Скачать

Формирование устных вычислительных навыков пятиклассников при изучении темы "Десятичные дроби"

Одна из важнейших задач обучения школьников математике – формирование у них вычислительных навыков, основой которых является осознанное и прочное усвоение приемов устных и письменных вычислений.

Вычислительные навыки необходимы как в практической жизни каждого человека, так и в учении. Ни один пример, ни одну задачу по математике, физике, химии и т. д. нельзя решать, не обладая элементарными способами вычислений.

Но было бы ошибкой решать эту задачу только путем зазубривания таблиц сложения и умножения и использования при выполнении однообразных тренировочных упражнений. Не менее важная задача современной школы – развитие у учащихся в процессе обучения познавательной самостоятельности, творческой активности, потребности в знаниях.

Вычислительная культура формируется у учащихся на всех этапах изучения курса математики, но основа ее закладывается в первые 5-6 лет обучения. В этот период школьники обучаются именно умению осознанно использовать законы математических действий (сложение, вычитание, умножение, деление, возведение в степень). В последующие годы полученные умения и навыки совершенствуются и закрепляются в процессе изучения алгебры, физики, химии, черчении и других предметов.

Для развития у учащихся сознательных и прочных вычислительных навыков многие учителя используют различные методические приемы и формы, например, устный счет, игры «Быстрый счетчик», «Математическое домино», «Математический футбол», «Математическое лото».

Не секрет, что у детей с прочными вычислительными навыками гораздо меньше проблем с математикой. Но чтобы ребенок быстро считал , выполнял простейшие преобразования, необходимо время для их отработки. 5-7 минут устного счета на уроке недостаточны не только для развития вычислительных навыков, но и для их закрепления, если нет системы устного счета. Устные упражнения должны применяться также во всех подходящих случаях не только на небольших числах, но также и на больших, но удобных для устного счета. Задача учителя состоит в том, чтобы найти максимум педагогических ситуации, в которых ученик стремится производить в уме арифметические действия.

Именно в 5-6 классах закладываются основы обучения математике наших воспитанников. Не научим детей считать в этот период, в дальнейшем они будут испытывать трудности.

Данная тема актуальна, так как устные вычисления необходимы в жизни каждому человеку. Математика является одной из важнейших наук на земле, и именно с ней человек встречается каждый день в своей жизни. Поэтому учителю необходимо формировать у детей вычислительные навыки, используя различные виды устных упражнений.

Цель данной работы: выявление значения устных упражнений как одного из  наиболее эффективных средств формирования устных вычислительных навыков учащихся 5-го класса.

Задачи:

- изучить психолого-педагогические, теоретические и методические источники по данному вопросу;

-разработать систему устных упражнений, способствующих  формированию вычислительных навыков;

- провести и проанализировать результаты диагностики.

Объект исследования: процесс обучения учащихся на уроках математики.

Предмет исследования: процесс формирования устных вычислительных навыков пятиклассников на уроках математики.

Гипотеза: Если систематически включать устные упражнения на уроки математики в 5-ом  классе, то это способствует формированию прочных вычислительных навыков.

Контингент исследования: учащиеся 5-го класса Атнягузинской и Енапаевской школ Октябрьского района Пермской области.


Глава 1. Теоретические основы формирования устных вычислительных навыков

1. 1. Понятие «вычислительный навык» в психолого-педагогической литературе

Формирование вычислительных умений и навыков традиционно считается одной из самых «трудоемких» тем. Вопрос о значимости формирования устных вычислительных навыков на сегодняшний день является весьма дискуссионным в методическом плане. Широкое распространение калькуляторов ставит необходимость «жестокой» отработки этих умений под сомнение, поэтому многие не связывают хорошее овладение арифметическими вычислениями с математическими способностями и математической одаренностью. Однако внимание к устным арифметическим вычислениям является традиционным для образовательной школы. В связи с этим значительная часть заданий всех существующих сегодня учебников математики направлена на формирование устных  вычислительных умений и навыков (4 , 44). Остановимся на некоторых определениях понятий.

Навык – это действие, сформированное путем повторения, характерное высокой степенью освоения и отсутствием поэлементарной сознательной регуляции и контроля.

Вычислительный навык – это высокая степень овладения вычислительными приемами.

Приобрести вычислительные навыки – значит, для каждого случая знать, какие операции и в каком порядке следует выполнять, чтобы найти результат арифметического действия, и выполнять эти операции достаточно быстро.

Вычислительные навыки рассматриваются как один из видов учебных навыков, функционирующих и формирующихся в процессе обучения. Они входят в структуру учебно-познавательной деятельности и существуют в учебных действиях, которые выполняются посредством определенной системы операций. В зависимости от степени овладения учеником учебными действиями, оно выступает как умение или навык, характеризующийся такими качествами, как правильность, осознанность, рациональность, обобщенность, автоматизм и прочность.

Правильностьученик правильно находит результат арифметического действия над данными числами, т. е. правильно выбирает и выполняет операции, составляющие прием.

Осознанностьученик осознает, на основе каких знаний выбраны операции и установлен порядок их выполнения. Это для ученика своего рода доказательство правильности выбора системы операции. Осознанность проявляется в том, что ученик в любой момент может объяснить, как он решал пример и почему можно так решать. Это, конечно, не значит, что ученик всегда должен объяснять решение каждого примера. В процессе овладения навыков объяснение должно постепенно свертываться.

Рациональностьученик, сообразуясь с конкретными условиями, выбирает для данного случая более рациональный прием, т. е. выбирает те из возможных операции, выполнение которых легче других и быстрее приводит к результату арифметического действия. Разумеется, что это качество навыка может проявляться тогда, когда для данного случая существуют различные приемы нахождения результата, и ученик, используя различные знания, может сконструировать несколько приемов и выбрать более рациональный. Как видим, рациональность непосредственно связана с осознанностью навыка.

Обобщенность ученик может применить прием вычисления к большему числу случаев, т. е. он способен перенести прием вычисления на новые случаи. Обобщенность так же, как и рациональность, теснейшим образом связана с осознанностью вычислительного навыка, поскольку общим для различных случаев вычисления будет прием, основа которого – одни и те же теоретические положения.

Автоматизм (свернутость) – ученик выделяет и выполняет операции быстро и в свернутом виде, но всегда может вернуться к объяснению выбора системы операции. Осознанность и автоматизм вычислительных навыков не являются противоречивыми качествами. Они всегда выступают в единстве: при свернутом выполнении операции осознанность сохраняется, но обоснование выбора системы операции происходит свернуто в плане внутренней речи. Благодаря этому ученик может в любой момент дать развернутое обоснование выбора системы операции.

Прочностьученик сохраняет сформированные вычислительные навыки на длительное время.

Формирование вычислительных навыков, обладающих названными качествами, обеспечивается построением курса математики и использованием соответствующих методических приемов.(3, 38)

Вместе с тем, ученик при выполнении вычислительного приёма должен отдавать отчёт в правильности и целесообразности каждого выполненного действия, то есть постоянно контролировать себя, соотнося выполняемые операции с образцом – системой операций. О сформированности любого умственного действия можно говорить лишь тогда, когда ученик сам, без вмешательства со стороны, выполняет все операции приводящие к решению. Умение осознано контролировать выполняемые операции позволяет формировать вычислительные навыки более высокого уровня, чем без наличия этого умения.

Выполнение вычислительного приёма – мыслительный процесс, следовательно, овладение вычислительным приёмом и умение осуществлять  контроль за его выполнением, должно происходить одновременно в процессе обучения.

Автором были выделены и представлены в таблице № 8 (см. приложение № 10) уровни и критерии сформированности вычислительного навыка.

Отличительным признаком навыка, как одного из видов деятельности человека, является автоматизированный характер этой деятельности, тогда как умение представляет собой сознательное действие.

Однако навык вырабатывается при участии сознания, которое первоначально направляет действие к определенной цели при помощи осмысленных способов его выполнения и контролирует его. Советский психолог С. А. Рубинштейн пишет: «Высшие формы навыка у человека, функционирующие автоматически, вырабатываются сознательно и являются сознательными действиями, которые стали навыками; на каждом шагу – в частности при затруднениях – они вновь становятся сознательными действиями; навык, взятый в его становлении, является не только автоматическим, но и сознательным актом; единство автоматизма и сознательности заключено в какой – то мере в нем самом».

Например, воспроизведение табличных результатов умножения выполняется автоматически; на вопрос, чему равняется произведение чисел 5 и 6, ученик сразу дает ответ 30. Однако первоначально ученик сознательно вычисляет сумму шести одинаковых слагаемых, каждое из которых равно 5, а затем, выполняя упражнения и заучивая таблицу, запоминает результаты. В том случае, если ученик забудет нужный результат, он знает, как его получить: он может взять число 5 слагаемым 6 раз, или умножить 5 на 3, а полученный результат умножить на 2, или 5 умножить на 5 и прибавить еще раз 5 и т. д.

Умение же является, как сказано выше, сознательно выполняемым действием, в котором используются такие мыслительные операции, как анализ и синтез, сравнение, аналогия, и которое опирается на приобретенные ранее знания и навыки.

«…В любую форму деятельности навыки входят необходимой составной частью; только благодаря тому, что некоторые действия закрепляются в качестве навыков и как бы спускаются в план автоматизированных актов, сознательная деятельность человека, разгружаясь от регулирования относительно элементарных актов, может направляться на разрешение более сложных задач».(9, 32)

Вычислительные навыки достигают высшего уровня своего развития лишь в результате длительного процесса целенаправленного их формирования. Формирование у школьников вычислительных навыков остаётся одной из главных задач обучения математике, поскольку вычислительные навыки необходимы при изучении арифметических действий.

Психология много внимания уделяет проблеме механизмов формирования навыков, имеющей большое практическое значение. Доказано, что механическое заучивание гораздо менее эффективно, чем заучивание при участии сознания. Полезен практический принцип «повторение без повторения», когда при отработке навыка не затверживается одно и то же действие, но постоянно варьируется в поисках оптимальной формулы движения. При этом осознанию принадлежит очень важная роль. (14, 394)

Формирование вычислительных умений и навыков – это сложный длительный процесс, его эффективность зависит от индивидуальных особенностей ребенка, уровня его подготовки и организации вычислительной деятельности.

На современном этапе развития образования необходимо выбирать такие способы организации вычислительной деятельности школьников, которые способствуют не только формированию прочных вычислительных умений и навыков, но и всестороннему развитию личности ребенка.

При выборе способов организации вычислительной деятельности необходимо ориентироваться на развивающий характер работы, отдавать предпочтение обучающим заданиям. Используемые вычислительные задания должны характеризоваться вариативностью формулировок, неоднозначностью решений, выявлением разнообразных закономерностей и зависимостей, использованием различных моделей (предметных, графических, символических), что позволяет учитывать индивидуальные особенности ребенка, его жизненный опыт, предметно-действенное и наглядно-образное мышление и постепенно водить ребенка в мир математических понятий, терминов и символов.

Устные вычисления имеют большое образовательное, воспитательное и практическое и чисто методическое значение. Помимо того практического значения, которое имеет для каждого человека, умение быстро и правильно произвести несложные вычисления «в уме», устный счет всегда рассматривался методистами как одно из лучших средств углубления приобретаемых детьми на уроках математики теоретических знаний.

Устный счет способствует формированию основных математических понятий, более глубокому ознакомлению с составом чисел из слагаемых и сомножителей, лучшему усвоению законов арифметических действий и др.

Упражнениям в устном счете всегда придавалось также воспитательное значение: считалось, что они способствуют развитию у детей находчивости, сообразительности, внимания, развитию памяти детей, активности, быстроты, гибкости и самостоятельности мышления.(8,91)

Устные вычисления развивают логическое мышление учащихся, творческие начала и волевые качества, наблюдательность и математическую зоркость, способствуют развитию речи учащихся, если с самого начала обучения вводить в тексты заданий и использовать при обсуждении упражнений математические термины.

Устный счет способствует математическому развитию детей. Оперируя при устных вычислениях сравнительно небольшими числами, учащиеся яснее представляют себе состав чисел, быстрее схватывают зависимость между данными и результатами действий, законы и свойства действий. Так, при делении 35 на 7 зависимость между данным и результатом деления выступает перед учащимся гораздо отчетливее, чем при письменном делении, скажем, 36750 на 125.

Профессор Московского университета С. А. Рачинский (1836 – 1902) обращал внимание на то, что способность к устному счету полезна и в практическом отношении, и как средство для здоровой умственной гимнастики. Он учил детей решать задачи быстро, оригинально, учил видеть неожиданные, особые свойства чисел и соотношений между ними.

Прививая любовь к устным вычислениям,  учитель помогает ученикам активно действовать с учебным материалом, пробуждает у них стремление совершенствовать способы вычислений и решения задач, заменяя менее рациональные более современными. А это важнейшее условие сознательного освоения материала.

Устный счет имеет широкое применение в обыденной жизни; он развивает сообразительность учащихся, ставя их перед необходимостью подбирать приемы вычислений, удобные для данного конкретного случая, кроме того, устный счет облегчает письменные вычисления.

В настоящее время во всех областях жизни громадное значение имеют письменные вычисления, но и в то же время повседневная практика на заводе, в совхозе, в колхозе, а также военное дело требуют умения производить необходимый расчет быстро, точно, подчас на ходу.

Беглость в устных вычислениях достигается достаточным количеством упражнений. Ввиду этого в школе почти каждый урок начинается с устного счета ( в течение 7 – 10 минут ) и, кроме того, устный счет применяется во всех подходящих случаях не только на небольших числах, но также и на больших, но удобных для устного счета (например,18000:2, 15000:4 и т. п.). (8,157) В большинстве случаев продолжительность устных вычислений определяет сам учитель, т. к. время, отводимое на устный счет, зависит от многих причин: активности и подготовки учащихся, характера материала.

Отмечая большое значение устных вычислений, следует в то же время признать исключительно важным создание у учащихся правильных и устойчивых навыков письменных вычислений. Успешная выработка таких навыков возможна лишь на базе хороших навыков устных вычислений.

Таким образом, на уроке математики формирование устных вычислительных навыков занимает большое место. Одной из форм работы по формированию вычислительных навыков являются устные упражнения. Овладение навыками устных вычислений имеет большое образовательное, воспитательное и практическое значение:

- образовательное значение: устные вычисления помогают усвоить многие вопросы теории арифметических действий, а также лучше понять письменные приемы;

- воспитательное значение: устные вычисления способствуют развитию мышления, памяти, внимания, речи, математической зоркости, наблюдательности и сообразительности;

- практическое значение: быстрота и правильность вычислений необходимы в жизни, особенно когда письменно выполнить действия не представляется возможным (например, при технических расчетах у станка, в поле, при покупке и продаже).

1. 2. Средства формирования устных вычислительных навыков

Анализируя программу по математике в 5-ом классе, видим, что важнейшими вычислительными умениями и навыками являются:

- умение выполнять все арифметические действия с натуральными (многозначными) числами;

- выполнять основные действия с десятичными числами;

- применять законы сложения и умножения к упрощению выражений;

- использовать признаки делимости на 10, 2, 5, 3 и 9;

округлять числа до любого разряда;

- определять порядок действий при вычислении значения выражения(6,3)

Большое количество учащихся не владеют данными вычислительными навыками, допускают различные ошибки в вычислениях. Среди причин невысокой вычислительной культуры учащихся можно назвать:

- низкий уровень мыслительной деятельности;

- отсутствие соответствующей подготовки и воспитания со стороны семьи и детских дошкольных учреждений;

- отсутствие надлежащего контроля за детьми при подготовке домашних заданий со стороны родителей;

- неразвитое внимание и память учащихся;

-недостаточная подготовка учащихся по математике за курс начальной школы;

- отсутствие системы в работе над вычислительными навыками и в контроле за овладением данными навыками в период обучения.(7,9)

На уроках математики используются следующие приемы, направленные на преодоление причин возникновения ошибок: 1) игры, игровые моменты и занимательные задачи; 2) тесты «Проверь себя сам»; 3) математические диктанты; 4) исследовательские работы; 5) творческие задания и конкурсы.

Часть приемов может применяться при работе со всем классом, часть, направленная на развитие внимания, памяти и мышления, может подбираться для группы учеников по результатам тестирования.

В своей работе учителя придерживаются определенных принципов. Один из них (наиболее важный) можно сформулировать следующим образом: работа в классе на каждом уроке должна выполняться всем классом, а не учителем и группой успевающих учеников. То есть необходимо создать такую ситуацию – ситуацию «успеха», при которой каждый ученик смог бы почувствовать себя полноценным участником учебного процесса. Ведь одна из задач учителя заключается не в доказательстве незнания или слабого знания ученика, а во вселении веры в ребенка, что он может учиться лучше, что у него получается. Нужно помочь ребенку поверить в собственные силы, мотивировать его на учебу.

В целях выполнения этой задачи на уроках математики часто используются игры. Еще известный французский ученый Луи де Броль утверждал, что все игры (даже самые простые) имеют много общих элементов с работой ученого. В игре привлекает поставленная задача и трудности, которые надо преодолеть, а затем радость открытия и ощущение преодоленного препятствия. Еще Л. С. Выготский отмечал, что игра сама по себе – «источник развития и создает зону ближайшего развития».

Применение игр в первую очередь предназначено для того, чтобы заинтересовать наиболее пассивную часть класса, редко принимающую участие в работе на уроке при традиционном его проведении. Поэтому на начальном этапе, при введении в практику урока дидактических игр, представляется целесообразным применять игры, не требующие глубокого знания и даже понимания текущего материала. В этом случае назначение дидактических игр – в развитии познавательного интереса, способствующего накоплению знаний, умений, навыков, в придании уроку более неформального характера, в привлечении внимания учащихся к проводящейся работе.

Постепенно назначение дидактических игр изменяется. Они начинают применяться для проверки полученных знаний посредством решения нестандартных задач в привлекательной, интересной для детей форме. При этом во время игры в группе главным действующим лицом на уроке становятся сами дети, а не учитель.

В качестве иллюстрации приведем несколько видов игр, направленных на развитие тех или иных способностей учащихся.

Игра «Запомни числа». Цель игры: развитие внимания, памяти учащихся и коммунальных способностей.

Условия игры. Учитель называет какое-либо число. Первый ученик повторяет это число и называет свое. Каждый следующий повторяет ранее названные числа и называет свое. Интерес игры в ее соревновательном характере: кто сможет запомнить больше чисел. Игра продолжается до первой ошибки.

Эту игру можно использовать в самом начале урока, так как она помогает ученикам настроится на рабочий лад, создать хорошее настроение.

Игра «Пропусти число». Цель игры: развитие внимания учащихся и оценка знаний, полученных на предыдущих уроках.

Условия игры. Учитель предлагает учащимся по очереди называть вслух в порядке возрастания числа, начиная с 0,1, причем числа, содержащие 3 или кратные 3, следует пропускать. Ученик, назвавший запрещенное число, выбывает. Побеждает тот, кто остается последним.

В данной игре условия можно менять, в зависимости от изучаемой темы, например, при счете пропускать простые числа или числа, кратные 5,10 и т. д. Эту игру хорошо использовать в начале урока вместо опроса.

Игра «Исправляем ошибки».Цель игры: развитие критичности мышления, самоконтроля, внимания, умения обосновывать свою точку зрения.

Условия игры. Все учащиеся класса делятся на несколько команд и жюри, в которое входит учитель и несколько учеников. Каждой команде выдают одни и те же задания с математическими выражениями и определениями, в которых допущены ошибки, с таким расчетом, чтобы число заданий было равно числу участников каждой из команд. Важно, чтобы при подготовке данной игры использовать картотеку типичных ошибок. Командам дается некоторое время для нахождения ошибки и подготовки к ответу. Та команда, которая первой успела подготовиться, дает свою версию ошибки. Если ее ответ был неверным, с точки зрения других команд или жюри, то другим командам дается возможность доказать свою точку зрения. За верный ответ команде присваивается балл (или несколько баллов в зависимости от сложности задания). Побеждает та команда, которая наберет больше баллов. Данную игру можно использовать при проведении повторительно-обобщающих уроков.

Приведем пример заданий для такой игры по теме «Десятичные дроби».

«-Сегодня героем нашей игры будет Незнайка. Он будет сравнивать числа, решать примеры, уравнения и задачи. Не все у Незнайки будет получаться. Вам придется ему помочь».

1. Незнайка сравнил числа. Внимательно посмотрите, все ли он сделал правильно. Найдите ошибки и объясните их.

0,5>0,724;                              0,0013<0,00127;               55,7<55,700;

7,6421>7,6429;                      0,908<0,918;                     8,605=8,6005.

2. Незнайка решил несколько примеров на сложение и вычитание десятичных дробей. Найдите ошибки и объясните их.

2,7+3,651+6,351;          0,325+11,76=15,01;                0,17+1+0,18;

2-0,63=1,63;                  117,7-10,07=107,77;              0,632-0,124=0,508.

3. Незнайка решил уравнение х+3,75=6,9 тремя способами, но ответы не совпали. Почему? Найдите ошибки и объясните их.

Способ I. х=6,9-3,75,  х=3,25.


Способ II. х=6,9+3,75, х=4,44.


Способ III. х

=6,9-3,75,  х=3,15.

4. Перед вами примеры на умножение десятичных дробей. Найдите ошибки.

0,0027·1000=0,27;                    4,5·55=247,5;                  0,24·1,2=2,88.

5. Проверьте примеры на деление десятичных дробей. Найдите ошибки и объясните их.

1,7:100=0,17;                     0,035:7=0,005;                 0,521:0,008=651,25.

6. Незнайке задали следующее задание: найти такое значение х, при котором равенство 9:10=9·х было бы верно. Не долго думая, он записал следующий ответ: х=0,01. Прав ли Незнайка? Если нет, то докажите свою точку зрения.

7. Незнайку попросили, не умножая определить, сколько получится цифр в произведении 0,54·21,4·11,8 справа от запятой. Ответ Незнайки – 3 цифры. Прав ли он?

Но не всегда использование игры полностью целесообразно. Это может быть связано, например, с большим количеством времени, которое требуется на проведение всей игры. В этом случае оправдано использование игровых моментов или занимательных задач, которые имеют непривычную форму или необычны в организации выполнения задания. Игровые моменты несут те же функции, что и игры, но требуют меньше времени на подготовку и проведение. Они являются элементами игры, не требующими обучению правилам. К тому же использование игровых моментов и занимательных задач полностью согласуется со вторым принципом – разнообразия видов деятельности; смена вида деятельности – лучший отдых.

Ученики быстро утомляются при выполнении одного и того же вида деятельности. И здесь на помощь приходят игровые моменты и занимательные задачи, которые позволяют прервать монотонное течение урока, сменить род деятельности, отдохнуть с пользой.

В качестве иллюстрации приведем несколько вариантов игровых моментов и занимательных задач.

Игровой момент №1.На столе лежат карточки, на которых написаны следующие числа:

0,25;      ;      0,75;          ;        1,2;        ;        0,5;       ;     0,0011;      ;

0,975;    ;      1,05;          ;        0,8;        0,6;       ;         2,5;           1,02.

Учитель вызывает к доске первого ученика и просит его за некоторое время отобрать карточки, на которых написаны десятичные дроби. Второй ученик раскладывает отобранные карточки в порядке возрастания. Третий ученик отбирает из оставшихся карточек те, на которых написаны дроби, которые можно перевести в десятичные дроби. Четвертый участник находит равные им десятичные дроби.

Игровой момент №2.Учитель просит первого ученика назвать любое число в виде десятичной дроби. Второго ученика учитель просит назвать число, меньше того числа, которое заключено между первыми двумя (такое число, которое больше второго, но меньше первого). Задание повторяется несколько раз.

Игровой момент №3. Даны числа: 0,25; 0,75; 0,5; 0,1; 0,05; 0,2; 0,15; 0,6; 0,4. Используя каждое число только один раз, надо составить три верных равенства.

Игровой момент №4. На доске закреплены следующие карточки:

1,72,81,93,74,83,9
2,52,13,34,32,31,1

Учитель вызывает ученика и просит его в течение одной минуты назвать числа в порядке убывания. Следующий ученик должен за одну минуту называть числа в порядке возрастания.

Еще одна форма работы, которая очень нравится ученикам, - это тесты «Проверь себя сам». Цель использования данных тестов: развитие критичности мышления, самоконтроля, внимания. При составлении тестов используется картотека типичных ошибок. Приводим пример теста по теме «Действия с десятичными дробями» (сложение и вычитание).

1. Выполните сложение: 0,17+1

а. 1,17                     б. 0,18                           в. 0,27

2. Укажите, в каком случае сложение десятичных дробей выполнено правильно: 0,325+11,76

а.б.                                   в.

3. Выполните вычитание: 2-0,63

       а. 0,61                     б. 1,37                           в. 1,63

4. Найдите неизвестное число, для которого верно равенство х+3,75=6,9

а. 3,15                    б. 10,65                         в. 3,25

5.Найдите неизвестное число, для которого верно равенство17,96-у=5,34

а. 12,62                  б. 35,44                         в. 23,30

6. Найдите неизвестное число, для которого верно равенство 0,1+0,01+х+0,001=1

       а. 0,999                  б. 0,899                         в. 0,889

7. Вычислите: 11,08+0,62-10,09+0,71

а. 2,32                   б. 0,9                            в. 1,32

8. Собственная скорость лодки равна 3,65 км/ч. Найдите скорость лодки против течения, если скорость течения реки равна 0,8 км/ч.

        а. 4,45 км/ч           б. 2,85 км/ч                 в. 3,57 км/ч

9. Скорость катера против течения равна 36,75 км/ч. Найдите скорость лодки по течению, если скорость течения реки равна 5,6 км/ч.

а. 42,35 км/ч             б. 47,95 км/ч               в. 31,15 км/ч

10. В первый день бригада собрала 4,5 тонн картофеля, во второй день на 0,8 тонн меньше, а в третий день на 2,25 тонн больше, чем во второй. Сколько тонн картофеля собрала бригада за три дня?

         а. 14,15 т.                     б. 9,65 т.                    в. 10,45 т.

Ответы: 1-а. 2-в. 3-б. 4-а. 5-а. 6-в. 7-а. 8-б. 9-б. 10-а.

Следующим приемом является математический диктант – одна из форм контроля знаний. Первая цель при использовании данного вида работы – проверка уровня готовности учащихся к дальнейшей работе. Каждый учитель знает, как трудно дети воспринимают язык математики на слух У учащихся 5 – 6 классов основным является наглядно-образное мышление. Слышать и слушать учащихся нужно учить. Следовательно, вторая цель: научить детей слышать и понимать язык математики. Надо отметить, что такую работу нужно проводить систематически.

Составление математического диктанта:

1. составляется текст диктанта (с ответами на все задания), дается обоснование содержания;

2. указывается, на какое время рассчитан диктант;

3. описывается методика проведения (слуховой, зрительно-слуховой, зрительный, использование карточек, кодопозитивов, запись на магнитофон, использование переносных досок, индивидуальных досок и т. д.);

4. дается пример выполнения работы учеником.

Для иллюстрации приведем пример математического диктанта по теме «Десятичная запись дробных чисел».

1. Запишите в виде десятичной дроби:

;    ;    ;    ;    .

2. Запишите в виде обыкновенной дроби или смешанного числа: 3,5;   18,04;  0,57;   0,005.

3. Запишите десятичную дробь 1,032. Сколько единиц в разряде сотых этой дроби?

4. Запишите десятичную дробь 135,19. Сколько единиц в разряде единиц этой дроби?

При такой форме работы можно использовать метод «закрытой доски»: доска закрыта; сидящие за партами должны выполнить задание самостоятельно; по окончании работы доска открывается, ученики проверяют свою работу и сами оценивают ее.

Исследовательские работы. Если проанализировать работу детей на уроках, то становится заметной общая тенденция: ученики почти не задают вопросов. Почему? В первую очередь потому, что им просто не интересно. Становится очевидным, что процесс обучения нужно сделать интересным для учеников. Нужно искусственно создать такую ситуацию, при которой ученики вовлекаются в процесс самостоятельного поиска и открытий новых знаний, даже если для этого придется использовать дополнительную литературу. Естественно, что на первом этапе эта работа направляется и контролируется учителем. Только такое обучение ведет к развитию творческих способностей детей и его можно назвать развивающим обучением.

Целью исследовательских работ является освоение системы и пути получения знаний посредством формирования познавательной деятельности ученика и развития его творческих способностей.

При выполнении исследовательских работ дети учатся ставить вопросы и находить на них ответы, сотрудничать с другими учениками, одновременно сохраняя свою индивидуальность, выходить из нестандартных ситуаций и многое другое.

Творческие задания и конкурсы – это написание сказок, задач, сценарием КВН и т. д. Цель этих задании заключается в формировании интереса к математике, развитии творческого мышления.

Далеко не все в учебном материале интересно для учащихся. Важным стимулом познавательного интереса является процесс творчества. При этом в процессе обучения школьник находит привлекательные стороны, сам процесс обучения несет в себе положительный заряд.

Хочется отметить, что выполняя творческие задания, дети проявляют большую изобретательность, пишут многостраничные рефераты, математические фокусы, сценарии сказок и КВНов, математические кроссворды, наглядные пособия и т. д. Примеры таких заданий имеются в учебнике «Математика» 5 класс, публикуются в газете «Математика».

Чем чаще проверяется и оценивается работа школьника, тем интереснее ему работать. Третий принцип можно сформулировать так: любая работа должна быть оценена.

Для этого устраиваются специальные уроки, на которых решаются задачи и разгадываются кроссворды, созданные учениками, организуются конкурсы работ. Дети высказывают свои впечатления, пишут рецензии. Лучшие работы (по мнению детей и учителей) вывешиваются на стенд. (10,6)

Еще одним средством формирования устных вычислительных навыков являются упражнения. Устные упражнения являются одной из важнейших составляющих развивающего обучения. Именно во время устной работы пятиклассник эффективно учится устанавливать связи между объектами, явлениями, сравнивать, обобщать их, развивает память, наряду с э