Скачать

Разработка оборудования для уплотнения балластной призмы

Главной задачей работников путевого хозяйства является обеспечение безопасного и бесперебойного движения поездов с установленными скоростями и нагрузками от колёсной пары на рельсы.

Все элементы железнодорожного пути (земляное полотно, верхнее строение пути) по прочности, устойчивости и состоянию должны обеспечивать безопасное и плавное движение поездов с наибольшими скоростями.

Содержание железнодорожного пути в состоянии требуемого качества, в решающей степени, зависит от правильного положения рельсовой колеи в пространстве и от качества стабилизации балластной призмы.

С целью механизации комплекса выправочных, подбивочных и рехтовочных работ в России была создана машина ВПО3-3000 непрерывного действия.

Машина ВПО3-3000 предназначена для механизированного выполнения за один проход комплекса путевых работ: чистовой дозировки выгруженного на путь балласта, выправочной подъёмки с постановкой пути в требуемое положение в продольном и поперечном профилях, выправке положения пути в плане, уплотнения балластной призмы и рехтовки отремонтированного пути.

Уплотнение балластной призмы машиной ВПО3-3000 основано на способе, который заключается в непрерывном и интенсивном вибрационно-ударном обжатии балластной призмы в горизонтальной плоскости со стороны торцов шпал.

Основными рабочими органами ВПО3-3000 по уплотнению балластной призмы рельсошпальной решётки являются подбивочный блок и уплотнители откосов, включающие в себя подбивочные виброплиты с приводом и механизмы, служащие для установки плит относительно рельсошпальной решётки в рабочем и транспортном положении.

На серийно выпускаемых ВПО3-3000 применяются виброплиты с дебалансным вибровозбудителем колебаний. Использование такого рода виброплит позволило упростить их изготовление и эксплуатацию. Однако, опыт работы ВПО3-3000 показал ряд недостатков конструкции подбивочных виброплит серийных машин, влияющих на качество выполнения работ:

- невозможность достижения равномерности уплотнения балласта в подрельсовой зоне по длине шпалы;

- невозможность повышения степени уплотнения в стыковых шпалах;

- затрачивается энергия на колебание балласта, находящегося вне рабочей зоны пути;

- не обеспечивается и не регулируется подача балласта в нужном объёме под шпалы на кривых участках пути;

- различное формирование зон уплотнённых и неуплотнённых со стороны от пути, полевой стороны;

- геометрические и режимные параметры не обеспечивают требуемое качество уплотнения;

- не обеспечивается подача и уплотнение требуемого качества балласта под краями торцов шпал (рисунок 1)

a – зоны, уплотняемые основными вибрационными плитами; б – зоны, уплотняемые уплотнителями откосов; в – не уплотняемые зоны

Рисунок 1- Балластная призма

Выделим один из вышеперечисленных недостатков подбивочных органов: ни основными виброплитами, ни уплотнителями откосов, не обеспечивается подача и уплотнение балласта под краями торцов шпал требуемого качества.

В проекте разрабатывается новый вариант рабочего органа, в котором устраняется вышеназванный недостаток подбивочных органов серийных машин непрерывного действия.


1. АНАЛИТИЧЕСКИЙ ОБЗОР

Основная виброплита машин непрерывного действия (ВПО – 3000, ВПО – 3-3000 и т.д.) уплотняет основную массу балласта по рельсошпальной решёткой (рисунок 1) и не обеспечивает уплотнение балласта под концами шпал, на откосах балластной призмы. Но и уплотнители откосов, установленные на машинах ВПМ непрерывного действия не решают полностью этой проблемы, а именно балласт не подаётся под торцы шпал.

Рассмотрим устройство и действие уплотнителя откосов, установленного на машине ВПО3 – 3000.

Рисунок 1.1 – Уплотнитель откосов

Уплотнитель откосов (рисунок 1.1) состоит из двух вибрационных уплотнительных плит 1 , каждая из которых подвешена к раме 2 при помощи плоских листовых рессор. Рама 2 шарнирно (с возможностью поворота в вертикальной плоскости) жёсткими параллелограммными подвесками 4 присоединена к ферме машины.

Раздельное опускание уплотнительных плит в рабочее положение и подъём в транспортное производится механизмом подъёма 6.

На нижней балке рамы 2 болтами закреплён вертикальный электродвигатель 3, вал которого связан с вибратором плиты при помощи карданного вала.

Рисунок 1.2 - Откосная уплотнительная плита

Откосная уплотнительная плита (рисунок 1.2) имеет пустотелый сварной корпус 1 в виде пространственного клина. Внутри корпуса на роликовых подшипниках 5 установлены четыре вала 4 , на которых посажены неуравновешенные грузы-дебалансы 4 и цилиндрические зубчатые колёса 3. Зубчатые колёса связывают валы между собой с передаточным отношением 1:1.

Валы с дебалансами и зубчатыми колёсами выполняют роль вибратора уплотнителя откоса. Привод вибратора осуществлён от электродвигателя 3 (рисунок 1.1) через карданный вал 6 (рисунок 1.2).

В рабочем положении плиты уплотнителя откосов располагаются по сторонам пути (рисунок 1.1). Своими рабочими уплотнительными поверхностями они контактируют с откосами балластной призмы, производя при движении машины вибрационное обжатие и формируя плечо требуемых размеров и угол наклона откоса.

Управление уплотнителем откосов осуществляется с пультов управления, расположенных в будке управления.

Качество уплотнения щебня виброплитами уплотнителя откосов на ВПО – 3000 далеко не совершенно, и следует работать по изменению конструкции виброплиты. В первую очередь, не обеспечивается качественная подбивка под концами шпал. Незначительные пустоты и неуплотнённый балласт под концами шпал вызывает быстрое появление остаточных деформаций пути и их интенсивное нарастание. Кроме того, при работе на двухпутном участке под воздействием уплотнителя откосов рельсошпальная решётка сдвигается в сторону междупутья. Это объясняется разностью сил воздействия на балласт правой и левой плиты.

Уплотнитель откосов на ВПО – 3000 не позволяет регулировать угол атаки уплотнительной плиты в продольной вертикальной плоскости в зависимости от текущих условий уплотнения, в результате чего степень уплотнения балластной призмы в откосной и междупутной зонах вдоль пути не выравнивается, а значит, снижается качество уплотнения.

Далее устройство не позволяет обеспечивать постоянный контакт уплотнительной поверхности плиты и поверхности балластной призмы, при текущем изменении размеров последней вдоль пути и при колебаниях путевой машины вместе с устройством во время движения вследствие неровностей в положении колеи. Неустойчивый контакт уплотнительной плиты и балласта в процессе работы снижает равномерность уплотнения балластной призмы, а, следовательно, и качество уплотнения.

Известно устройство уплотнителя откосов и в междупутье, установленное на модернизированной машине ВПО3 – 3000 (рисунок 1.3) (10).

Устройство содержит шарнирно - рычажный подъёмный механизм с силовыми цилиндрами, несущий держатель 10, связанный с уплотнительной плитой 1, снабжённый вибровозбудителем 2 и амортизатором 3, соединённые через шарниры 11 с рамой 4 и уплотнительной плитой 1.


Рисунок 1.3 - Устройство уплотнителя откосов

Устройство работает следующим образом: Уплотнительная плита 1 с помощью шарнирно-рычажный подъёмного механизма опускается на поверхность откосной или междупутной зон балластной призмы до соприкосновения с уплотнительной поверхностью. Опускание осуществляется при повороте рычага 7 силовыми цилиндрами 9 вокруг шарнира 8. Корректировка расстояния установки плиты от оси пути производится силовыми цилиндрами 12 при повороте держателя 10 вокруг шарнира 6. Плита 1 при этом соприкасается с поверхностью балластной призмы всей уплотнительной поверхностью 13, так как она имеет свободу вращения в вертикальной плоскости, перпендикулярной оси пути, вокруг горизонтальных шарниров 11 вместе с амортизаторами 3 и вибровозбудителем 2.

После опускания плиты силовые цилиндры 12 стопорятся, включается вибровозбудитель 2, и путевая машина двигается вдоль уплотняемого пути.

Уплотнение балластной призмы в откосной и междупутной зонах обеспечивается из виброобжатием. Вибровоздействие передаётся на балласт через плиту 1 , колеблемую вибровозбудителем 2 на амортизаторах 3.

В процессе работы уплотнителя откосов угол атаки α (рисунок 1.3) меняется в зависимости от текущих условий уплотнения в пределах 0 ≤ α ≤ 0,35 рад при повороте рамы 4 вокруг шарнира 14 силовым цилиндром 5. При этом для увеличения степени уплотнения балласте необходимо увеличить угол α, а для уменьшения – уменьшить.

В отличии от уплотнителей откосов, установленных на машинах ВПО – 3000, ВПО – 3000 М уплотнитель откосов на машине ВПО3 – 3000 имеет достоинство своего устройства в том, что оно позволяет поддерживать заданный уровень степени уплотнения балласта вдоль пути при обеспечении постоянного контакта уплотнительной плиты с балластом при меняющихся условиях уплотнения, что способствует повышению качества уплотнения. Но, несмотря на это данный уплотнитель не решает проблемы по обеспечению требуемого уплотнения балласта под концами шпал.

На основе известных изобретений и аналитических соображений предлагается следующий вариант устройства по уплотнению балласта со стороны торцов шпал и под их концами, устанавливаемого на ВПМ непрерывного действия, в частности на ВПО3 – 3000 (рисунок 1.4).

Данное устройство напоминает уплотнитель откосов серийной машины ВПО-3000 (см. рисунок 1.1). Изменению подвержена виброплита 1 и установлен гидравлический механизм подъёма, опускания и прижатия рабочего органа.

Принцип работы виброплиты такой же, как на уплотнителе откосов ВПО – 3000.

Благодаря конструкции клина виброплиты 1, расположенного в вертикальной плоскости под углом 5 … 10˚ к оси пути, балласт подаётся под края торцов шпал в нужном количестве. Гидроцилиндром 6 осуществляется подъём и опускание виброплиты в рабочее положение, а так же обеспечивается прижатие плиты требуемого усилия к уплотняемой поверхности, что повышает качество уплотнения.


1 – виброплита; 2 – листовые рессоры; 3 – рама; 4 – электродвигатель; 5 – параллелограммная подвеска; 6 – гидроцилиндр подъёма, опускания и прижатия виброплиты

Рисунок 1.4 - Устройство по уплотнению балласта


2. РАЗРАБОТКА ПОДБИВОЧНОГО БЛОКА

2.1 Разработка конструкции виброплит

Конструкция виброплит должна обеспечивать неизменность параметров виброподбивки шпал и возможность их регулирования в процессе эксплуатации с учётом износа отдельных элементов плит.

В процессе работы виброплита не должна выходить за пределы установленных габаритных размеров для исполнительных органов путевых машин. В транспортном режиме они должны находиться в пределах габаритов подвижного состава 1 – Т.

2.1.1 Выбор параметров виброподбивки шпал

Основная цель выбора параметров – обеспечение режима виброобжатия балласта, при котором достигается требуемая степень уплотнения материала и требуемая подача балласта.

Основными параметрами виброподбивки шпал являются: амплитуда Sa и частота f колебаний, скорость обжатия балласта Vобж , время вибрирования tв , длина l и толщина а клина, угол наклона рабочей поверхности клина к оси пути α , заглубление клина виброплиты под основание шпал Z (рисунок 2.1).


Рисунок 2.1 – Основные параметры виброподбивки шпал

2.1.1.1 Геометрические параметры

Значения и соотношения геометрических параметров устанавливаются исходя из необходимости формирования зон уплотнения балласта под рельсошпальной решёткой с требуемой степенью уплотнения и подача объёма балласта под шпалы, достаточного для закрепления рельсошпальной решётки в выправленном положении.

Эти условия представлены в виде соотношения:

 , (2.1)

где а – толщина клина, м (а = 0,1 м см. рисунок 2.1); l – длина клина, м; α – угол наклона клина к оси пути, град (принят α = 8˚); K1 – коэффициент, учитывающий попадение под задозированного балласта (принят K1 = 1,25); K2 – коэффициент уменьшения объёма балласта, сдвигаемого виброплитой (принят K2 = 0,95); С – площадь поперечного сечения неуплотнённого балласта под концами шпал (рисунок 2.2) С = 0,3·0,3 = 0,09 м2 .

Рисунок 2.2 – Схема к расчету площади поперечногосечения неуплотненного балласта

Из соотношения (2.1) находится l :

; (2.2)

.

Длина клина l = 1, 35 м найдено из условия обеспечения подачи балласта требуемого объёма под концы шпал.

Далее находим длину клина l’ исходя из условия обеспечения требуемой степени уплотнения балласта под шпалами.

Для этого определим минимально необходимое число вибровоздействий на балласт, при котором возможно получение требуемой степени уплотнения


 , (2.3)

где ε – требуемая степень уплотнения (принят ε = 0, 145 (1)); D, E – эмпирические коэффициенты, зависящие от рода балласта и способа вибровоздействия. Для щебёночного балласта D = 3300, E = 10 (1); λ – коэффициент, определяющий степень использования воздействия плиты (λ = 2); ψ – коэффициент, определяющий долю объёма материала охватываемого относительными перемещениями (ψ = 1 (1))

.

Находится время воздействия tв,с :

, (2.4)

где ω – угловая частота колебаний виброплиты, с-1:

, (2.5)

где f – частота колебаний (принимается f = 30 Гц);

.

Тогда

.

Находится l’ по формуле:


 , (2.6)

где VM – рабочая скорость машины VM = 0,277 м/с ;

.

Из двух значений l и l’ назначаем минимально необходимую длину клина, при которой обеспечивается требуемое число вибровоздействий и достаточная величина подачи балласта под шпалы.

Принимается lкл = 1,35 м.

2.1.1.2 Режим виброобжатия балласта

К параметрам, характеризующим режим виброобжатия балласта, относятся: амплитуда Sa и частота колебаний f , скорость обжатия балласта Vобж .

Для обеспечения наивысшего эффекта уплотнения значение Sa , f, Vобж должны находиться между собой в определённом соотношении (1).

Рекомендуемые значения амплитуды Sa, частоты колебаний f скорость обжатия Vобж находятся в пределах: Sa = 6 … 8 мм, f = 25 ... 40 Гц, Vобж = 70 …120 мм/с .

Предварительно принимается: Sa= 6 мм, f = 30 Гц.

Vобж = Vм·tg α,

Vобж = 0,277·tg 8˚ = 0,039 м/с = 39 мм/с .

Должно выполняться условие:

; (2.7)

 - условие выполняется.

Окончательно принимается: Sa= 6 мм, f = 30Гц, Vобж=39мм/с.

2.1.2 Корпус плиты

Основная цель компоновки корпуса плиты – это определение его возможных размеров, с учётом которых разрабатывается возбудитель колебаний.

Определению подлежат: высота корпуса HК, длина LК и ширина BК (рисунок 2.1).

Высота корпуса HК переменна по его длине и определяется габаритными размерами вибровозбудителя, необходимостью расположения шарнирных соединений рессорных комплектов с плитой.

В первом приближении принимается:

,

,(2.8)

где LК – длина корпуса, м (конструктивно принято Lk=1,6 м); γ – угол наклона нижней стенки плиты к горизонтальной плоскости, град (γ=2˚).

 .

Ширина корпуса BК определяется исходя из необходимости обеспечения безопасности производства работ при подбивке шпал со стороны междупутья.

Максимально возможная ширина корпуса ровна:


 , (2.9)

где BМ – максимально допустимый вылет исполнительных органов в сторону междупутья, м (BМ=2,050 м); Lшп – длина шпалы, м (Lшп=2,75); вК – вылет клина относительно корпуса плиты, м (вk = - 0,085 м); δ – заход клина под торцы шпал, м (δ= - 0,17 м).

.

Конструктивно принято Bк = 0,35 м.

В процессе разработки возбудителя колебаний размеры корректируются.

При транспортировке машины плита не должна выходить за приделы габаритов подвижного состава.

Эскизная компоновка корпуса виброплиты показана на рисунке 2.3.

Рисунок 2.3 - Эскизная компоновка корпуса виброплиты

2.1.3 Разработка возбудителя колебаний

Для дебалансного возбудителя рассчитывается требуемая вынуждающая сила FВ и, соответственно, конструкция дебалансов, обеспечивающих колебания виброплиты, с заданной амплитудой.

При вращении дебалансов с угловой частотой ω и амплитудой Sa суммарная вынуждающая сила составит:

, (2.10)

где mn – приведенная масса колеблющихся элементов, кг; ωo – частота свободных колебаний плиты с учётом жёсткости балласта, с-1; h – коэффициент демпфирования, с-1.

Находим mn:

mn= an·m, (2.11)

где m –масса корпуса плиты с вибровозбудтелем, кг (m = 400 кг); aп – коэффициент приведения (aп=1,15 (1)).

mn= 1,15·400=460 кг.

Находим ωo:

 ,(2.12)

где Cр – приведенный коэффициент жёсткости рессорной подвески (принят Cр = 1·106 Н/м); Cб – приведенный коэффициент жёсткости балласта, Н/м.

Cб = Cуд ·Z ·a · l , (2.13)

где Z – заглубление под шпалу, м (Z=0,1 м); a – толщина клина, м (a=0,1 м); l – длина клина, м (l=1,35 м); Cуд – удельный коэффициент жёсткости балласта, Н/м4 , принимается по графику, при:


 (Cуд= 3·107 Н/м4 (1)).

Cб = 3·107 ·0,1·0,1·1,35 = 40,5 ·104 Н/м .

Тогда:

 .

Далее находится h:

, (2.14)

где bб ,bр – соответственно коэффициент сопротивлений балласта и рессор, Н·с/м (принят bр = 5·103 Н·с/м (1)).

bб = bуд·Z ·a · l, (2.15)

где bуд – удельный коэффициент вязкостных сопротивлений, Н·с/м4, принимается по графику (1), при :

 bуд = 12 · 104 Н·с/м4.

bб = 12·104·0,1·0,1·1,35 = 1,62·103 Н·с/м .

Тогда:

.


В итоге по формуле (2.10) получили:

.

Принята FВ = 90 кН.

По найденной FВ и принятой компоновке вибровозбудителя найдём вынуждающую силу одного дебаланса FВ’:

FВ’ = FВ / n,(2.16)

где n – принятое число дебалансов (n=4).

FВ’ = 90 / 4 = 22,5 кН .

Предварительно назначается расчётная длина вала дебаланса (рисунок 2.4) равная lв = 0,22.

Рисунок 2.4 – Схема дебаланса

Для нахождения диаметра вала строится эпюра изгибающего момента. Для этого находятся реакции в точках опоры (рисунок 2.5)

Рисунок 2.5 –Эпюра изгибающего момента

Максимальный изгибающий момент равен:

Mmax= R1 · 0,11 =11,25 · 0,11 =1,24 кН · м .

Прочность вала:

,(2.17)

где W – момент сопротивления при изгибе, м3 ; (для круглого сечения ); (σ) – допускаемое напряжение, МПа .

,(2.18)

где σFlim – предел длительной выносливости, МПа; SF – коэффициент безопасности (для Ст 45 - SF = 1,75 , (2) стр. 90).

Для стали 45 :

σFlim =1,8 НВ,(2.19)

где НВ – твёрдость стали (для стали 45 HB = 248,5 , источник (2) стр.426).

Допускаемое напряжение равно:

(σ) = (1,8·248,5)/1,75 =255,6 МПа.

Находится диаметр вала по формуле:

;(2.20)

.

Принят d = 40 мм ((2) стр. 296)

2.1.3.1 Компоновка дебалансов

Неуравновешенные части дебалансов в сечении имеют форму кругового сектора. Значение r0 (расстояние от оси вращения до центра тяжести дебаланса) зависит от угла сектора φ0 внешнего Rв и внутреннего rв радиусов дебаланса (рисунок 2.6).

Угол φ0 по рекомендациям (1) назначается 120˚. Радиус Rв предварительно определяется выражением:

Rв = 0,5· ВК – δД – bК, (2.21)

где δД – зазор между дебалансом и стенкой корпуса, м (δД = 0,045 м); bК – толщина корпуса виброплиты, м (bК = 0,01 м).

Rв = 0,5·0,35 – 0,02 – 0,01 = 0,12 м.

Рисунок 2.6 – Схема компоновки дебалансов


Расстояние от оси вращения до центра тяжести дебаланса:

.(2.22)

Внутренний радиус дебаланса:

,(2.23)

где δст – ширина ступицы, м (принимается конструктивно δст=0,02 м)

.

Тогда

.

При требуемых силе Fв’ , частоте ω и установленном r0 определяется масса неуравновешенной части дебаланса:

;(2.24)

.


Площадь дебаланса, м2 :

;(2.25)

.

Длина дебаланса, м:

 ,(2.26)

где ρ – плотность металла, кг/м3 (ρ =7800 кг/м3).

.

2.2 Мощность, необходимая при виброобжатии балласта

Затраты мощности при виброподбивке шпал представлены в виде:

Рв = Рб + Pвс, (2.27)

где Рб – средняя мощность, необходимая для преодоления сопротивлений колебаниям виброплиты от балласта и рессорной подвески, Вт; Pвс – мощность, необходимая для преодоления внутренних сопротивлений вибровозбудителя, Вт.

,(2.28)


где φ - фаза вынужденных колебаний по отношению к фазе возмущающей силы, град; Fв – максимальная вынуждающая сила, Н (Fв=90·103Н).

,(2.29)

где h – коэффициент демпфирования, с-1 (h = 7,2 с-1); ω0 – частота свободных колебаний плиты с учётом жёсткости балласта, с-10=55,26 с-1).

По формуле (2.28) находится:

.

Мощность  находится по формуле:

,(2.30)

где P0 – мощность, необходимая для преодоления диссипативных сопротивлений вращению, Вт.

Р0 =0,5·Fв · dв·ω·fn, (2.31)

где fn – приведённый коэффицент трения в подшипниках дебелансного вала, fn = 0,001 ( (3) стр.148).

P0 = 0,5·90·103·0,04·188,4·0,001 = 339,12 Вт

Находится PВМ :

PВМ = 0,02 · P0 , (2.32)

PВМ = 0,02 · 339,12 = 6,7 Вт

Находим Р33 по формуле:

,(2.33)

где ηз – КПД зубчатой передачи синхронизатора (ηз = 0,96 – (2) стр. 23); m – количество зубчатых зацеплений (m=4).

Pзз= (4246 +339,12) · (1 – 0,964) = 690,7 Вт.

Тогда:

Pвс= 339,12 + 6,7 + 690,7 = 1036,8 Вт.

В итоге суммарные затраты мощности равны:

Pв = 1036,6 + 4246 = 5282,3 Вт.

В некоторые моменты работы виброплиты могут возникнуть ситуации, такие как совпадение фазы вынужденных колебаний с фазой возмущающей силы.

Максимально возможные значения Рб возможно при sin2 φ0 =1:

.

Максимально возможные потери мощности в зубчатом зацеплении:

P33max = (25570+339,12)(1-0,964) = 3801,1 Вт.

Тогда мощность PВСmax:

PВСmax = 339,12 + 6,7 + 3801,1 = 4146,9 Вт.

В итоге максимально возможная мощность, затрачиваемая на виброподбивку шпал равна:

Pвmax = 25570 + 4146,9 = 29716,9 Вт.

Для того чтобы учесть возрастание сопротивления на виброподбивку шпал, при попадании плиты в резонанс, при выборе двигателя возьмём среднее значение мощности Pвср:

Pвср = (5282,6 +29716,9)/2 =17499,7 Вт ≈17,5 кВт.

Потребная мощность двигателя вибровозбудителя подбивочной плиты, кВт:

Pвср = Pвср / ηn,(2.34)

где ηn – КПД передачи от двигателя до ведущего вала вибровозбудителя (ηn = 0,98).

Pдв = 17,5/0,98 =17,85 кВт.

Выбирается асинхронный двигатель с фазным ротором ((2) стр.27) таблица 2.1:

Таблица 2.1 – Характеристики асинхронного двигателя 4А160М2У3

ТипоразмерМощность PH, кВтСинхр. частота вращения, об/минСкольжение, %nH, oб/минТmax/ Тном
4А160М2У318,515002,214671,4

Находится крутящий момент на валу двигателя, H·м:

Тmax = 9550 · PH/ nH ;(2.35)

Тmax = 9550 · 18,5/ 1467= 120,43 H·м.

Учитывая разность частоты вращения валов дебалансов и частоты вращения вала двигателя устанавливается дополнительный вал с зубчатым колесом повышающим частоту вращения вала дебаланса (рисунок 2.7).

Для передачи крутящего момента от вала двигателя к ведущему валу дебалансов устанавливается карданный вал от ГАЗ – 53 (8), который рассчитан на Pmax = 84,6 кВт ; Тmax = 284,4 H·м ; n = 2000 об/мин.


1 – двигатель; 2 – карданный вал; 3 – ускоряющее зубчатое колесо; 4 – дебаланс; 5 – синхронизирующие зубчатые шестерни.

Рисунок 2.7 – Привод виброплиты

2.3 Расчёт цилиндрической зубчатой передачи внешнего зацепления

Исходные данные:

Максимальный крутящий момент на тихоходном валу Тmax I = 120,43 H·м

Частота вращения ведущего (ведомого) вала nII = 1800 об/мин

Частота вращения ведомого (ведущего) вала nI = 1467 об/мин

Материал шестерни ст 40Х У

Материал колесаст 40Х ТВ4

Передаточное отношение:

u21 = nII/ nI =1800/1467 =1,22.

I – тихоходный вал; 1 – зубчатое колесо; II – быстроходный вал; 2 – шестерня.

Рисунок 2.8 – Зубчатая передача внешнего зацепления

Расчёт произведён на ЭВМ (программа ДМ – 1).

2.3.1 Алгоритм расчёта зубчатой передачи (силовой расчёт).

1) Определяется по контактным напряжениям межосевое расстояние aW в мм по формуле :

, (2.35)

где u – передаточное число рассчитываемой передачи (u = 1,22); K1 – вспомогательный численный коэффициент (K1 = 315 (2)); (σH) – допускаемое контактное напряжение, МПа; Т1 – крутящий момент на валу колеса, H·мм; KНα – коэффициент распределения нагрузки (KНα = 1 (2)); KНβ – коэффициент концентрации нагрузки ( (2) ст 92) ;KНV – коэффициент динамичности (2); KНД – коэффициент долговечности лимитирующего колеса (2); Ψa – коэффициент ширины венца, принимается из единого ряда (2 стр. 52) (Ψa = 0,2 …0,4); KХ – коэффициент, учитывающий смещение.

2) Ширина колеса в мм:

b2 = Ψa· aW.(2.36)

3) Модуль зацепления m в мм из расчёта на изгиб ориентировочно определяется по формуле:

,(2.37)

где K2 – численный коэффициент (для прямозубых колёс K2 = 5); KFα , K , KFv ,KFД – коэффициенты, аналогичные KНα , KНβ , KНV , KНД определяются по (2); (σF) – допускаемое изгибное напряжение лимитирующего колеса, МПа ((2) стр. 91).

4) Расчёты по формулам (2.35)…(2.36) составляют программу ДМ – 1. Машина выдаёт на печать исходные данные и величины aW ,b2 и m в миллиметрах. Полученные данные подлежат обработке.

Значения aW и b2 выбираются из единого ряда ((2), ст 51). Допускается их округление по ГОСТ 6636 – 69 ((2) ст 296). Модуль округляется в большую сторону.

2.3.2 Алгоритм геометрического и проверочного расчёта зубчатой передачи

Определение чисел зубьев:

1) Суммарное число зубьев ZΣ:

ZΣ = 2·aW· cos β / m ,(2.38)

где β – угол наклона линии зуба.

Величина ZΣ округляется до ближайшего целого числа.

2) Число зубьев шестерни Z1 :

Z1 = ZΣ / (u + 1).(2.39)

3) Число зубьев колеса Z2:

Z2 = ZΣ – Z1.(2.40)

4) Окружная скорость колёс v, м/с:

 .(2.41)


5) Уточнённое передаточное число u 21:

u 21 = Z2 /Z1.(2.42)

6) Ширина шестерни b2, мм:

b2 = 1,1 b2.(2.43)

7) Межосевое расстояние, мм:

aW = 0,5·m(Z1 + Z2) + (Х1 + X2 – Δy)m ,(2.44)

где Х1 , X2 – коэффициенты смещения (Х1 = X2=0 (2)); Δy – коэффициент уравнительного смещения (Δy = 0 (2)).

8) Угол наклона линии зуба для прямозубых колёс β = 0.

9) Делительные диаметры d, мм:

d = m · z / cos β.(2.45)

10) Диаметр вершин da, мм:

da = d + (2 + 2x– 2Δy)m.(2.46)

11) Диаметр впадин df , мм:

df = d – (2,5 – 2x)m.(2.47)

12) Окружная толщина зубьев по делительной окружности St, мм:

St = (π/(2cos β) + 2x·tgα)m.(2.48)


13) Угол зацепления αW:

,(2.49)

где α – угол профиля (α = 20˚).

14) Торцевой коэффициент перекрытия εα:

 .(2.50)

15) Коэффициент суммарной длины контактных линий Zε:

.(2.51)

16) Угол наклона линии зуба по основной окружности βв:

.(2.52)

17) Коэффициенты формы сопряжённых поверхностей зубьев в полосе зацепления Zн:

.(2.53)

18) Рабочее контактное напряжение σн, мПа:

,(2.53)


где  - коэффициент, учитывающий механические свойства материалов сопрягаемых поверхностей (= 275) (14).

19) Отклонение рабочего контактного напряжения от допускаемого ∆σн, %:

.(2.54)

20) Окружное усилие Ft, H:

,(2.55)

где - начальный диаметр колеса, мм.

,(2.56)

где - начальный диаметр шестерни, мм.

.(2.57)

21) Радиальное усилие Fy, H:

. (2.58)

22) Осевое усилие Fa, H:


.(2.59)

23) Коэффициент перекрытия зубьев Yε :

Yε=1.

24) Коэффициент наклона зубьев Yβ :

Yβ=1.

25) Рабочее изгибное напряжение зубьев шестерни σF2, мПа:

.(2.60)

26) Рабочее изгибное напряжение колеса σF1, мПа:

.(2.61)

27) Максимальное контактное напряжение σн max, мПа:

.(2.62)

28) Максимальное изгибное напряжение σFmax, мПа:

.(2.63)

Значения рассчитываемых величин представлены на распечатках результатов расчёта, сделанного на ЭBM (программа ДМ-1).


2.3.3 Результаты расчёта зубчатой передачи, выданные ЭВМ

2.3.4 Анализ результатов расчёта зубчатой передачи

Геометрические параметры округляем до сотых долей миллиметра.

По допускаемым и рабочим напряжениям делаем вывод, что прочность достаточна.

Усилие в зацеплении округляем с точностью до целых.


2.4 Уточнённый расчёт валов и выбор подшипников

Данный расчёт даёт более достоверные результаты, чем ориентировочный расчёт.

В этом разделе исходными данными являются: силы, действующие на колесо шестерни, расстояния между линиями действия всех сил, диаметры колёс.

Для наглядного представления изобразим аксонометрическую схему нагружения валов (рисунок 2.9).

Рисунок 2.9 – Схема нагружения валов

2.4.1 Расчёт дебалансного вала

Для уточнённого расчёта выполним эскизную компоновку элементов вала (рисунок 2.10).

Предварительно назначаем подшипник по ГОСТ 5720 – 75: № 1608 с d=40 мм, D =90 мм, B =33 мм (2).


Рисунок 2.10 – Эскизная компановка элементов вала

На вал действуют две силы в направлении X (рисунок 2.10, б) F’в , Ftи крутящий момент T.

Составим уравнения суммы моментов относительно точек 1 и 2, найдём реакции в этих точках.

ΣM1=0;

.

ΣM2=0;

.

Находим изгибающий момент в т. 1, 2, 3 ,4 (Рисунок 2.10, в):


;

;

Максимальный изгибающий момент в т.4 под дебалансом.

Приведённый момент:

,(2.64)

где α – коэффициент учитывающий соответствие центров касательного и нормального напряжения (α = 0,75 (4)); T – крутящий момент, Н·м.

T =Ft·d/2 ,(2.65)

где d – делительный диаметр шестерни (d = 0,25 м);

T =777·0,25/2=91,125 Н·м.

.

Диаметр вала по формуле:

,(2.66)

.

Окончательно принимается диаметр вала d = 0,04 м.


2.4.1.1 Выбор подшипников

Ранее принятый подшипник (см. п.2.4.1) проверяем на динамическую грузоподъёмность:

Стабл. >Cрасч,(2.67)

где Стабл. – динамическая грузоподъёмность взятая из таблицы (3), (Стабл. = 44,9 кН); Cрасч. – динамическая грузоподъёмность полученная методом расчёта, кН.

Cрасч. = L1/P·P,(2.68)

где p – показатель степени (для шарикоподшипников p = 3 (2)); L – номинальный ресурс подшипников, млн. об.; P – эквивалентная нагрузка, Н.

L = Ln·60·nII/106,(2.69)

где Ln – номинальный ресурс в часах (примем Ln=125 ч)

L = 150·60·1800/106=16,2 млн.об.

Эквивалентная нагрузка, Н:

P = R·V·Kδ·KТ , (2.70)

где R – радиальная нагрузка, Н (R = 12959 Н); V – коэффициент вращения (V=1,(2) стр. 359) Kδ – коэффициент, учитывающий нагрузки (Kδ =1,35,(2) стр. 362 ); KТ – температурный коэффициент (KТ =1 (2)).

P = 12959·1·1,35·1=17494,65 H.

Срасч.=16,21/3·17494,65=44266,67 H.


Условие (2.67) выполняется. Окончательно принимаем для дебалансного вала шарикоподшипник радиальный сферический двухрядный (по ГОСТ 5720 – 75) (2):

№ 1608 С=44,9 мм; d=40 мм; D=90 мм; B=33 мм.

2.4.2 Расчёт ведущего вала вибровозбудителя

Выполним эскизную компоновку элементов в