Скачать

Кондиционирование воздуха в гражданских зданиях

Курсовая работа по кондиционированию воздуха разрабатывается для какого-либо помещения или группы помещений здания общественного назначения, в котором имеются избытки тепла и влаги и требуется поддерживать определенные параметры воздуха.

 Кондиционирование воздуха относится к наиболее современным и технически совершенным способам создания и поддержания в помещениях условий комфорта для человека и оптимальных параметров воздушной среды для производственных процессов, обеспечения длительной сохранности ценностей культуры и искусства в общественных зданиях и т. п. Кондиционирование является большим достижением науки и техники в деле создания искусственного климата в закрытых помещениях.

 Комплекс технических средств, служащих для требуемой обработки воздуха (фильтрации, подогрева, охлаждения, сушки и увлажнения), перемещения его и распределения в обслуживаемых помещениях, устройства для глушения шума, вызываемого работой оборудования, источники тепло- и хладоснабжения, средства автоматического регулирования, контроля и управления, а также вспомогательное оборудование составляют систему кондиционирования воздуха. Устройство, в котором осуществляется требуемая тепловлажностная обработка воздуха и его очистка, называется кондиционером.

СКВ применяются для обеспечения в помещениях необходимого микроклимата для нормального протекания технологического процесса и создания комфортных условий. Затраты на создание системы кондиционирования воздуха в производственных помещениях достаточно быстро окупаются за счет повышения производительности труда.

По назначению СКВ подразделяются на комфортные, технологические и комфортно-технологические. Системы комфортного кондиционирования применяются в жилых, общественных и промышленных зданиях с целью обеспечения полного постоянного комфорта для находящихся в помещении людей. Если назначение СКВ состоит только в обеспечении требуемых условий протекания производственных процессов, то она называется системой технологического кондиционирования. При комфортно-технологическом кондиционировании параметры воздушной среды, оптимальные для технологического процесса, совпадают или несущественно отличаются от комфортных для человека.


Определение расчетных параметров наружного и внутреннего воздуха для теплого и холодного периодов

Кондиционирование воздуха следует принимать:

первого класса - для обеспечения метеорологических условий, требуемых для технологического процесса, при экономическом обосновании или в соответствии с требованиями нормативных документов;

второго класса - для обеспечения метеорологических условий в пределах оптимальных норм или требуемых для технологических процессов;

третьего класса - для обеспечения метеорологических условий в пределах допустимых норм, если они не могут быть обеспечены вентиляцией в теплый период года без применения искусственного охлаждения воздуха, или оптимальных норм - при экономическом обосновании.

Метеорологические условия в помещениях при кондиционировании в пределах оптимальных норм следует обеспечивать по приложению 5 СНиП 2.04.05-91 «Отопление, вентиляция и кондиционирование» в обслуживаемой зоне общественных и административно-бытовых помещений.

Расчётные температуру и относительную влажность воздуха следует принимать для теплого периода (ТП) года - максимальные и для холодного периода (ХП) - минимальные из оптимальных норм.

Расчётные параметры наружного воздуха для г. Киева принимаем по таблице 1 СНиП 23-01-99* «Строительная климатология». Значения температур t и относительных влажностей j сводятся в таблицы 1 и 2, в которых указываются значения скорости движения воздуха v. Значения влагосодержания d и теплосодержания i определяются по i-d диаграмме влажного воздуха.


Таблица 1

Расчетные внутренние условия.

ПериодОптимальные параметры воздуха
tв, 0Сj, %v, м/сi, кДж/кгd, г/кг
ХП20450,2376,6
ТП25600,355,2118

Таблица 2

Расчетные наружные условия.

ПериодПараметры Б воздуха
tн, 0Сj, %v, м/сi, кДж/кгd, г/кг
ХП-23815-220,5
ТП29471,26012

Определение количества тепла и влаги, выделяющихся в помещении

Тепловой баланс кондиционируемого помещения составляется для теплого и холодного периодов.

Поступление тепла от людей

Количество тепла, выделяемое человеком, зависит от метеорологических условий в помещении и интенсивности выполняемой работы. Принято считать, что женщины выделяют 85%, а дети в среднем 75% тепла от тепла, выделяемого мужчинами.

Общее количество явного тепла, выделяемого людьми в помещении, определяется по формуле:

где - количество явного тепла, выделяемого одним человеком, Вт/чел.;

* - количество людей в помещении.

Зрительный зал: 350 человек (150 мужчин, 150 женщин и 50 детей ).

ХП:

ТП:

Сцена: примерно 20 человек (мужчин, женщин поровну).

ХП:

ТП:

Общее количество скрытого и полного тепла соответственно определяется из выражений:

где ,  - количество скрытого и полного тепла, выделяемого одним человеком, Вт/чел.

Общее количество полного тепла

Зрительный зал: 350 человек (150 мужчин, 150 женщин и 50 детей ).

ХП:

ТП:

Сцена: 20 человек (мужчин, женщин поровну).

ХП:

ТП:

Общее количество скрытого тепла

Зрительный зал: 350 человек (150 мужчин, 150 женщин и 50 детей ).

ХП:

ТП:

Сцена: 20 человек (мужчин, женщин поровну).

ХП:

ТП:

Теплопоступления от искусственного освещения

Количества тепла, поступающего в помещение от искусственного освещения, находится по формуле:

где  - освещенность, лк;

F – площадь помещения, м2;

qосв – удельные выделения тепла, Вт/м2;

hосв – доля тепловой энергии, поступающей в помещение.

В тех случаях, когда арматура и лампы находятся вне помещения (за остекленной поверхностью, на чердаке, в потоке вытяжного воздуха), в него попадает только радиационное (видимое или невидимое измерение) тепло, доля которого ηосв для люминесцентных светильников составляет около 0,55 потребляемой энергии, для ламп накаливания — примерно 0,85.

Для аудиторий наименьшая освещенность при использовании люминесцентных светильников равна 300 лк, для залов - 200 лк. При использовании ламп накаливания эти цифры должны быть уменьшены приблизительно вдвое.

Зрительный зал и сцена:

ХП:

ТП:


Теплопоступления от солнечной радиации

Теплопоступления от солнечной радиации рассчитываются для теплого периода:

где Fост – площадь поверхности остекления, м2;

qост - количество тепла, поступающее за счет солнечной радиации, Вт/м2;

К – коэффициент, зависящий от прозрачности стекол, наличия штор и т. д.;

Аост – коэффициент, зависящий от вида остекления.

Зрительный зал:

Окон нет, поэтому

Сцена:

Окон нет, поэтому

Максимальный тепловой поток на отопление здания

Максимальный тепловой поток на отопление здания определяется по удельной тепловой характеристике здания или укрупненному показателю максимального теплового потока.

 Максимальный тепловой поток на отопление здания определяется для холодного периода:

где qуд – справочная величина удельной тепловой характеристики здания, Вт/(м3К);

а – коэффициент, учитывающий влияние на удельную тепловую нагрузку местных климатических условий;

tв – расчетная температура внутреннего воздуха, 0С;

 - расчетная температура наружного воздуха, 0С;

Vн – строительный объем здания по наружному обмеру, м3.

Зрительный зал и сцена:

ХП:

Теплопоступления от работающих отопительных приборов

Теплопоступления от работающих отопительных приборов для холодного периода находим:

где tсрБ – средняя температура теплоносителя в отопительных приборах при расчетных наружных параметрах Б, 0С;

tвБ – температура воздуха в помещении, принятая при расчете отопления, 0С;

tвотп – то же, принятая при расчете кондиционирования воздуха, 0С.

Зрительный зал и сцена:

ХП:


Теплопотери через наружные ограждения

Теплопотери через наружные ограждения для холодного периода можно найти:

где tн – расчетная температура наружного воздуха, 0С

Зрительный зал и сцена:

ХП:

Выделение влаги людьми

Выделение влаги людьми рассчитывается для холодного и теплого периодов:

где wвл – количество влаги, выделяемой одним человеком, г/ч;

n – количество людей в помещении.

Зрительный зал:: 350 человек (150 мужчин, 150 женщин и 50 детей ).

ХП:

ТП:

Сцена: 20 человек (мужчин, женщин поровну).

ХП:

ТП:


Поступление скрытого тепла в помещение

Поступление скрытого тепла в помещение для теплого и холодного периодов можно определить:

где tвБ = 160С;

Wвл – количество влаги, выделяемой в помещении, кг/ч.

Зрительный зал: 350 человек (150 мужчин, 150 женщин и 50 детей ).

ХП:

ТП:

Сцена: 20 человек (мужчин, женщин поровну).

ХП:

ТП:

Газовые выделения в помещении

Газовые выделения в помещении определяются для теплого и холодного периодов:

где - количество углекислого газа, выделяемое одним человеком, л/ч.

Зрительный зал: 350 человек (150 мужчин, 150 женщин и 50 детей ).

ХП:

ТП:

Сцена: 20 человек (мужчин, женщин поровну).

ХП:

ТП:

По результатам подсчета тепловыделений, теплопотерь, влагогазовыделений составляются балансы по теплу и влаге для теплого и холодного периодов отдельно для каждого помещения. Результаты расчетов сводятся в таблицы 3 и 4.

Таблица 3.

Теплопоступления и теплопотери помещения с кондиционированием воздуха.

Наименование помещенияОбъём помещения V, м3Расчетный период  годаТеплопоступления в помещение, Вт

Теплопотери

помещения,Вт

Избыточное тепло
От людейОт солнечной радиацииИскусственное освещениеОт системы отопленияСуммарныеЧерез огражденияСуммарныеЯвноеПолное, Вт
ЯвныеПолныеЯвныеПолныеВтВт/м3
Зрительный зал и сцена

5416

Тёплый

20195

33600

--------

6847,5

--------

27042,5

40447,5

----------------

27042,5

5

40447,5

Холодный

30290

41590

--------

6847,5

90950

128087,5

139387,5

100280

100280

27807,5

5,1

39107,5


Таблица №4.

Теплогазовыделения в помещении.

Наименова Ние помещенияОбъём помещенияРасчётный периодТепловые избыткиВлаго-выделенияГазо-выделения
Явное теплоСкрытое теплоПолноетепло
ВтВт/м3ВтВткг/чл/ч
Зрительный зал и сцена

5416

Тёплый

27042,5

5

13400

40447,5

19,17

7400

Холодный

27807,5

5,1

12300

39107,5

15,19

Выбор принципиальной схемы распределения воздуха в кондиционируемом помещении

Выбор схемы распределения воздуха оказывает большое влияние на эффективность системы кондиционирования. От выбора принципиальной схемы распределения воздуха зависит соблюдение требуемых параметров в рабочей зоне, перепад температур рабочей зоны и приточного воздуха, разность между температурами удаляемого и приточного воздуха. При увеличении перепада температур уменьшается величина воздухообмена.

Пользуясь указаниями СниП 2.06.05.-91* выбираем принципиальную схему обработки воздуха. Выбираем для теплого и холодного периодов - систему кондиционирования воздуха с первой рециркуляцией.

Построение на I-d диаграмме процессов кондиционирования воздуха для теплого и холодного периодов

Построение процесса обработки воздуха для теплого периода

Расчёт начинают с рассмотрения теплого периода, при котором избытки тепла больше, чем в теплый период. Величину углового коэффициента изменения состояния воздуха в помещении определяют по формуле, кДж/кг:

,

где Qтпизб - общее расчётное количество избытков полного тепла определяют из табл. 3 для теплого периода, Вт;

Wвл. - количество испарившейся влаги, определяют по табл. 4, кг/ч.

 кДж/кг

По СНиП 2.04.05-91* определяем минимальный расход наружного воздуха для зрительного зала, приходящийся на одного человека, равный 20 м3/ч. Далее определяем общее количество наружного воздуха по следующей формуле:

 м3/ч

На I-d диаграмму наносят точку В, соответствующую параметрам внутреннего воздуха, через которую проводят луч процесса до пересечения с изотермой tП, соответствующей параметрам приточного воздуха, параметры точки П рассчитывают по формуле:

tП = tВ - Δtдоп

где Δtдоп - разность температур между внутренним и приточным воздухом, 5 оС;

tВ = 25 оС.

tП = 25 - 5 = 20 оС

Общее количество кондиционируемого воздуха G0 вычисляют по формуле, кг/ч:


где Wвл - суммарные влагопоступления, кг/ч;

Qизб - избыточное тепло, поступающее в помещение, Вт;

dВ - влагосодержание точки В, г/кг;

dП - влагосодержание точки П, г/кг,

IВ - энтальпия точки В, кДж/кг;

IП - энтальпия точки П, кДж/кг.

Из рассчитанных по двум формулам GО выбираем большее значение.

 кг/ч

 кг/ч

Выбираем расход воздуха, рассчитанный по теплоизбыткам.

На поле I-d диаграммы наносят точку Н, соответствующую параметрам наружного воздуха. Из точки П проводим линию по постоянному влагосодержанию до пересечения с кривой φ = 95%, получаем точку О - параметры воздуха на выходе из оросительной камеры. Далее наносим точку В’ на 1 оС выше точки В, соответствующую состоянию рециркуляционного воздуха перед входом в камеру смешивания. Точки В’ и Н соединяются линией, которая является линией смеси наружного и рециркуляционного воздуха перед оросительной камерой. Показываем подогрев воздуха в приточном воздуховоде П’, который составляет 1 оС.

Положение точки смеси С находят из выражения:

мм

Количество рециркуляционного воздуха Gр1 определяют по формуле

Gр1 = GO - GH.

Gр1 = 19170 - 8880 = 10290 м3/ч

Соединяем точки в следующем порядке: Н - В’ - В - П - О - C.

Определяем охлаждающую мощность оросительной камеры и расход тепла в калорифере второго подогрева:

 кДж/час

 кДж/час

Таблица 5.1

Расчет для тёплого периода:

точка t, оСφ ,%I,кДж/кгd,г/кг
В256055,211,8
Н29476012
П20724710,7
П’18,5814610,7
В’26555611,8
О16954410,7
С27,25257,811,87