Скачать

Методичний матеріал по викладанню алгебри

ЗМІСТ

Урок – 1. Поняття про вектори. Абсолютна величина вектора і напрям

Урок – 2. Рівність векторів. Розв’язування вправ

Урок – 3. Координати вектора

Урок – 4. Розв’язування вправ. Самостійна робота

Урок – 5. Додавання векторів

Урок – 6. Додавання векторів (продовження)

Урок – 7. Додавання векторів (продовження)

Список використаної літератури


УРОК – 1 Тема уроку. ПОНЯТТЯ ПРО ВЕКТОР. АБСОЛЮТНА ВЕЛИЧИНА ВЕКТОРА І НАПРЯМ

Мета уроку. Увести поняття вектора, абсолютна величина й напрям вектора, а також розв’язати вправи.

Тип уроку. Урок засвоєння нових знань.

Навчальні посібники і ТЗН. 1)кодоскоп; 2)кодопозитиви; 2)діапроек- тор; 4) фрагменти з діафільму ” Вектор ”.

ХІД УРОКУ

І. Повторення вивченого матеріалу(фронтальне опитування накодоскопі).

1). Які відображення площини на себе називається рухом (перемі- щенням)? Перерахувати відомі вам види переміщення.

(симетрія відносно точки, симетрія відносно прямої, поворот, паралельне перенесення).

2). Дати означення напряму на площині.

(Наочно паралельне перенесення означають як перетворення, при якому точки зміщуються в одному і тому самому напряму на одну і ту саму відстань, або точки зміщуються вздовж паралельних прямих ( або прямих які збігаються) на одну й ту саму відстань).

3). Яке відображення площини на себе називається паралельним пере- несенням?

4). Яке відображення площини на себе називається паралельним пере- несенням?

(Паралельне перенесення задається формулами:

x'=x+a, y'=y+b ).


5). Скільки різних паралельних перенесень задають дві різні точки? (A(x1;y1), B(x2;y2) переходять при паралельному перенесенні у точки A'(x1+a;y1+b), B'(x2+a;y2+b)).

Розв’язати задачу на тотожне відображення.

Дано відрізок AB. Побудувати образ цього відрізка

а) При паралельному перенесенні, який переводить точку A у точку В.

AB).      (AB AB).

б) При повороті на 0o навколо вибраної поза відрізком AB точки. (AB

в) Чи являється довільне переміщення тотожнім відображенням, якщо відомо,що воно переводить точку А в точку В, а також В в точку В, тобто АВ АВ? (Ні, бо при будь-якому розміщенні осі симетрії з віссю AB на площині знайдуться точки, які не переходять самі в себе, а тотожне відображення є перетворення всієї площини на себе, яка будь-яку точку площини відображає на себе).

Паралельне перенесення задано формулами x=x+2, y=y+3. Знайдіть координати точок N' і M', в які переходять точки N(1;2), M(2;1) при паралельному перенесенні. Побудувати точки N і N ', M і M'; кожну пару точок з’єднайте відрізком.

Демонструю на кодоскопу мал. 1, який складається з кодоплівок: система координат, із двох пар точок N і N', M і M'. Одержаний малюнок показує, що при даному паралельному перенесенні точки змістилися за паралельними прямими на однакову відстань. Пропоную учням цю властивість довести, тобто, що чотирикутник NN'M'M – паралелограм. Для доведення вправи необхідно згадати з учнями означення й властивість паралелограма, формули координат середини відрізка.

Пропоную учням знайти середину відрізка NM' і N'M і переконатися, що ці точки співпадають. Учні роблять висновок, що діагоналі чотирикутника NN'M'M перетинаються і в точці перетину діляться навпіл, це означає, що NN'M'M – паралелограм. Таким чином доведено, точки N і M змістили на одну і ту ж відстань.

Потім я доводжу це твердження в загальному вигляді ( тобто для будь-якого паралельного перенесення і довільних точок N і M ), показую на кодоскопі мал. 1.

Алгоритм доведення демонструю на кодоскопі.

Нехай O1 – середина відрізка NM', а O2 – середина відрізка N'M. Знайти координати точок і.

Для O1:

x = (x1+x2+a)/2, y = (y1+ y2 b)/2;

для O2 :

x = (x1+a+x2)/2, y = (y1 +y2+b)/2.

Точки О12 – співпадають (одна і та ж точка).

Отже, діагональ чотирикутника N'NM'M перетинаються і точкою перетину є точка О (середина ); звідки слідує, що чотирикутник NN'M'M – паралелограм (мал. 2), тобто NN' || MM' і NN'=MM'.

y

N(x1+a;y1+b)

5

M(x2+a;y2+b)

o

2 N

M                           0 1 2 3 4 x

Мал. 2

Звертаю увагу учням на те, що ми довели наступне:

а) NM=N'M', тобто, що паралельне перенесення зберігає відстань між точками, а це означає – рух;

б) пряма переходить у паралельну пряму.

Пригадати з учнями теорему 9.4 (про існування і єдиності паралельного перенесення).

Підвести підсумок фронтального опитування й оголосити оцінки.

ІІ. Вивчення нового матеріалу.

Звертаю увагу учням на те, що ми повторили паралельне перенесення, яке тепер буде називатися по новому – вектор.

Після таких міркувань переходимо до означення вектора, яке подано у підручнику (п. 91).

Вектором називається напрямлений відрізок (за підручником мал. 215 демонструю на кодоскопу).

 B

 a

 A

мал. 3 (за підручником мал. 211)

Звертаю увагу на те, що учні вже зустрічалися із вектором у курсі фізики при вивченні величин, які характеризуються числом і напрямом (такі, як сила, швидкість і т. д.).

На мал. 3 напрям вектора визначається його початком і кінцем (стрілка). Для позначення вектора використовуються малі букви латинського алфавіту a, b, c

Можна також позначати вектор, вказавши його початок і кінець великими буквами латинського алфавіту. При такому способі позначення

вектора на перше місце ставлять його початок (перша буква), а кінцем є друга буква. Зверху над буквою (буквами) ставлять риску (стрілку). Повідомляю, що вектор на мал. 3 позначають так: a і AB.

 B C

A D

Мал. 4

На кодоскопу демонструю наступні завдання:

1. Виписати всі вектори, зображені на мал. 4.

2. Дано точки A,B,C,D (мал. 5):

а) зобразити вектори, DA, BA,DB,BC;

B

C

A D

Мал. 5

б) накреслити вектор, початок якого співпадає із

початком вектора DB, а кінець – з кінцем вектора DC.

Після розв’язування цих вправ увожу поняття однаково напрямлених векторів. Показую на кодоскопу мал. 6 і пояснюю учням, яке паралельне перенесення суміщається, а) пів прямі AB і DE; б) пів прямі AB і BC.


A B C

D E

Мал. 6

(а) паралельне перенесення, переводить точку в точку A у точку B; б) паралельне перенесення, переводить точку А в точку В ).

Звертаю увагу учням на те, що згідно означенню однаково напрямленні пів прямі лежать або на паралельних прямих, або на одній і тій же прямій.

B C

A N D

Мал. 7

На кодоскопу демонструю мал. 7 і умову завдання:” ABCD – трапеція. Пояснити, чому пів прямі BC і AD однаково напрямлені ” (Пів прямі BC і AD лежать на паралельних прямих ВС і AD по одну сторону від січної AB).

Увожу означення протилежно напрямленні пів прямі. Демонструю мал. 8 на кодоскопу.

Пояснити, чому пів прямі BC і DA протилежно напрямлені.(Пів прямі BC і DA лежать на паралельних прямих по одну сторону від січної AB ).

Звертаю увагу на те, що протилежно напрямленні пів прямі (подібно до однаково напрямлених ) лежать або на паралельних прямих, або на одній й тій же прямій.


 K M N

F E

Мал. 8

Означення однаково напрямлених векторів показую на прикладах. За допомогою кодоскопу демонструю мал. 7 і умову завдання.

Дано трапецію ABCD (мал. 7):

а) Знайти всі можливі пари одинаково напрямлених векторів.

б) Чи являються ВА CD однаково напрямленні? (Відповідь поясніть)

Ввожу поняття протилежно ( ) напрямленні вектори :”CB і AD (мал. 7) називаються протилежно напрямленими, якщо пів прямі CB і AD протилежно напрямлені”. Після цього демонструю задаю ще одне запитання:

”Вкажіть які-небудь пари протилежно напрямлених векторів”.

(Наприклад, BC і DA, AD і NA, BC і CB).

Підсумок. Вектори CB AD називаються однаково напрямленими, якщо однаково напрямлені й пів прямі CB і AD. Вектори CB AD називаються протилежно напрямленими, якщо протилежно напрямлені й пів прямі CB і AD.

Для введення поняття абсолютної величини (модуля) пропоную учням такі вправи.

Нехай ABCD – квадрат із стороною рівною 3.

Чому дорівнюють абсолютні величини (модулі) векторів AB, BA, AC ?

Підсумовую разом з учнями: ” Абсолютною (або модулем) вектора називається довжина відрізка, що зображає вектор. Абсолютна величина вектора а позначається | a | ”.

Далі знайомлю учнів із нульовим вектором, тобто, коли початок вектора збігається з кінцем. Показую як позначається нульовий вектор і учні записують це позначення в зошиті ( 0 ). А також зауважую, що про напрям нульового вектора не говорять і абсолютна величина нульового вектора дорівнює нулю. Операції над нульовими векторами відіграють ту саму роль, що й число нуль в операціях числа.

ІІІ. Тренувальні вправи (на кодопозитиві, напівсні ).

1. Вектори AB і DC однаково ( ) чи протилежно ( ) напрямленні

2. Два вектори AB і DC рівні. Порівняйте їхні абсолютні величини й напрям.

3. Вектори AB і CB рівні за абсолютною величиною. Чи рівні ці вектори?

IV. Підсумок уроку.

1) Пригадую з учнями як позначається вектор.

2) Звертаю увагу на поняття одинакові ( ) і протилежно ( ) напрямленні вектори і ,що такі вектори називаються колінеарними.

3) Учні пригадують, що вектор має довжину, тобто нове поняття, абсолютна величина вектора.

4) Ще раз пригадую учням, про нульовий вектор і операції над ним. На кінець звертаю увагу, що вектор і операції над ним використовуються у фізиці.

IV. Домашнє завдання. § 10 (п. 91); №1; за. 1 – 4.

B C


O

A D

Мал. 9

Додаткове завдання.

1) Довести, що для справедливості рівності AB = CD необхідної і достатньо, щоб середина відрізка AD збігалася із серединою відрізка BC.

2) Позначте на мал.9 вектори AB,CB,OA, OC, BD, AD, DC, OB . Записати співнапрямлені і протилежно напрямлені вектори.

УРОК – 2. Тема уроку. РІВНІСТЬ ВЕКТОРІВ. РОЗВ’ЯЗУВАННЯ ВПРАВ

Мета уроку. Ознайомлення учнів із поняттям рівні вектори і закріпити на прикладах.

Тип уроку. Урок засвоєння нових знань; застосування знань і формування вмінь.

Знання, вміння, навички. Знати формулювання рівності векторів, уміти відкладати від довільної точки вектор, який дорівнює даному.

Наочні посібники і ТЗН. 1) Кодоскоп; 2) кодопозитиви із зразками алгоритму розв’язку вправ.

ХІД УРОКУ

І. Фронтальне опитування.

В – 1 ( В – 2)

1) Вектором називається ... 1) Абсолютною величиною вектора називається

а) напрямлений відрізок; а) довжина відрізка;

б) відрізок певної довжини; б) довжина вектора;

в) стрілка з напрямом; в) довжина променя;

г) промінь. г) довжина відрізка, що зображає вектор. (1 бал)

2) Які вектори спів напрямлені: 2) Які вектори протилежно напрямлені:

M A N

K B L

Мал. 10


а)BK і BL; б) NA і AN; а) LB і BK; б) NA NM. в) MN і AN; г) KM і NL; в) MK і LN; г) NM і LK. (2бали)

3) Вектор AB=3. Яка довжина вектора 3) Вектор NK=5. Яка довжина

MN, коли вектор AB= MN? вектора DC, коли NK= DC?

а) MN=6; б) MN=3; в) MN=0;г) MN=5. а) AB=5;б)AB=3;в)AB=10; г)AB=0. (3 бали)

4) Нехай ABCD– квадрат O–точка перетину діагоналей, |AC|= 6см. нього Δ ABC із стороною 8 см

4) DE–середня лінія

Чому дорівнює |OA|?

B C

 O

A D

а) |OA|= 6см ; редина BC). Знайти |AD|.

B

 D E

AC

б) |OA|=3см; а)|AD|=3см;

в) |OA|=6см; б)|AD|=6см;

г) |OA|=3см. в)|AD|=4см;

г)|AD|=8см. (3бали)

5) Паралельне перенесення задається формулами x'=x+2(x'=x+3), y'=y–1

(y'=y–2). У які точки при цьому паралельному перенесенні переходить

початок і кінець вектора AB (MN), що мають відповідні координати (1;2) і (2;3) ( (2;4) і (1;3) ).

а) (2;3) і (4;2); б) (1;3) і (2;4); а) (5;1) і (4;0); б) (5;2) і (4;1);

в) (-3;1) і (4;-2); г) (2;1) і (-4;2). в) (-5;-2) і (-4;-1); г) (4;1) і (2;5). (3 бали)

Після цього демонструю на екран правильні відповіді. Учні виставляють оцінки за бальною системою, яка демонструється на екран (або таблицю). Звертається увага на 4-те завдання, до якого ми ще повернемося в наступних уроках.

ІІ. Вивчення нового матеріалу.

Пропоную учням порівняти вектори (4-те завдання із тестів фронтального опитування) BC і AD, AO і OC. Назвати пару векторів, які однаково напрямлені і рівні за абсолютною величиною. Учні знаходять правильну відповідь, пропонують свої версії означення рівності векторів. Після цього ввожу означення рівних векторі:

Два вектори називаються рівними, якщо вони суміщаються паралельним перенесенням.


1

 D

C B

A

2

Показую на екрані мал. 213 (за підручником) і за допомогою двох кодоплівок (плівка-1, плівка-2) демонструю динаміку паралельного перенесення. З екрана учні бачать, що існує паралельне перенесення, яке переводить початок (С) і кінець (D) одного вектора відповідно у початок (А) і кінець (В) другого вектора.

Підсумовую необхідну і достатню умову рівності векторів: ”рівні вектори однаково напрямлені й рівні між за абсолютною величиною”.

Повертаючись до екрану звертаю увагу учням, що вектори AB і CD –одинаково напрямлені і рівні за абсолютною величиною. Паралельне перенесення, яке переводить точку C у точку A, суміщає (учні дивляться на екран) роблять висновок: AB = CD (відрізки) і тому точка D збігається з точкою B, тобто паралельне перенесення переводить вектор CD у вектор AB. Отже, вектори AB і CD рівні, що й треба було довести.

ІІІ. Закріплення матеріалу (демонструю на кодоскопі).

1. Вектори AB і DC однаково напрямлені й мають рівну абсолютну величину. Чи рівні ці вектори?

2. Два вектори AB = BC. Порівняйте їхні абсолютні величини і напрям.

3. Дано паралелограм ABCD. Які векторні рівності можна скласти, використовуючи малюнок 11?

5. OA, OB, OC – радіуси одного кола. Що можна сказати про вектори OA, OB, OC?

6. Розглянути розв’язок (за підручником мал. 214) задачі.

Після ознайомлення учнів із розв’язком задачі 2 і з можливістю й однозначністю відкладання від будь-якої точки площини вектора, що дорівнює даному(за підручником с. 142), пропоную розв’язати таку задачу: Дано вектор АВ і точку D. Побудувати точку С так, щоб вектор DC= АВ

Скільки розв’язків має задача?

В

 а

 А С

а΄

О

План побудови записую на кодоплівці. Учні коментують і записують цей план у зошиті, а також виконують побудову:

1) будуємо пів пряму з початком у точці D, паралельно пів прямій АВ (за допомогою косинця й лінійки);

2) на цій пів прямій будуємо точку С, яку одержимо суміщенням з точкою В (існує паралельне перенесення, при якому початок вектора АВ переходить у точку D, а кінець точки В точку С).

Таким чином від точки D площини відкладаємо один і тільки один вектор a΄, що дорівнює a.

IV. Підсумок уроку.

Звертаю увагу учнів на необхідну й достатню умову рівності векторів, а також на те, що рівність векторів істотно відрізняється від рівності відрізків (учні самі роблять висновок).

V. Завдання додому. §10 (п. 92); №3; зап.5 – 7.

Додаткова вправа.

1) ABCD – квадрат, О – точка перетину його діагоналей. Чи рівні вектори?

AB і CD, AD і OC, AO і OB, BO і OD?

УРОК – 3. Тема уроку. КООРДИНАТИ ВЕКТОРА

Мета уроку. Сформулювати поняття координати вектора, ознайомити із знаходженням координати вектора через координати пари чисел (координата кінців вектора).

Тип уроку. Урок засвоєння нових знань.

Наочні посібники і ТЗН. 1) кодоскоп; 2) кодопозитиви.

Знання, вміння, навички. Знати, що таке координати вектора; формулювання прямої і оберненої теореми про рівність векторів; вміти знаходити координати вектора за його початку і кінця; обчислювати абсолютну величину за його координатами; набути навичок при виконанні вправ на обчислення рівності векторів і їх, координат.

ХІД УРОКУ

І. Повторення вивченого матеріалу.

Перевірку домашнього завдання проводжу за допомогою кодоскопу. На екран демонструю алгоритм розв’язку вправи № 3 (§10) і додаткову вправу (квадрат).

До даних вправ задаю запитання 5 – 7 (за підручником). Один учень розповідає доведення запитання 6, а інший за допомогою кодоскопу розповідає доведення запитання 7.

Після цього активним учням виголошую оцінки (бали).

ІІ. Вивчення нового матеріалу.

1. Демонструю на екран мал. 12 (з коментуванням).

y

y1 B(x2;y2)

y1 A(x1;y1)


O x1 x2 x

Мал. 12

Задаю запитання:

1) Назвати координати точок А і В.

2) Показати на екрані АВ вісі абсцис і ординат.

3) Записати довжини проекцій на осі Ox і Oy.

Пояснюю, що числа a1 = x2 – x1 і a2 = y2 – y1 є довжини проекцій вектора на осі координат і тим самим ми знайшли координати вектора.

Корисно сформулювати правило знаходження вектора:

” Щоб знайти координати вектора, потрібно з координат його кінця відняти відповідні координати його початку ”.

Підсумовую: координати векторів (OA,OC) із початком в точці O(0;0) співпадають з координатами, їх кінців.

Пропоную учням обчислити координати кінця (початку) вектора за його координатами й координатами його початку (кінця):

1) Знайти координати кінця вектора (2;5), початок якого в точці: а) (2;3); б) (-1;5), в) (0;0).

2) Знайти координати початку вектора (5;-3), кінець якого в точці:

а) (-3;1), б) (0;0), в) (5;-3).

Для усних обчислень використовую таблицю (на кодопозитиві).

A1

A2

 A1A2 = a

x1

y1

x2

y2

a1

a2

2.34825

2. Формулу для обчислення абсолютної величини вектора за його координатами виводжу під час розв’язування вправ (учні по черзі на дошці записують розв’язок):

1) Дано точки А(3;1) і В(5;3). Знайдіть абсолютну величину вектора АВ.

2) Вектор а має початком точку А(x1;y1) ,а кінцем точку B(x2;y2).Знайдіть абсолютну величину вектора а.

Розв’язування.

| a | = | AB | =  = .

Пропоную учням обчислити модулі векторів, заданих: а) координатами;

б) початку й кінця (самостійно на кодопозитиві).

3. Для доведення теореми про рівні вектори користуюся мал.13 і розпо відаю сам процес доведення.

y A2(x2; y2)

A1(x1; y2)

A2'(x2; y2)

A1'(x1'; y1')

O x

Мал. 13

Формулюю пряму і обернену теорему:

” Рівні вектори мають рівні відповідні координати ”.

І навпаки:

”Якщо у векторів відповідні координати рівні, то вектори рівні ”.

На кодоскопу або на таблицях демонструю доведення прямої, і оберненої теореми про рівність векторів. Учні беруть участь в обговоренні доведення.

Пряма теорема:Обернена теорема:

Дано: а = а΄. Дано: x2 x1 = x2΄ – x1΄, (1)

Довести: x2 x1 = x2΄ – x1΄, y2 – y1 = y2΄ – y1΄. (2)

y2 – y1 = y2΄ – y1΄. Довести: а = а'.

Доведення. Нехай паралельне пере- Доведення. Знайдеться паралельне, яке перенесення водить точку А1 в точку А1΄. Тоді , підставляємо

 x΄ = x + c, d = y1΄ – y1.

 y΄ = y + d; І

тому А΄1 переходить в А΄1 за допомогою паралельного перенесення:

переводить а в а΄, тобто x΄= x + x1΄ –x1, y΄= y1΄– y1.

x΄ = x1 + c, y1΄ = y1 + d, Ці рівності задовольняють координати точок А2 і А2΄ x΄2 = x2 + c΄, y2΄= y2 + d, звідси x2΄=x2+x1΄ –x1 , y2΄=y2 + y1΄– y1.З умови випливає що

x2΄ – x2΄ = x2 – x1, існує паралельне перенесення: А1 А1΄ і А2 А2

y2΄ – y΄2 = y2 – y1, що й, т. б. д. тобто вектори а й а рівні, що й т. б. д.

За допомогою кодоскопу (таблиці) показую скорочений запис прямої, і оберненої теореми:

 a = a, де

 a(x2 – x1; y2 – y1)

 a΄ (x΄2 – x΄1; y΄2 – y΄1)