Особенности эксплуатации автомобильных шин
При осуществлении автомобильных перевозок немалую часть внимания следует уделять безопасности движения. Автомобильные шины как элементы конструкции автомобиля, непосредственно контактирующие с дорожным покрытием, оказывают значительное влияние на устойчивость, управляемость и тормозные качества автомобиля. А они в свою очередь обеспечивают не только безопасность жизни и здоровья участников движения, но также и сохранность перевозимого груза. Не стоит забывать и о топливно-экономических характеристиках автомобиля, которые так же зависят от сопротивления шин качению. Характеристики автомобильных шин так же влияют и на уровень шума от движущегося автомобиля. Эти и другие немаловажные факторы, связанные с эксплуатацией шин, будут детально рассмотрены в данной работе.
1 Устройство автомобильных шин
1.1 Маркировка автомобильных шин
Автомобильные шины маркируются алфавитно-цифровым кодом, который обозначается на борту шины. Этот код определяет размеры шины и некоторые из ее ключевых характеристик, типа индикаторов нагрузки и скорости. Иногда внутренний борт шины содержит информацию, не включенную во внешний борт, и наоборот.
Маркировка шин за последние годы значительно усложнилась, современные автошины имеют маркировку тяги, протектора, температурного сопротивления и пр. показателей.
Рис. 1 – маркировка шин
1 - Модель (имя) шины; 2 - Код транспортного средства; 3 - Ширина шины в миллиметрах от борта до борта; 4 - Отношение высоты борта к полной ширине шины в процентах; 5 - R направление корда; 6 – посадочный диаметр; 7 - Индекс нагрузки и знак скорости 8 - Идентификационный номер DOT в стандартах США; 9 – тип дорожного покрытия; 10 - Материал корда и композиция резины; 11 – Производитель; 12 - Максимальный индекс нагрузки; 13 - Код тяги, протектора, температурного сопротивления; 14 - Максимальное давление шины;
Дополнительная маркировка шины
- M*S: На зимних шинах, в конце вышеупомянутой маркировки может стоять "Е" - шипованная резина.
- E4 - Шина, сертифицированная согласно ECE-инструкциям, (число указывает страну одобрения).
- 030908 - код сертификации шины
- DOT код: все шины, импортированные в США имеют DOT код, как это требуется Министерством транспорта, этот код определяет компанию и фабрику, почву, партию, и дату производства (2 цифры для недели года плюс 2 цифры для года; или 2 цифры для недели года плюс 1 цифра для года для шин, сделанных до 2000)
- TL - Бескамерная (Tubeless)
- TT - Tubetype, камерная шина
- Made in - Страна производства
- C (коммерческий) - Шина для легких грузовиков (Пример: 185 R14 C)
- B - Шины для мотоциклов (Пример: 150/70 B 17 69 H = диагональная конструкция с поясом под протектором
- SFI - сокр. для "side facing inwards" = внутрь асимметричных шин
- SFO - сокр. для "side facing outwards" = вовне асимметричных шин
- TWI - Индекс изнашивания шины (Tire wear index), индикатор профиля шины, который показывает, когда шина стерта и должна быть заменена
- SL - (standard load = стандартная нагрузка): Шина для нормального использования и нагрузки
- XL - (extra load = сверх нагрузка): Шина для тяжелой нагрузки
- rf - Укрепленные шины (Reinforced tires)
- Стрелки - Некоторые типы протекторов шин разработаны так, чтобы давать лучший эффект, когда шина вращается в определенном направлении (по часовой стрелке или против часовой стрелки). Такие шины будут иметь стрелку, показывающую, в какую строну шина должна вращаться, будучи надета на колесо транспортного средства. Для адекватного динамического поведения шин важно соблюдать это указание.
Рис.2 – Дополнительная маркировка автомобильных шин
Желтая точка (круглая или треугольная метка) на боковине означает самое легкое место на шине. При монтаже новой шины на диск, желтую метку нужно совместить с самым тяжелым местом на диске. Обычно это то место, где крепится ниппель. Это позволяет улучшить балансировку колеса и поставить грузики меньшего веса.
На шинах с пробегом метки уже не так актуальны, поскольку, как правило, при износе шины её баланс смещается.
Красная точка - означает место максимальной силовой неоднородности, проявление которой обычно связано с различными соединениями разных слоев шины при её изготовлении. Эти неоднородности - абсолютно нормальное явление, и они есть у всех шин. Но обычно помечают красными точками только те шины, которые идут на первичную комплектацию автомобилей, т.е. когда машина выходит с завода.
Эту красную метку совмещают с белыми метками на дисках (белые метки на дисках тоже ставятся в основном для первичной комплектации авто), которые обозначают самое близкое место к центру колеса. Это делается для того, чтобы максимальная неоднородность в шине минимально сказывалась при движении, обеспечивая более сбалансированную силовую характеристику колеса. При обычном шиномонтаже не рекомендуется обращать внимание на красную метку, а руководствоваться желтой меткой, совмещая её с ниппелем.
Белый штамп с цифрой означает номер инспектора, который проводил финальный осмотр шины на заводе-изготовителе.
Цветные полоски на протекторе шины делаются, чтобы было удобнее "опознавать" шину на складе. У всех моделей и различных типоразмеров эти полоски разные. Поэтому, когда шины стоят в стопках на складах, сразу видно, что данная стопка шин имеет один и тот же типоразмер и модель. Никакой другой смысловой нагрузки эти цветные полоски на шине не имеют.
1.2 Конструкция колес легковых автомобилей
Колесо является неотъемлемой частью автомобиля, поэтому конструкция его должна тесно согласовываться с конструкцией ходовой части автомобиля и отвечать тем требованиям, которые диктуются условиями его эксплуатации. В связи с этим для легковых, грузовых, специализированных автомобилей и автобусов применяют колеса различных конструкций и размеров. Колеса принято подразделять по их принадлежности тому или иному типу подвижного состава, по типу применяемых шин, конструкции диска и обода, технологии изготовления колеса.
Всякое колесо, как правило, состоит из двух основных частей: диска 1 с ободом 2 (рис. 3) и шины. По принадлежности к типу автомобиля колеса подразделяются на три группы: для легковых автомобилей, для грузовых, включая автобусы, и для автомобилей специального назначения.
Рис. 3 - Колесо легкового автомобиля ГАЗ-24 «Волга»
а — конструкция колеса; б и в — профили посадочных полок для бескамерных шин; г — симметричный профиль обода; 1 — ребра жесткости; 2 — обод; 3 — диск; 4 -профилированная часть диска.
Для легковых автомобилей применяют преимущественно колеса с глубокими неразъемными ободьями (см. рис. 3). Диск к ободу крепится сваркой или реже заклепками. Чтобы обеспечить прочность, диску придается особая конфигурация, повышающая его жесткость. Ободья для колес легковых автомобилей изготавливают в основном с наклонными (коническими) полками. Наклон полок принимают равным 5°.
Для легковых автомобилей наибольшее распространение получили колеса с диаметром посадочных полок обода 15, 14 и 13 дюймов с шириной профиля обода 4…7 дюймов. Диски колес легковых автомобилей имеют сложную конфигурацию и изготавливаются методом штамповки из листа, что придает ему необходимую жесткость.
Колеса принято обозначать основными размерами (в дюймах или миллиметрах) обода, а именно: шириной и диаметром посадочных полок. После первой цифры или группы цифр ставится буква латинского или русского алфавита, характеризующая комплекс размеров, определяющих профиль - бортовой закраины обода (А, Б и т.д.).
1.3 Технические характеристики шин
Шины характеризуются по назначению, способу герметизации, типу, конструкции и рисунку протектора. Как было сказано ранее, в зависимости от назначения различают шины для легковых и грузовых автомобилей. Шины легковых автомобилей (табл. 1.2) применяют на легковых автомобилях, малотоннажных грузовиках, микроавтобусах и прицепах к ним. По способу герметизации шины делят на камерные и бескамерные. По конструкции (по построению каркаса) различают диагональные и радиальные шины (рис. 4). По конфигурации профиля поперечного сечения (в зависимости от отношения высоты профиля к его ширине) — шины обычного профиля, широко-, низко- и сверхнизкопрофильные.
Рис. 4 - Покрышки диагональной (а) и радиальной (б) конструкции:
1 — протектор; 2 — слои брекера; 3 — слои каркаса; 4 — резиновая прослойка каркаса; 5 — бортовая часть.
В зависимости от эксплуатационного назначения автомобильные шины имеют следующие типы дорожных рисунков протектора (рис. 5):
Рис. 5 - Типы рисунка протектора:
а — дорожный; б — направленный; в — повышенной проходимости; г — карьерный; д — зимний; е — универсальный.
Дорожный рисунок (рис. 5, а) — шашки или ребра, расчлененные канавками. Шины с дорожным рисунком протектора предназначены для эксплуатации преимущественно на дорогах с усовершенствованным покрытием;
направленный рисунок (рис. 5, б) — несимметричный относительно радиальной плоскости колеса. Шину с направленным рисунком применяют для эксплуатации в условиях бездорожья и на мягких грунтах;
Рисунок протектора повышенной проходимости (рис. 5, в) — высокие грунтозацепы, разделенные выемками. Шины с таким рисунком протектора служат для эксплуатации в условиях бездорожья и на мягких грунтах;
Карьерный рисунок (рис. 5, г) — массивные выступы различной конфигурации, разделенные канавками;
Зимний рисунок протектора (рис, 5, д) — это рисунок, где выступы имеют острые кромки. Шины с таким рисунком предназначены для эксплуатации на заснеженных и обледенелых дорогах и могут быть оснащены шипами противоскольжения;
Универсальный рисунок (рис. 5, е), шашки или ребра в центральной зоне беговой дорожки и грунтозацепы по ее краям. Шины с таким рисунком протектора предназначены для эксплуатации на дорогах с усовершенствованным облегченным покрытием.
Классификация шин по назначению имеет важное значение, так как определяет основные требования к конструкции шины.
Камерная шина имеет сложную конфигурацию и состоит из многих конструктивных элементов: каркаса, брекера, протектора, боковины, бортов и камеры с отношением высоты профиля к его ширине более 0,80. У диагональных шин нити корда каркаса и брекера перекрещиваются в смежных слоях, а угол наклона нитей посередине беговой дорожки в каркасе и брекере 45…60°.
Бескамерная шина по внешнему виду почти ничем не отличается от стандартной автомобильной шины (рис. 6). Отличием от стандартных шин являются герметизирующий 1 (воздухонепроницаемый) слой по внутренней поверхности шины и уплотнительный слой 2 по наружной поверхности бортов.
Бескамерные шины имеют несколько меньший посадочный диаметр относительно посадочного диаметра обода, специальную форму и конструкцию борта, обеспечивающую более плотную посадку шины на обод колеса при наличии давления воздуха внутри шины. За рубежом выпускают бескамерные шины с самозаклеивающимся внутренним слоем и радиальными ребрами на боковинах для охлаждения шины.
Рис. 6 – устройство автомобильной шины
1 – каркас; 2 – слои брекера.
Корд для бескамерных шин изготавливают в основном из вискозы, капрона и нейлона. Веска-мерные шины имеют герметичные ободья. Вентиль 3 с уплотнительными резиновыми шайбами крепится непосредственно в ободе колеса. Особенностью бескамерных шин является то, что каркас их постоянно находится под действием сжатого воздуха, который во время эксплуатации просачивается : через герметизирующий слой шины. В этих случаях воздух в каркасе шины создает между отдельными элементами ее напряжения и вызывает расслоение. Поэтому для исключения этого вредного \ явления в бескамерных шинах предусмотрены специальные дренажные отверстия, через которые воздух, проникающий в. каркас, отводится наружу.
Основным преимуществом бескамерных шин является повышенная безопасность движения автомобиля на высоких скоростях по сравнению с камерными шинами. Бескамерная шина состоит из одной монолитной части, поэтому воздух из полости может выходить наружу только через отверстие прокола, а внутреннее давление при этом снижается медленно, так что водитель имеет возможность двигаться с поврежденной шиной до места ремонта. Следует отметить лучший отвод тепла непосредственно через металлический обод бескамерной шины, отсутствие трения между покрышкой и камерой и вследствие этого — более низкий температурный режим работающей шины.
Бескамерные шины характеризуются также большей устойчивостью внутреннего давления воздуха, которая объясняется тем, что воздух с большим трудом просачивается через нерастянутый воздухонепроницаемый слой бескамерной шины, чем через растянутые стенки камеры. Бескамерные шины при эксплуатации меньше подвергаются демонтажу и монтажу, так как мелкие повреждения можно ремонтировать, не снимая шины с обода.
Бескамерные шины, взаимозаменяемые с камерными покрышками, могут монтироваться на стандартных глубоких ободьях, если они герметичны, т. е. не имеют вмятин и повреждений.
Гарантийные нормы пробега бескамерных шин те же, что и камерных, однако опыт эксплуатации бескамерных шин показывает, что долговечность их на 20 % выше долговечности камерных шин, что объясняется лучшим температурным режимом работы шин и постоянством внутреннего давления в них воздуха. Однако для их производства необходимы высококачественные материалы, но они менее технологичны. Эксплуатация бескамерных шин требует высокой технической культуры.
Радиальные шины с металлокордом выпускаются трех типов: с металлокордом в каркасе и брекере, с нейлоновым кордом в каркасе и металлокордом в брекере, с меридиональным расположением нитей стального или нейлонового корда в каркасе и металлокордом в брекере (рис. 6).
Шины с металлокордом имеют более широкий раствор бортов, чем у обычных шин. Концы слоев’ корда завернуты попарно около одного или двух бортовых колец, навитых из одинаковой проволоки. На внутренней стороне каркаса в зоне беговой дорожки шины с металлокордом имеют привулканизированный слой резины. Он служит для предохранения камеры от проколов и более равномерного распределения напряжений в теле шины и в зоне беговой дорожки.
Металлокорд, обладая высокой теплопроводностью и теплостойкостью, способствует уменьшению напряжений и более равномерному распределению температуры в теле покрышки. Срок службы шин с металлокордом больше при эксплуатации их в различных дорожных условиях примерно в 2 раза, чем у обычных шин, эксплуатируемых в аналогичных условиях.
Нейлоновый корд в каркасе и металлокорд в брекере позволяют увеличить прочность шины в зоне беговой дорожки, снизить температуру в наиболее напряженных точках шины, защитить ее каркас от повреждений, воспрепятствовать распространению трещин в протекторе.
Меридиональное расположение нитей корда каркаса увеличивает эластичность шины, повышает сцепление шины с дорогой, значительно уменьшает потери на качение колеса. Металлокорд брекера повышает прочность каркаса в окружном направлении, улучшает температурный режим работы шины. Такие шины успешно работают на дорогах с усовершенствованным покрытием и в условиях бездорожья при больших скоростях движения.
Морозостойкие шины предназначены для применения в районах с температурой ниже минус 45 °С. Работа автомобилей в этих районах на обычных неморозостойких шинах не разрешается действующими Правилами эксплуатации шин. Морозостойкие шины изготавливают из резин, сохраняющих достаточную прочность и эластичность при низких температурах и обеспечивающих нормальный срох службы шин в указанных районах.
Шины для тропического климата отличаются тем, что они изготовлены из теплостойкой резины, хорошо сохраняющей прочность и эластичность при высоких скоростях и высоких температурах окружающего воздуха, характерных для стран с тропическим климатом. Эти шины имеют каркас из капронового либо высокопрочного или сверхпрочного вискозного корда.
Шины с металлическими шипами служат для повышения устойчивости и управляемости легковых и грузовых автомобилей и автобусов на скользких обледенелых дорогах и на льду. Диагональные и радиальные шины могут оснащаться шипами в протекторе. Применение этих шин снижает тормозной путь автомобиля в 2…3 раза, улучшает разгон в 1,5 раза и резко повышает устойчивость автомобиля против заносов.
Низко- и сверхнизкопрофильные шины выпускаются для легковых, грузовых автомобилей и автобусов. Они имеют пониженную высоту профиля (для низкопрофильных Н/В = 0,7—0,88; для сверхнизкопрофильных Н / В < 0,7, где Я — высота профиля; В — ширина профиля), что повышает устойчивость и управляемость автомобиля, обладают большей грузоподъемностью и проходимостью.
1.4 Взаимодействие шин с дорогой
При движении автомобиля шина работает в очень сложных и тяжелых условиях. В процессе качения на шину действуют различные по значению и направлению силы. К внутреннему давлению воздуха и действию массы автомобиля на шину в неподвижном состоянии при качении колеса добавляются динамические силы, а также силы, связанные с перераспределением массы автомобиля между колесами. Силы изменяют свое значение, а в ряде случаев и направление в зависимости от скорости движения и состояния дорожного покрытия, температуры окружающего воздуха, уклонов, характера поворотов дороги и т.п.
Рис. 7 – Силы, действующие на неподвижное (а) и подвижное (б) колесо.
Под действием сил при качении колеса шина в различных зонах непрерывно деформируется, т.е. отдельные ее части изгибаются, сжимаются, растягиваются. При продолжительном движении шина нагревается, в результате чего повышается внутреннее давление воздуха в шине и снижается прочность ее деталей, особенно резиновых.
Действующие на колесо автомобиля силы и моменты вызывают со стороны дороги реактивные силы, которые в общем случае расположены в трех взаимно перпендикулярных направлениях и приложены к колесу в месте его контакта с основанием дороги. Эти реактивные силы получили название вертикальной, тангенциальной и боковой. Неподвижное колесо подвержено действию одной вертикальной силы G от веса автомобиля, приложенной к оси колеса и равной ей по значению реактивной силе Z со стороны дороги. Вертикальная сила G, приложенная к оси колеса, и ее реакция Z со стороны дороги расположены в одной вертикальной плоскости, проходящей через ось колеса.
В случае ведомого колеса (рис. 7) толкающая сила Р от автомобиля через подшипник передается на ось колеса и вызывает со стороны дороги тангенциальную реакцию X,которая приложена к поверхности колеса в зоне его контакта с дорогой и имеет противоположное толкающей силе Р направление,
Качение ведомого колеса по опорной поверхности приводит к нарушению симметрии в области контакта колеса и дороги относительно вертикали, проходящей через центр колеса, и вызывает смещение реакции Z относительно этой вертикали вперед по ходу движения колеса на определенную величину я, называемую коэффициентом трения и измеряемую в единицах длины. Вертикальная реакция Z, как и при неподвижном колесе, численно равна нагрузке.
Рис. 8. Силы, действующие на ведущее (а) и тормозящее (б) колесо
Работа ведущего колеса отличается от работы ведомого колеса тем, что к ведущему колесу прикладывается не толкающая сила, а крутящий момент Мк (рис. 8, а). Этот момент должен уравновесить суммарное сопротивление Рсопр всех противодействующих движению сил (ветра, уклона дороги, трения, инерционных). В результате в контакте колеса с дорогой возникает реакция Rx = P сопр, направленная в сторону движения.
Кроме функции ведомого и ведущего, колесо может выполнять тормозящую функцию. Работу тормозящего колеса можно сравнить с работой ведущего. Разница состоит в том, что тормозной момент, а значит, и тангенциальная реакция дороги имеют противоположное направление и определяются интенсивностью торможения (рис. 8, б). Коэффициент сцепления между колесом и покрытием дороги в большинстве случаев значительно меньше единицы, и, следовательно, тангенциальная сила, как правило, значительно меньше вертикальной.
Кроме перечисленных сил, колесо часто подвергается действию боковых сил и моментов, являющихся следствием действия на шасси автомобиля опрокидывающих поперечных сил, например центробежной силы на повороте или составляющей массы, обусловленной наклоном дороги. На выпуклом или вогнутом профиле дороги, а также при движении по дороге, имеющей неровности, колеса также могут испытывать действие боковых сил (рис. 9), которые при условии их равенства на левых и правых колесах по величине и противоположности по направлению будут гаситься на оси, не передаваясь на сам автомобиль. Действие на колесо боковой силы ограничено сцеплением колеса с дорогой. При движении автомобиля по выпуклому или вогнутому профилю дороги или особенно по дороге с неровностями боковые силы могут достигать весьма значительной величины.
Таким образом, весь комплекс внешних нагрузок, действующих на колесо со стороны дороги, может быть представлен тремя взаимно перпендикулярными силами:
Рис. 9 - Действие сил на колеса во время движения по неровному основанию
- вертикальной реакцией Z, значение которой обусловливается суммарной массой перевозимого груза и автомобиля. Эта нагрузка всегда действует на колесо независимо от того, движется оно или нет, работает в качестве ведомого, ведущего или тормозящего. Значение же этой нагрузки при движении может изменяться в зависимости от ускорения (замедления), продольного и поперечного профиля дороги, ее извилистости, неровностей дорожного полотна и скорости движения;
- тангенциальной реакцией, расположенной в плоскости колеса (на рис. 2.4 не показанной) и являющейся следствием приложения к нему внешнего момента (крутящего или тормозного), толкающей силы, аэродинамического сопротивления, силы трения качения. Значение этой реакции достигает наибольшей величины обычно при торможении, однако, как правило, она ограничена коэффициентом сцепления колеса с покрытием дороги, который в большинстве случаев меньше единицы и» следовательно, даже наибольшее значение тангенциальной реакции, как правило, меньше вертикальной реакции;
- боковой реакцией У, которая расположена в плоскости, перпендикулярной плоскости колеса. Подобно тангенциальной эта реакция также ограничена силой сцепления колеса с дорогой, и, следовательно, ее максимальное значение не может быть больше вертикальной силы, за исключением случаев движения по неровной дороге, глубокой колее. В этих условиях боковая реакция может значительно превосходить силу сцепления колеса с дорогой.
Особого интереса заслуживают качение наклоненного колеса и боковой увод шины. При движении автомобиля на повороте профиль эластичной шины деформируется в боковом направлении под действием центробежной силы, направленной перпендикулярно плоскости колеса (рис. 2.5). Вследствие боковой деформации шины колесо катится не в плоскости /—/, а с некоторым уводом.
Способность шины «к боковой деформации оказывает большое влияние на эксплуатационные свойства автомобиля, особенно на его устойчивость и управляемость. Поэтому параметры, определяющие увод колеса, являются важной характеристикой шины.
Увод колеса оценивается утлом d, который принято называть углом бокового увода.
Рис. 10 - Деформация шин при повороте автомобиля и соответствующее искажение пятна контакта шины с дорогой из-за увода колеса (вид А)
Приложенные к колесу силы вызывают боковую деформацию шины в результате изгиба протектора в боковом направлении. При качении колеса с уводом шина имеет сложную деформацию, которая несимметрична относительно ее вертикальной плоскости симметрии.
Для каждой шины имеются определенная максимальная боковая сила и соответствующий ей определенный максимальный угол увода, при котором еще отсутствует большое проскальзывание элементов протектора в боковом направлении. Максимальный такой угол для большинства отечественных шин легковых автомобилей 3…50.
Одним из часто встречающихся случаев качения колеса является случай движения его с наклоном к дороге. Действительно, на автомобиле колеса могут иметь наклон к дороге из-за применения независимой подвески, наклона дороги и других факторов.
Наклон колеса к дороге оказывает существенное влияние на работу шины и траекторию движения. При качении наклонного колеса в плоскости вращения со стороны дороги на него действуют также боковая сила и крутящий момент. Последний стремится повернуть колесо в сторону его наклона. Наклон колеса к дороге приводит к появлению боковой деформации шины, в результате которой центр контакта колеса с дорогой смещается в сторону наклона колеса. У наклонного колеса протектор шины изнашивается быстро и неравномерно, особенно в плечевой зоне со стороны наклона колеса. Таким образом, наклон колеса к дороге значительно уменьшает срок службы шины.
Наклон колеса к дороге изменяет угол увода. При движении автомобиля на повороте, когда при поперечном наклоне кузова колесо наклоняется в сторону боковой силы, увод колеса увеличивается. Такое явление наблюдается у передних управляемых колес легковых автомобилей, имеющих независимую подвеску. Уменьшение склонности шин к боковому уводу и уменьшение наклона колеса к дороге положительно сказывается на продлении срока службы шин.
2 Особенности эксплуатации автомобильных шин
автомобиль шина колесо покрышка
2.1 Потери энергии на качение шин
Пневматическая шина благодаря наличию в ней сжатого воздуха и упругих свойств резины способна поглощать огромное количество энергии. Если шину, накачанную до определенного давления, нагрузить внешней силой, например вертикальной, а затем разгрузить, то можно заметить, что при разгружении не вся энергия возвратится, так как часть ее, расходуемая на механическое трение в материалах шины и трение в контакте, составляет необратимые потери.
При качении колеса происходит потеря энергии на ее деформацию. Так как энергия, возвращающаяся при разгрузке шины, меньше энергии, затраченной на ее деформирование, то для поддержания равномерного качения колеса необходимо постоянно пополнять потери энергии извне, что и осуществляется приложением к оси колеса либо толкающей силы, либо крутящего момента.
Кроме сопротивлений, возникающих в результате потерь, связанных с деформацией шины, движущееся колесо испытывает сопротивление, обусловленное трением в подшипниках, а также сопротивление воздуха. Эти сопротивления, хотя и незначительны, однако тоже принадлежат к категории необратимых потерь. Если колесо движется по грунтовой дороге, то, кроме потерь, перечисленных выше, будут и потери на пластическую деформацию грунта (механическое трение между отдельными его частицами).
Потери на качение оценивают также силой сопротивления качению или мощностью потерь на него. Сопротивление качению колеса зависит от многих факторов. В значительной степени влияние на него оказывают конструкция и материалы шины, скорость движения, внешние нагрузки и дорожные условия. Потери на сопротивление качению ведомого колеса при движении по дорогам с твердым покрытием состоят из потерь на разного рода трения в шине. На эти потери затрачивается значительная доля мощности двигателя. Энергия, поглощаемая шиной, приводит к значительному повышению ее температуры.
Рис. 11 - Зависимость силы сопротивления качению Рк шины 6,45— J3R модели М-130А с металлокордным брекером от скорости v.
Сопротивление качению в сильной степени зависит от скорости качения. В реальных условиях эксплуатации сопротивление качению может возрастать более чем в 2 раза. На рис. 11 показаны результаты испытания, когда шина имела нормальную нагрузку 375 кгс и соответствующее ей давление воздуха 1,9 кг/ см2. Испытания проводились на барабанном стенде при установившемся тепловом состоянии шины. На рис. 11 видны три явно выраженные зоны нарастания силы сопротивления качению. При очень малых скоростях движения (в начале зоны I) потери мощности на качение минимальны. Эти потери обусловлены сжатием резины в зоне контакта шины с дорогой.
В зоне II с увеличением скорости происходит нарастание потерь, и все больше начинают сказываться силы инерции движения колеса. Начиная с определенного значения скорости, деформация элементов шины значительно возрастает, что характеризует процессы качения в зоне III.
Увеличение давления воздуха в шине приводит к снижению потерь на качение шины по твердому покрытию во всем диапазоне изменения скорости, уменьшению радиальной деформации» и повышению ее жесткости, что уменьшает тепловые потери. Надо помнить, что в процессе качения по мере нагрева шины давление воздуха в ней повышается, а сопротивление качению уменьшается. Разогрев холодной шины до установившейся рабочей температуры приводит к снижению коэффициента сопротивления качению примерно на 20 %. Зависимость сопротивления качению от давления воздуха является важной характеристикой шины.
Повышение нагрузки на колесо при постоянном давлении воздуха в шине увеличивает силу сопротивления качению. Однако при изменении нагрузки с 80 до 110 % от номинальной коэффициент сопротивления качению практически остается постоянным. Рост нагрузки на 20 % сверх максимально допустимой повышает коэффициент сопротивления качению примерно на 4 %.
Сопротивление качению колеса несколько повышается с увеличением приложенного к колесу крутящего и тормозного моментов. Однако интенсивность нарастания потерь при тормозном моменте больше, чем при ведущем.
Для различных типов дорожных покрытий коэффициент сопротивления качению колеблется в следующих пределах:
Таблица 1 – Коэффициенты сопротивления качению шин
Дорога с асфальтовым покрытием | |
в хорошем состоянии | 0,015…0,018 |
в удовлетворительном состоянии | 0,018…0,020 |
Дорога с гравийным покрытием | |
в хорошем состоянии | 0,020…0,025 |
Грунтовая дорога | |
сухая, укатанная | 0,025…0,035 |
после дождя | 0,050…0,150 |
Песок | |
сухой | 0,100…0,300 |
сырой | 0,060…0,150 |
Обледенелая дорога и лед | 0,015…0,03 |
Укатанная снежная дорога | 0,03…0,05 |
На дорогах с твердым покрытием сопротивление качению колеса во многом зависит от размеров и характера неровностей дороги, Сопротивление движению в таких условиях уменьшается с увеличением диаметра колеса.
При движении по мягкой грунтовой дороге сопротивление качению зависит от степени деформации шины и грунта. Деформация обычной шины на этих грунтах примерно на 30…50 % меньше, чем на твердом покрытии. Для каждого размера шины и условий движения имеется определенное давление воздуха, обеспечивающее минимальное сопротивление движению.
2.2 Сцепные свойства шин
Способность нормально нагруженного колеса воспринимать или передавать касательные силы при взаимодействии с дорогой является одним из важнейших его качеств, способствующих движению автомобиля. Хорошее сцепление колеса с дорогой повышает управляемость, устойчивость, тормозные свойства, т.е. безопасность движения. Недостаточное сцепление, как показывает статистика, является причиной 5… 10 % дорожно-транспортных происшествий при движении по сухим дорогам и до 25…40 % — по мокрым. Это качество колеса и дороги принято оценивать коэффициентом сцепления Ф— отношением максимальной касательной реакции Rx maxв зоне контакта к нормальной реакции или нагрузке G, действующей на колесо, т. е. Ф = Rх mах/ G
Различают три коэффициента сцепления: при качении колеса в плоскости вращения без буксования или юза (скольжения); при буксовании или юзе в плоскости вращения колеса; при боковом скольжении колеса.
Повышение коэффициента сцепления может быть достигнуто в ущерб другим качествам шины. Пример тому — стремление повысить сцепление с мокрой дорогой расчленением рисунка протектора, что снижает прочность элементов протектора.
С учетом климатических и дорожных условий в ряде стран установлены минимальные значения коэффициента сцепления в пределах 0,4…0,6. Коэффициент сцепления зависит от конструкции шины, внутреннего давления, нагрузки и других условий работы, но в большей степени от дорожных условий. Диапазон изменения этого коэффициента в зависимости от конструкции шины различен для разных дорожных условий. При движении по твердым, ровным, сухим дорогам коэффициенты сцепления шин с различными конструктивными элементами близки, и их абсолютные значения зависят в основном от вида и состояния дорожного покрытия, свойств протекторных резин. Рисунок протектора в этих условиях оказывает наибольшее влияние на сцепление. Увеличение насыщенности рисунка протектора обычно повышает сцепление. Влияние рисунка протектора весьма велико при качении шины по гладким покрытиям. Расчленение протектора улучшает сцепление шины с мокрым покрытием благодаря лучшему вытеснению воды с площади контакта, а также благодаря повышению давления. Ускорению выхода воды с площади контакта способствуют расширение канавок, спрямление их, уменьшение ширины выступов. Сцепление улучшается при более вытянутых выступах рисунка протектора, а наименьший коэффициент сцепления наблюдается при квадратных и круглых выступах. Щелевидные канавк
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Планирование и организация работ по восстановлению магистральной линии связи и контактной сети на заданном железнодорожном участке
Министерство транспорта РФГОУ ВПО ДВГУПСФакультет военного обученияКурсовой проект„Планирование и организация работ по восстанов
- Показники роботи залізничної станції
ЗМІСТВступ1. Технічна та експлуатаційна характеристика станції та під’їзних колій підприємств1 Техніко-експлуатаційна характеристик
- Проект дільниці по технічному огляду та ремонту для двигуна автомобіля Chery Elara
Міністерство освіти УкраїниВінницький технічний коледжСпеціальність 5.05070205ПРОЕКТ ДІЛЬНИЦІ ПО ТЕХНІЧНОГО ОГЛЯДУ ТА РЕМОНТУ ДЛЯ ДВИГУН
- Проектирование системы кондиционирования воздуха среднемагистрального пассажирского самолета
1. Техническое задание на разработку системы кондиционирования воздуха среднемагистрального пассажирского самолета Ту-2042. Выбор и обо
- Розробка дільниці технічного обслуговування та ремонту ходової частини Mitsubishi Lancer
Міністерство освіти УкраїниВінницький технічний коледжКУРСОВИЙ ПРОЕКТЗ дисципліниБудова і експлуатація автомобілів та тракторівРОЗ
- Розробка методики керування проектом міжнародних морських фрахтових перевезень
1. Теоретичні прикладні і правові аспекти ЗЕД компаній річкового і морського флоту1.1 Зовнішньоекономічні проблеми торгового флотуОста
- Совершенствование транспортного процесса перевозки пассажиров по маршрутам, обслуживаемым ГПКК "ДПАТП" г. Дивногорска
1 Технико-экономическое обоснование1.1 Характеристика предприятия ГПКК «ДПАТП»1.2 Общие сведения о ГПКК «ДПАТП»1.3 Характеристика структ