Скачать

Математические методы в экономике

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Реферат на тему:

Математические методы в экономике.

Выполнила: О.В. Ивченко

Проверил:

Тюмень – 2006


Содержание.

Введение. 3

ГЛАВА 1. Линейное программирование. 4

§1. «Геометрическая интерпретация ЗЛП. Графический метод решения ЗЛП» 5§2. «Симплексный метод решения ЗЛП». 7

§3. «Метод искусственного базиса». 11

§4. «Транспортная задача». 13

П.1 Алгоритм метода минимального элемента. 14

П. 2 Алгоритм метода Фогеля. 14

П.3 Алгоритм метода двойного предпочтения. 15

П.4. Алгоритм метода северо-западного угла. 15

П.5. Алгоритм метода потенциалов. 15

§5. «Задачи целочисленного программирования. Метод Гомори». 18

Заключение. 20

Используемая литература: 25


Введение.

Исторически математическая экономика началась с моделей простого и расширенного воспроизводства. В них отражались потоки денег и потоки товаров и продуктов. Это, например, модель Ф. Кенэ. Позднее эти модели подробно и более глубоко изучались в экономической кибернетике - здесь можно указать на работы О. Ланге. Рассмотрены схемы денежных и материальных потоков, обеспечивающих простое и расширенное воспроизводство, их идентификацию, модели математической статистики. Далее возникли концепции производственных функций, предельных и маргинальных значений, предельных полезностей и субъективных полезностей. Дальнейшее развитие - в рамках линейного и выпуклого программирования, выпуклого анализа.

Далее: развитие тонких техник моделирования: имитационное моделирование, экспертные системы, нейронные сети.

Понятие субъективной полезности ввел в 18-ом веке Ф.Галиани. Затем это понятие и понятие предельной полезности развивали с середины 19-ого века: в рамках австрийской школы - К.Менгер, В.Бем-Баверк, Ф.Визер.

Эти же понятия, а также углубленное развитие модели экономического равновесия - в рамках математической школы: Л.Вальрас, У.Джевонс, Эджворт.

И австрийская, и математическая школы связаны с маржиналистской концепцией. Точный вид маргинальные оценки получили в теории двойственности в математическом программировании.


ГЛАВА 1. Линейное программирование.

Исследование операций в экономике – это научная дисциплина, целью которой является количественное обоснование принимаемых решений. С помощью специальных математических методов решается определенный класс экономических задач. К таким задачам относятся:

• задача об оптимальном использовании ограниченных ресурсов (сырьевых, трудовых, временных);

• задача сетевого планирования и управления;

• задачи массового обслуживания;

• задачи составления расписания (календарного планирования);

• задачи выбора маршрута и другие.

Оптимизационная задача, в которой целевая функция и неравенства (уравнения), входящие в систему ограничений являются линейными функциями, называется задачей линейного программирования.

Общая задача линейного программирования имеет вид:

(1.1)

(1.2)