-коричневого или почти черного цвета с характерным запахом, обладающая слабой флюоресценцией, более легкая (плотность 0,73-0,97г/см3), чем вода, почти нерастворимая в ней. Нефть сильно варьирует по плотности (от легкой 0,65-0,70 г/см3, до тяжелой 0,98-1,05 г/см3). Нефть и ее производные обладают наивысшей среди всех видов топлив теплотой сгорания. Теплоемкость нефти 1,7-2,1 кДж/кг, теплота сгорания нефти – 41 МДж/кг, бензина – 42 МДж/кг. Температура кипения зависит от строения входящих в состав нефти углеводородов и колеблется от 50 до 550°С.

Различные компоненты нефти переходят в газообразное состояние при различной температуре. Легкие нефти кипят при 50–100°С, тяжелые – при температуре более 100°С.

Различие температур кипения углеводородов используется для разделения нефти на температурные фракции. При нагревании нефти до 180-200°С выкипают углеводороды бензиновой фракции, при 200-250°С – лигроиновой, при 250-315°С – керосиново-газойлевой и при 315-350°С – масляной. Остаток представлен гудроном. В состав бензиновой и лигроиновой фракций входят углеводороды, содержащие 6-10 атомов углерода. Керосиновая фракция состоит из углеводородов с C11-C13, газойлевая – C14-C17.

Важным является свойство нефтей растворять углеводородные газы. В 1 м3 нефти может раствориться до 400 м3 горючих газов. Большое значение имеет выяснение условий растворения нефти и природных газов в воде. Нефтяные углеводороды растворяются в воде крайне незначительно. Нефти различаются по плотности. Плотность нефти, измеренной при 20°С, отнесенной к плотности воды, измеренной при 4°С, называется относительной. Нефти с относительной плотностью 0,85 называются легкими, с относительной плотностью от 0,85 до 0,90 – средними, а с относительной плотностью свыше 0,90 – тяжелыми. В тяжелых нефтях содержатся в основном циклические углеводороды. Цвет нефти зависит от ее плотности: светлые нефти обладают меньшей плотностью, чем темные. А чем больше в нефти смол и асфальтенов, тем выше ее плотность. При добыче нефти важно знать ее вязкость. Различают динамическую и кинематическую вязкость. Динамической вязкостью называется внутреннее сопротивление отдельных частиц жидкости движению общего потока. У легких нефтей вязкость меньше, чем у тяжелых. При добыче и дальнейшей транспортировке тяжелые нефти подогревают. Кинематической вязкостью называется отношение динамической вязкости к плотности среды. Большое значение имеет знание поверхностного натяжения нефти. При соприкосновении нефти и воды между ними возникает поверхность типа упругой мембраны. Капиллярные явления используются при добыче нефти. Силы взаимодействия воды с горной породой больше, чем у нефти. Поэтому вода способна вытеснить нефть из мелких трещин в более крупные. Для увеличения нефтеотдачи пластов используются специальные поверхностно-активные вещества (ПАВ). Нефти имеют неодинаковые оптические свойства. Под действием ультрафиолетовых лучей нефть способна светиться. При этом легкие нефти светятся голубым светом, тяжелые – бурым и желто-бурым. Это используется при поиске нефти. Нефть является диэлектриком и имеет высокое удельное сопротивление. На этом основаны электрометрические методы установления в разрезе, вскрытом буровой скважиной, нефтеносных пластов.


V. Методы и способы переработки нефти.

1. Подготовка нефти к переработке.

Добываемая на промыслах нефть, помимо растворенных в ней газов, содержит некоторое количество примесей – частицы песка, глины, кристаллы солей и воду. Содержание твердых частиц в неочищенной нефти обычно не превышает 1,5%, а количество воды может изменяться в широких пределах. С увеличением продолжительности эксплуатации месторождения возрастает обводнение нефтяного пласта и содержание воды в добываемой нефти. В некоторых старых скважинах жидкость, получаемая из пласта, содержит 90% воды. В нефти, поступающей на переработку, должно быть не более 0,3% воды. Присутствие в нефти механических примесей затрудняет ее транспортирование по трубопроводам и переработку, вызывает эрозию внутренних поверхностей труб нефтепроводов и образование отложений в теплообменниках, печах и холодильниках, что приводит к снижению коэффициента теплопередачи, повышает зольность остатков от перегонки нефти (мазутов и гудронов), содействует образованию стойких эмульсий. Кроме того, в процессе добычи и транспортировки нефти происходит весомая потеря легких компонентов нефти (метан, этан, пропан и т.д., включая бензиновые фракции) – примерно до 5% от фракций, выкипающих до 100°С.

С целью понижения затрат на переработку нефти, вызванных потерей легких компонентов и чрезмерным износом нефтепроводов и аппаратов переработки, добываемая нефть подвергается предварительной обработке.

Для сокращения потерь легких компонентов осуществляют стабилизацию нефти, а также применяют специальные герметические резервуары хранения нефти. От основного количества воды и твердых частиц нефть освобождают путем отстаивания в резервуарах на холоду или при подогреве. Окончательно их обезвоживают и обессоливают на специальных установках.

Однако вода и нефть часто образуют трудно разделимую эмульсию, что сильно замедляет или даже препятствует обезвоживанию нефти. В общем случае эмульсия есть система из двух взаимно нерастворимых жидкостей, в которых одна распределена в другой во взвешенном состоянии в виде мельчайших капель. Существуют два типа нефтяных эмульсий: нефть в воде, или гидрофильная эмульсия, и вода в нефти, или гидрофобная эмульсия. Чаще встречается гидрофобный тип нефтяных эмульсий. Образованию стойкой эмульсии предшествуют понижение поверхностного натяжения на границе раздела фаз и создание вокруг частиц дисперсной фазы прочного адсорбционного слоя. Такие слои образуют третьи вещества – эмульгаторы. К гидрофильным эмульгаторам относятся щелочные мыла, желатин, крахмал. Гидрофобными являются хорошо растворимые в нефтепродуктах щелочноземельные соли органических кислот, смолы, а также мелкодисперсные частицы сажи, глины, окислов металлов и т.п., легче смачиваемые нефтью чем водой.

Существуют три метода разрушения нефтяных эмульсий:

· механический:

отстаивание – применяется к свежим, легко разрушимым эмульсиям. Расслаивание воды и нефти происходит вследствие разности плотностей компонентов эмульсии. Процесс ускоряется нагреванием до 120-160°С под давлением 8-15 атмосфер в течение 2-3 ч, не допуская испарения воды.

центрифугирование – отделение механических примесей нефти под воздействием центробежных сил. В промышленности применяется редко, обычно сериями центрифуг с числом оборотов от 350 до 5000 в мин., при производительности 15-45 м3/ч каждая.

· химический:

разрушение эмульсий достигается путем применения поверхностно-активных веществ – деэмульгаторов. Разрушение достигается а) адсорбционным вытеснением действующего эмульгатора веществом с большей поверхностной активностью, б) образованием эмульсий противоположного типа (инверсия ваз) и в) растворением (разрушением) адсорбционной пленки в результате ее химической реакции с вводимым в систему деэмульгатором. Химический метод применяется чаще механического, обычно в сочетании с электрическим.

· электрический:

при попадании нефтяной эмульсии в переменное электрическое поле частицы воды, сильнее реагирующие на поле чем нефть, начинают колебаться, сталкиваясь друг с другом, что приводит к их объединению, укрупнению и более быстрому расслоению с нефтью. Установки, называемые электродегидраторами (ЭЛОУ – электроочистительные установки), с рабочим напряжением до 33000В при давлении 8-10 атмосфер, применяют группами по 6-8 шт. с производительностью 250-500 т нефти в сутки каждая. В сочетании с химическим методом этот метод имеет наибольшее распространение в промышленной нефтепереработке.

Важным моментом является процесс сортировки и смешения нефти.

2. Сортировка и смешивание нефти.

Различные нефти и выделенные из них соответствующие фракции отличаются друг от друга физико-химическими и товарными свойствами. Так, бензиновые фракции некоторых нефтей характеризуются высокой концентрацией ароматических, нафтеновых или изопарафиновых углеводородов и поэтому имеют высокие октановые числа, тогда как бензиновые фракции других нефтей содержат в значительных количествах парафиновые углеводороды и имеют очень низкие октановые числа. Важное значение в дальнейшей технологической переработке нефти имеет серность, масляничность смолистость нефти и др. Таким образом, существует необходимость отслеживания качественных характеристик нефтей в процессе транспортировки, сбора и хранения с целью недопущения потери ценных свойств компонентов нефти.

Однако раздельные сбор, хранение и перекачка нефтей в пределах месторождения с большим числом нефтяных пластов весомо осложняет нефтепромысловое хозяйство и требует больших капиталовложений. Поэтому близкие по физико-химическим и товарным свойствам нефти на промыслах смешивают и направляют на совместную переработку.

3. Выбор направления переработки нефти.

Выбор направления переработки нефти и ассортимента получаемых нефтепродуктов определяется физико-химическими свойствами нефти, уровнем технологии нефтеперерабатывающего завода и настоящей потребности хозяйств в товарных нефтепродуктах. Различают три основных варианта переработки нефти:

· топливный,

· топливно-масляный,

· нефтехимический.

По топливному варианту нефть перерабатывается в основном на моторные и котельные топлива. Топливный вариант переработки отличается наименьшим числом участвующих технологических установок и низкими капиталовложениями. Различают глубокую и неглубокую топливную переработку. При глубокой переработке нефти стремятся получить максимально возможный выход высококачественных и автомобильных бензинов, зимних и летних дизельных топлив и топлив для