Основы комплексной автоматизации и проектирования ЭВМ
Лабораторные работы № 1- 4
По дисциплине:
«Автоматизация проектирования ЭВМ»
Содержание
Лабораторная работа № 1
Электрическая функциональная схем
Матрица цепей схемы
Вариант ручного разбиения
Сравнительный анализ ручного и машинного разбиения по времени и качеству работы
Лабораторная работа № 2
2.1 Мультиграф схемы
Матрица связности мультиграфа
Сравнительный анализ полученного разбиения с результатами ручного разбиения и с помощью последовательного алгоритма
Лабораторная работа № 3
Исходная схема, предназначенная для размещения
Граф схемы
Матрица связности графа схемы
Матрица расстояний платы
Вариант ручного размещения с определением суммарной длины связей
Сравнительный анализ ручного и машинного размещения по времени и качеству размещения
Лабораторная работа № 4
Сравнительный анализ результатов работы алгоритма попарных перестановок с результатами ручного и последовательного размещения по времени и качеству
размещения
Литература
Приложения:
Листинг машинного решения лабораторных работ
Лабораторная работа №1
Лабораторная работа №2
Лабораторная работа №3
Лабораторная работа №4
1. Лабораторная работа № 1
Тема: Исследование алгоритма последовательного заполнения конструктивно-законченных частей. (Компоновка последовательным алгоритмом)
Цель работы:
Ознакомление студента с методами автоматизированной компоновки на этапе конструкторского проектирования.
Анализ преимущества автоматизации проектирования по сравнению с ручным способом.
Закрепление практических навыков на персональном компьютере (ПЭВМ) в диалоговом режиме.
Электрическая функциональная схема
1.2 Матрица цепей
Где:
X – множество элементов схемы;
К – максимальное количество контактов микросхемы;
Z = | Контакт Элемент | Ki1 | Ki2 | Ki3 | Ki4 | Ki5 |
X1 | 4 | 5 | 0 | 0 | 0 | |
X2 | 6 | 7 | 0 | 0 | 0 | |
X3 | 5 | 7 | 9 | 0 | 0 | |
X4 | 5 | 6 | 10 | 0 | 0 | |
X5 | 7 | 4 | 11 | 0 | 0 | |
X6 | 4 | 6 | 12 | 0 | 0 | |
X7 | 9 | 13 | 0 | 0 | 0 | |
X8 | 10 | 14 | 0 | 0 | 0 | |
X9 | 11 | 15 | 0 | 0 | 0 | |
X10 | 12 | 16 | 0 | 0 | 0 | |
X11 | 1 | 13 | 17 | 0 | 0 | |
X12 | 2 | 14 | 18 | 0 | 0 | |
X13 | 3 | 15 | 19 | 0 | 0 | |
X14 | 16 | 8 | 20 | 0 | 0 | |
X15 | 17 | 18 | 19 | 20 | 21 |
Таб.1
Матрица цепей, описывающая схему (Рис.1)
Дано:
N = 15 (элементов)
K = 5 (контактов)
P = 2 (плат)
max = 8 (элементов)
Где:
N – число элементов схемы;
K – максимальное число выводов элементов;
P – число плат, на которых нужно разместить схему;
max – максимальное количество элементов, размещаемых на каждой плате.
1.3 Вариант ручного разбиения
Размещение элементов
На плате 1: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
На плате 2: | 8 | 9 | 10 | 14 | 12 | 13 | 14 | 15 |
Связность: 4
Среднее время выполнения: 0 часов 0 минут 40 сек.
1.4 Сравнительный анализ ручного и машинного способа
разбиения по времени работы и качеству компоновки
В результате ручного разбиения мы получили более оптимальный результат, и затратили на это намного меньше времени:
Машинным способом: 0 ч. 10мин. 30 сек.
Ручным способом: 0 ч. 0 мин. 40 сек.
Но при увеличении элементов на схеме и количества плат машинный способ наиболее удобен.
2. Лабораторная работа № 2
Тема: Исследование алгоритма попарных перестановок конструктивных
элементов между ТЭЗами. Компоновка итерационным алгоритмом.
Цель работы:
Ознакомление студента с методами автоматизированной компоновки на этапе конструкторского проектирования с помощью итерационного алгоритма.
Анализ преимущества автоматизации проектирования по сравнению с ручным способом.
Закрепление практических навыков на персональном компьютере (ПЭВМ) в диалоговом режиме.
2.1 Мультиграф схемы
Дано:
N = 15 (элементов)
P = 2 (плат)
max = 8 (элементов)
Где:
N – число элементов схемы;
P – число плат, на которых нужно разместить схему;
max – максимальное количество элементов, размещаемых на каждой плате.
Матрица связности мультиграфа
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
Таб.2
Матрица связности мультиграфа (Рис.2)
Сравнительный анализ полученного разбиения с результатами ручного разбиения и с помощью последовательного алгоритма
Хотя итерационные алгоритмы в отличии от последовательных позволяют на каждом шаге получать локальный минимум, но обладают меньшим быстродействием,
в этой лабораторной работе этого не видно. Сказывается то, что при компановке данным методом первое приближение дало окончательный результат.
Среднее время выполнения компановки
итерационным методом: 0 ч. 9 мин. 30 сек.
При увеличении элементов на схеме и количества плат машинный способ наиболее удобен.
3. Лабораторная работа № 3
Тема: Исследование алгоритма последовательного размещения конструктивных
элементов по монтажным местам ТЭЗа. Размещение последовательным
алгоритмом.
Цель работы:
Ознакомление студента с методами автоматизированного размещения электронных схем на этапе конструкторского проектирования с помощью последовательных алгоритмов.
Анализ преимуществ автоматизированного проектирования.
Закрепление практических навыков работы на ПЭВМ в диалоговом режиме.
3.1 Исходная схема, предназначенная для размещения и плата
Дано:
N = 8 (элементов);
M = 8 (мест);
Закрепленный элемент – Э8;
Закрепленное посадочное место – Р1;
Монтаж печатный.
Где:
N – число элементов схемы;
M – число посадочных мест.
Разместить схему (Рис.3) на плате (Рис.4).
3.2 Граф схемы
Рис.5
Граф схемы (рис.3)
3.3 Матрица связности графа схемы
D1
D2
D3
D4
D5
D6
D7
D8
D1
0
0
1
1
1
1
0
0
D2
0
0
1
1
1
1
0
0
D3
1
1
0
1
1
1
1
0
D4
1
1
1
0
1
1
1
0
D5
1
1
1
1
0
1
1
0
D6
1
1
1
1
1
0
1
0
D7
0
0
1
1
1
1
0
1
D8
0
0
0
0
0
0
1
0
Таб.3
Матрица связности графа схемы (Рис.4)
3.4 Матрица расстояний
D1
D2
D3
D4
D5
D6
D7
D8
D1
0
2
4
6
5
7
9
11
D2
2
0
2
4
7
5
7
9
D3
4
2
0
2
9
7
5
7
D4
6
4
2
0
11
9
7
5
D5
5
7
9
11
0
2
4
6
D6
7
5
7
9
2
0
2
4
D7
9
7
5
7
4
2
0
2
D8
11
9
7
5
6
4
2
0
Таб.4
Матрица расстояний схемы (Рис.3)
3.5 Вариант ручного размещения
Матрица длины связей
D1
D2
D3
D4
D5
D6
D7
D8
D1
0
5
7
2
2
7
0
0
D2
5
0
2
7
7
2
0
0
D3
7
2
0
5
9
4
11
0
D4
2
7
5
0
4
9
6
0
D5
2
7
9
4
0
5
2
0
D6
7
2
4
9
5
0
7
0
D7
0
0
11
6
2
7
0
5
D8
0
0
0
0
0
0
5
0
Таб.5
Суммарная связность = 106
3.6 Сравнительный анализ ручного и машинного размещения
по времени и качеству работы
По качеству работы машинный способ эффективнее, чем ручной. Но при размещении элементов ручным способом я старался затратить как можно меньше времени, дабы оценить полностью эффективность машинного размещения.
Результаты:
Суммарная связность Маш. спос. – 96
Суммарная связность Ручн. спос. – 106
Затраченное время Маш. спос. – 8 мин. 14 сек.
Затраченное время Ручн. спос. – 5 мин. 45 сек.
4. Лабораторная работа № 4
Тема: Исследование алгоритма попарных перестановок конструктивных
элементов в ТЭЗе. Размещение итерационным алгоритмом.
Цель работы:
Ознакомление студента с методами автоматизированного размещения электронных схем на этапе конструкторского проектирования с помощью итерационных алгоритмов.
Анализ преимуществ и недостатков метода.
Закрепление практических навыков работы на ПЭВМ в диалоговом режиме.
4.1 Сравнительный анализ результатов работы
алгоритма попарных перестановок с результатами ручного
и последовательного размещения, по времени
и качеству размещения.
Суммарная связность Маш. спос.(Пос. раз.) – 96
Суммарная связность Маш. спос.(Поп. пер.) – 96
Суммарная связность Ручн. спос. – 106
Затраченное время Маш. спос. (Пос. раз.) – 8 мин. 14 сек.
Затраченное время Маш. спос. (Поп. пер.)– 9 мин. 32 сек.
Затраченное время Ручн. спос. – 5 мин. 45 сек.
Литература
Морозов К.К., Одиноков В.Г., Курейчик В.М. Автоматизированное проектирование конструкций радиоэлектронной аппаратуры: Учебное пособие для вузов. – М.: Радио и связь, 1983. – 280 с., ил.
Деньдобренко Б.Н., Малика А.С., Автоматизация конструирования РЭА: Учебник для вузов –
М.: Высш. Школа, 1980. – 384., ил.
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Особенности конструирования радиотехнической аппаратуры
СОДЕРЖАНИЕ1. Введение. 1.1 Особенности конструирования современной радиотехнической аппаратуры.2. Обоснование выбора принципиальной
- Математическое моделирование высокочастотных радиоцепей на основе направленный графов
Содержание Введение 1. Основные понятия и определения 2. Топологическое представление радиоцепи 3. Расчет цепей на основе направленных
- Сотовая связь
Самарский приборостроительный техникумЛаборатория «Бытовая радиоэлектронная аппаратура»Научно-приктическая конференцияРефератна т
- Спектральный анализ и его приложения к обработке сигналов в реальном времени
Ключевой операцией в методах, основанных на анализе собственных значений, является разделение информации, содержащейся в автокорреляц
- Модель рассеяния электромагнитной волны параллелепипедом из диэлектрика с потерями
Содержание Введение......................................................................................................... Основные уравнения........................................................................
- Модернизация лабораторного стенда для исследования характеристик АМ-ЧМ приемника
В настоящее время практически все радиотехнические системы, в которых происходит обмен информацией по радиоканалу, такие как наземные (
- Исследование реакции нижней ионосферы на высыпание энергичных частиц из радиационных поясов Земли
Курсовая работаИсследование реакции нижней ионосферы на высыпание энергичных частиц из радиационных поясов ЗемлиВ данной курсовой ра