Скачать

Модель рассеяния электромагнитной волны параллелепипедом из диэлектрика с потерями

Содержание

Введение.........................................................................................................

Основные уравнения.....................................................................................

Фурье-компоненты рассеянной волны......................................................

Уравнения Виннера-Хопфа..........................................................................

Приближенные решения..............................................................................

Примеры расчетов и примеры экспериментов.........................................

Заключение....................................................................................................

МОДЕЛЬ РАССЕЯНИЯ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ

ПАРАЛЛЕЛЕПИПЕДОМ ИЗ ДИЭЛЕКТИКА С ПОТЕРЯМИ.

ВВЕДЕНИЕ.

В настоящей статье изучается задача рассеяния плоской волны параллелепипедом из диэлектрика с потерями, причем считается, что размеры параллелепипеда сравнительно больше по отношению к длине волны. При исследовании используется метод Виннера-Хопфа. А именно, посредством обобщения решения задачи для полубесконечного тела, полученного в работе Джоунса, попытаемся распространить результаты для полубесконечных пластин из диэлектрика с большим потерями так же, как было получено решение для параллелепипеда из проводника. Само собой разумеется, что полученные результаты совпадают с решением для случая идеального проводника, если считать удельную электрическую проводимость бесконечно большой. В качестве характерной особенности предлагаемого метода, по-видимому, можно указать на то, что этот метод, так же как и метод в случае параллелепипеда из проводника, оказывается чрезвычайно эффективным в применении к телам с поперечным сечением в виде продолговатого прямоугольника, большая сторона которого сравнительно велика по отношению к длине волны. Конечно, в случае больших размеров тел приближение геометрической оптики и приближение физической оптики могут практически применяться в качестве наиболее простых методов, однако, для того, чтобы знать в каком диапазоне размеров эти приближения являются верными, необходимо выполнить точные расчеты и провести эксперименты. В данной работе приводятся также и результаты модельных экспериментов, в которых использовались микроволны; проведено сравнительное изучение с результатами расчетов. Что касается среды с большими потерями, то в параллелепипеде закреплялся бетон, а в качестве проводника использовалась алюминиевая пластина, изготовленная в виде параллелепипеда.

На рис.1 представлено схематическое изображение параллелепипеда и геометрические данные рассматриваемой задачи. В данном случае исследуется задача рассеяния (двухмерная) плоской волны (Е-волны), падающей на параллелепипед из диэлектрика с большими потерями под углом q к оси х. Ширина параллелепипеда равна 2а, толщина - 2. Считаем, что изменение во времени описывается фактором .

P