Функция и ее свойства
Русская гимназия
КОНСПЕКТ
на тему:
Функция
Выполнил
ученик 10«Ф» класса Бурмистров Сергей
Руководитель
учитель Математики
Юлина О.А.
Нижний Новгород
1997 год
Функция и её свойства
Функция- зависимость переменной у от переменной x, если каждому значению х соответствует единственное значение у.
Переменная х- независимая переменная или аргумент.
Переменная у- зависимая переменная
Значение функции- значение у, соответствующее заданному значению х.
Область определения функции- все значения, которые принимает независимая переменная.
Область значений функции (множество значений)- все значения, которые принимает функция.
Функция является четной- если для любого х из области определения функции выполняется равенство f(x)=f(-x)
Функция является нечетной- если для любого х из области определения функции выполняется равенство f(-x)=-f(x)
Возрастающая функция- если для любых х1 и х2, таких, что х1< х2, выполняется неравенство f(х1) Убывающая функция- если для любых х1 и х2, таких, что х1< х2, выполняется неравенство f(х1)>f(х2) Способы задания функции Виды функций и их свойства Cвойства функции y=kx: 3)Линейная функция- функция, которая задана формулой y=kx+b, где k и b-действительные числа. Если в частности, k=0, то получаем постоянную функцию y=b; если b=0, то получаем прямую пропорциональность y=kx. Свойства функции y=kx+b: Графиком функции является прямая. 4)Обратная пропорциональность- функция, заданная формулой y=k/х, где k≠0 Число k называют коэффициентом обратной пропорциональности. Свойства функции y=k/x: Графиком функции является гипербола. 5)Функция y=x2 Свойства функции y=x2: Графиком функции является парабола. 6)Функция y=x3 Свойства функции y=x3: Графиком функции является кубическая парабола 7)Степенная функция с натуральным показателем- функция, заданная формулой y=xn, где n- натуральное число. При n=1 получаем функцию y=x, ее свойства рассмотрены в п.2. При n=2;3 получаем функции y=x2; y=x3. Их свойства рассмотрены выше. Пусть n- произвольное четное число, большее двух: 4,6,8... В этом случае функция y=xn обладает теми же свойствами, что и функция y=x2. График функции напоминает параболу y=x2, только ветви графика при |х|>1 тем круче идут вверх, чем больше n, а при |х|<1 тем «теснее прижимаются» к оси Х, чем больше n. Пусть n- произвольное нечетное число, большее трех: 5,7,9... В этом случае функция y=xn обладает теми же свойствами, что и функция y=x3. График функции напоминает кубическую параболу. 8)Степенная функция с целым отрицательным показателем- функция, заданная формулой y=x-n, где n- натуральное число. При n=1 получаем y=1/х, свойства этой функции рассмотрены в п.4. Пусть n- нечетное число, большее единицы: 3,5,7... В этом случае функция y=x-n обладает в основном теми же свойствами, что и функция y=1/х. Пусть n- четное число, например n=2. Свойства функции y=x-2: Теми же свойствами обладают любые функции при четном n, большем двух. 9)Функция y=√х Свойства функции y=√х: 10)Функция y=3√х Свойства функции y=3√х: 11)Функция y=n√х При четном n функция обладает теми же свойствами, что и функция y=√х. При нечетном n функция y=n√х обладает теми же свойствами, что и функция y=3√х. 12)Степенная функция с положительным дробным показателем- функция, заданная формулой y=xr, где r- положительная несократимая дробь. Свойства функции y=xr: На рисунке изображен график функции y=x5/2. Он заключен между графиками функций y=x2 и y=x3, заданных на промежутке (0;+∞).Подобный вид имеет любой график функции вида y=xr, где r>1. На рисунке изображен график функции y=x2/3. Подобный вид имеет график любой степенной функции y=xr , где 0 13)Степенная функция с отрицательным дробным показателем-функция, заданная формулой y=x-r, где r- положительная несократимая дробь. Свойства функции y=x-r: 14)Обратная функция Если функция y=f(x) такова, что для любого ее значения yo уравнение f(x)=yo имеет относительно х единственный корень, то говорят, что функция f обратима. Если функция y=f(x) определена и возрастает (убывает) на промежутке Х и областью ее значений является промежуток Y, то у нее существует обратная функция, причем обратная функция определена и возрастает(убывает) на Y. Таким образом, чтобы построить график функции, обратной к функции y=f(x), надо график функции y=f(x) подвергнуть преобразованию симметрии относительно прямой y=x. 15)Сложная функция- функция, аргументом которой является другая любая функция. Возьмем, к примеру, функцию y=x+4. Подставим в аргумент функцию y=x+2. Получается: y(x+2)=x+2+4=x+6. Это и будет являться сложной функцией.
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Циклические группы
ЦИКЛИЧЕСКИЕ ГРУППЫГруппа G называется циклической, если все ее элементы являются степенями одного элемента g. Элемент g называется образ
- Цилиндр
ЦилиндрРабота ученика 11 классасредней школы №1906юго-западного округаг.МосквыКашина Виталия.Цилиндр. Цилиндр-это фигура, состоящая из
- Цилиндр и конус
ЦИЛИНДP И КОНУСЦилиндр Цилиндром называется тело, которое состоит из 2 кругов, совмещаемых параллельным переносом, и всех отрезков, соед
- Числа Фибоначчи - технический анализ
Министерство образования и науки УкраиныОдесский государственный экономический университеткафедра________________________Реферат по курсу "Эко
- Численное дифференцирование
ЧИСЛЕННОЕ ДИФФЕРЕНЦИРОВАНИЕ .Пусть имеется функция которую необходимо продифференцировать несколько раз и найти эт
- Численные методы
Теоретическая часть.В данной расчетно-графической работе (далее РГР) требует-ся составить программу для решения системы нелинейных ура
- Численный анализ
ЧИСЛЕННЫЙ АНАЛИЗ Введение Если задана функция y(x) , то это означает, что любому допустимому значению х сопоставлено значение у. Но неред