Оценка значимости коэффициентов регрессии
y=a уравнение регрессии.
Таблица 1
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
y | 1.35 | 1.09 | 6.46 | 3.15 | 5.80 | 7.20 | 8.07 | 8.12 | 8.97 | 10.66 |
Оценка значимости коэффициентов регрессии.
Выдвигается и проверяется гипотеза о том что истинное значение коэффициента регрессии=0.
Для проверки гипотезы используется критерий Стьюдента.
к-т является значимым и нулевую гипотезу отвергаем.
График 1
- уравнение регрессии
Таблица 2
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
y | 1.35 | 1.09 | 6.46 | 3.15 | 5.80 | 7.20 | 8.07 | 8.12 | 8.97 | 10.66 |
Запишем матрицу X
Система нормальных уравнений.
Оценка значимости коэффициентов регрессии.
Для проверки нулевой гипотезы используется критерий Стьюдента..
Коэффициент ai является значимости, т.к. не попал в интервал.
Проверка адекватности модели по критерию Фишера.
Критерий Фишера.
отсюда линия регрессии адекватна отраксает исходную информацию, гипотеза о равенстве мат. Ожиданий отвергается.
Проверка адекватности модели по коэффициенту детерминации или множественная корреляция.
регрессионная модель адекватна
Коэффициент множественной корреляции:
Таблица 3
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
y | 1.35 | 1.09 | 6.46 | 3.15 | 5.80 | 7.2 | 8.07 | 8.12 | 8.97 | 10.66 |
Приведем квадратное уравнение к линейной форме:
;
Запишем матрицу X.
Составим матрицу Фишера.
Система нормальных уравнений.
Решим ее методом Гаусса.
Уравнение регрессии имеет вид:
Оценка значимости коэффициентов регрессии.
Для проверки нулевой гипотезы используем критерий Стьюдента.
Коэффициенты значимые коэффициенты.
Проверка адекватности модели по критерию Фишера.
гипотеза о равенстве математического ожидания отвергается.
Проверка адекватности модели по коэффициенту детерминации или множественной корреляции.
Коэффициент детерминации :
- регрессионная модель адекватна.
Коэффициент множественной корреляции
Таблица 4
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
y | 0,75 | 1,87 | 2,99 | 4,11 | 5,23 | 6,35 | 7,47 | 8,59 | 9,71 | 10,83 |
График 2
Таблица 5
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
y | 16.57 | 20.81 | 25.85 | 31.69 | 38.3 | 45.8 | 54 | 63.05 | 72.9 | 83.53 |
График 3
Использование регрессионной модели
для прогнозирования изменения показателя
Оценка точности прогноза.
Построим доверительный интервал для заданного уровня надежности.
С вероятностью 0,05 этот интервал покрывает истинное значение прогноза
График 4
Оценка точности периода.
Построим доверительный интервал.
График 5
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Параллельные плоскости
Билет №4.Параллельные плоскости. Две плоскости называются параллельными, если они не пересекаются.Теорема 16.4: если две пересекающиеся
- Параллельные прямые
Билет №2.Параллельные прямые.Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Пр
- Перпендикулярные плоскости
Билет №8.Перпендикулярные плоскости.Две пересекающиеся плоскости называются перпендикулярными, если третья плоскость, перпендикулярн
- Пирамиды
МОУ «Средняя образовательная школа села Чёрный Яр»Реферат«Пирамиды»Выполнила:Черёмина А.ученица 11 А кл.Руководитель:Халяпина Л.А.2005 г.
- Пифагор
ПИФАГОРКогда Мнесарх, отец Пифагора, был в Дельфах по своим торговым делам, он и его жена Партенис решили спросить у Дельфийского оракул
- Поверхности второго порядка
Содержание.Понятие поверхности второго порядка.1. Инварианты уравнения поверхности второго порядка.Классификация поверхностей второг
- Полиномы Чебышева
ПОЛИНОМЫ ЧЕБЫШЕВАВведение Допустим, задана функция y ( x ), это означает, что любому допустимому значению х сопоставлено значение у. Но ино