Математические методы в экономике
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Реферат на тему:
Математические методы в экономике.
Выполнила: О.В. Ивченко
Проверил:
Тюмень – 2006
Содержание.
Введение. 3
ГЛАВА 1. Линейное программирование. 4
§1. «Геометрическая интерпретация ЗЛП. Графический метод решения ЗЛП» 5§2. «Симплексный метод решения ЗЛП». 7
§3. «Метод искусственного базиса». 11
§4. «Транспортная задача». 13
П.1 Алгоритм метода минимального элемента. 14
П. 2 Алгоритм метода Фогеля. 14
П.3 Алгоритм метода двойного предпочтения. 15
П.4. Алгоритм метода северо-западного угла. 15
П.5. Алгоритм метода потенциалов. 15
§5. «Задачи целочисленного программирования. Метод Гомори». 18
Заключение. 20
Используемая литература: 25
Введение.
Исторически математическая экономика началась с моделей простого и расширенного воспроизводства. В них отражались потоки денег и потоки товаров и продуктов. Это, например, модель Ф. Кенэ. Позднее эти модели подробно и более глубоко изучались в экономической кибернетике - здесь можно указать на работы О. Ланге. Рассмотрены схемы денежных и материальных потоков, обеспечивающих простое и расширенное воспроизводство, их идентификацию, модели математической статистики. Далее возникли концепции производственных функций, предельных и маргинальных значений, предельных полезностей и субъективных полезностей. Дальнейшее развитие - в рамках линейного и выпуклого программирования, выпуклого анализа.
Далее: развитие тонких техник моделирования: имитационное моделирование, экспертные системы, нейронные сети.
Понятие субъективной полезности ввел в 18-ом веке Ф.Галиани. Затем это понятие и понятие предельной полезности развивали с середины 19-ого века: в рамках австрийской школы - К.Менгер, В.Бем-Баверк, Ф.Визер.
Эти же понятия, а также углубленное развитие модели экономического равновесия - в рамках математической школы: Л.Вальрас, У.Джевонс, Эджворт.
И австрийская, и математическая школы связаны с маржиналистской концепцией. Точный вид маргинальные оценки получили в теории двойственности в математическом программировании.
ГЛАВА 1. Линейное программирование.
Исследование операций в экономике – это научная дисциплина, целью которой является количественное обоснование принимаемых решений. С помощью специальных математических методов решается определенный класс экономических задач. К таким задачам относятся:
• задача об оптимальном использовании ограниченных ресурсов (сырьевых, трудовых, временных);
• задача сетевого планирования и управления;
• задачи массового обслуживания;
• задачи составления расписания (календарного планирования);
• задачи выбора маршрута и другие.
Оптимизационная задача, в которой целевая функция и неравенства (уравнения), входящие в систему ограничений являются линейными функциями, называется задачей линейного программирования.
Общая задача линейного программирования имеет вид:
|