Скачать

Кометаболизм ЭДТА и глюкозы у бактериального штамма LPM-4

Проблема очистки сточных вод, производство которых в России достигает 500 литров в сутки на душу городского населения, является одной из актуальнейших проблем наступившего века. В настоящее время разработаны и развиваются современные технологии очистки сточных вод. Наибольший интерес и перспективу имеют естественные и самые дешевые биологические методы очистки, представляющие собой интенсификацию природных процессов разложения органических соединений микроорганизмами в аэробных или анаэробных условиях. Существует множество биопрепаратов, используемых для очистки сточных вод. Это консорциумы микроорганизмов, выделенные методом накопительных культур обычно из активного ила аэротенков городских сооружений очистки сточных вод. Они используются для очистки сточных вод местного значения, например в селах, дачных и коттеджных поселках, небольших поселках городского типа, мини-заводах и т.п. Биопрепараты, содержащие ограниченное число видов микроорганизмов, по спектру разлагаемых веществ уступают свежему активному илу. Однако, они содержат быстро растущие штаммы, которые инициируют процессы разложения органических загрязнений. В нестерильном процессе развиваются также микроорганизмы, содержащиеся в отходах, и в микробное сообщество включаются недостающие звенья (1).

Мониторинг окружающей среды показывает, что в ней происходит постоянное накопление ЭДТА. В мире производится примерно 100 000 тонн ЭДТА в год (2-5). Многочисленные исследования показали, что деградации ЭДТА в очистных сооружениях не происходит, а в природе существует лишь один значимый способ деградации ЭДТА – разложение комплекса Fe (III)EDTA под действием УФ лучей, который происходит лишь на поверхности воды (3). Накопление ЭДТА в воде приводит к ухудшению качества питьевой воды, так как ЭДТА способствует переходу в растворенное состояние ионов металлов (в том числе тяжелых и токсичных). Большая часть этих комплексов проникает в грунтовые воды и водопроводы, ухудшая качество питьевой воды. Следует обратить внимание на то, что здоровью человека в первую очередь угрожают комплексы ЭДТА с токсичными металлами, а не ЭДТА, как химическое соединение.

До настоящего времени было выделено лишь несколько смешанных культур и всего три чистые культуры ЭДТА-деградирующих бактерий:

Agrobacterium sp. ATCC 55002, грам-отрицательный изолят BNC 1,

грам-отрицательные бактерии DSM 9103 и Pseudomonas sp. LPM-410.

В лаборатории физиологии микроорганизмов ИБФМ РАН был выделен новый ЭДТА-разрушающий бактериальный штамм LPM-4 со специфической потребностью в ЭДТА (6). Данный штамм является уникальным, т.к. способен расти только на средах, содержащих ЭДТА. Отличительной особенностью данного штамма является то, что он способен метаболизировать глюкозу только в присутствии ЭДТА.

И целью настоящей работы было исследование совместного метаболизма ЭДТА и глюкозы у бактериального штамма LPM-4.

Соответственно были поставлены следующие задачи:

1. Исследование влияния степени деградации ЭДТА на ассимиляцию глюкозы бактериальным штаммом LPM-4;

2. Изучение способности клеток к деградации ЭДТА при дополнительном внесении ЭДТА в среду;

3. Исследование ЭДТА-индуцированной способности клеток ассимилировать глюкозу в процессе длительного культивирования с добавлением глюкозы;

4. Изучение способности штамма LPM-4 к переключению метаболизма от ассимиляции глюкозы к ассимиляции ЭДТА в процессе длительного культивирования в присутствии глюкозы.


Глава 1. Обзор литературы

1.1. Хелатирующие соединения (комплексоны)

Термин “хелат” был предложен Морганом для обозначения циклических структур, которые образуются в результате присоединения катионов к двум или более донорным атомам, принадлежащим одной молекуле комплексообразующего агента. Название “хелат” происходит от греческого слова, которое означает “клешня”, отсюда и еще одно название этих соединений – “клешневидные”. Основным свойством комплексонов является способность образовывать с большинством ионов металлов в водных растворах комплексонаты. Получается это следующим образом: при введении комплексона в раствор, содержащий катион металла, создаются условия для конкуренции между молекулами гидратной оболочки катиона и молекулами внесенного в раствор хелата, происходит это из-за высокой, по сравнению с водой, донорной способности лигандных групп, их стерической доступности, а также соответствующего значения рН раствора. Конкурирующий с водой коплексообразующй агент, удовлетворяющий этим требованиям, при соответствующих условиях способен вытеснить из координационной сферы аквакомплекса воду с образованием нового комплексного соединения (МеY) (7). Для ЭДТА подобный процесс выглядит следующим образом:

Ме(Н2О)хп+ +Y4-=MeY(n-4)+ + xH2O

1.1.1 Свойства, строение и комплексообразование этилендиаминтетрауксусной кислоты (ЭДТА)

Этилендиаминтетрауксусная кислота (С10Н16О8N2) - четырехосновная аминокарбоксильная кислота. Молекулярный вес 292,35. Белый кристаллический порошок. Хорошо растворим в воде, образует стойкие растворы. Растворимость ЭДТА минимальна при рН 1,6-1,8, при уменьшении концентрации ионов водорода в растворе она растет и проходит через максимум при (H)=2,5 г-ион/л.

Структурная формула ЭДТА и идеализированная октаэдрическая комплекса металл - ЭДТА приведены на рис. 1.

Анион ЭДТА4- содержит 10 активных центров, способных осуществлять координацию лиганда ионами металлов: 2 атома азота и 8 атомов кислорода. В твердой фазе в качестве донорных атомов могут выступать все 10 центров. Однако, геометрия лиганда такова, что с одним атомом металла он может образовывать не более 6 связей: 2 с атомами азота и 4 с атомами кислорода разных ацетатных фрагментов ЭДТА. При этом образуется 5 пятичленных металлоциклов: один этилендиаминный (Е-цикл) и четыре глицинатных (Gly- циклы). Центральный Е-цикл и два Gly-цикла лежат приблизительно в одной плоскости, называемой “экваториальной” плоскостью координационного октаэдра. Эти два Gly-цикла обозначаются как G-циклы. Средние плоскости двух других глицинатных циклов располагаются почти перпендикулярно к экваториальной плоскости и обозначаются как R-циклы (7).

1.2. Бактериальная деградация ЭДТА

ЭДТА характеризуется очень слабой биологической разрушаемостью.

На рисунке 2 приведена предполагаемая схема деградации ЭДТА, которая была изучена у ЭДТА – разрушающего штамма DSM-9103 (4). Деградация ЭДТА осуществляется монооксигеназной системой. В бактериальных клетках оксигеназные системы выполняют пластическую функцию, окисляя углеродсодержащие вещества, обеспечивают поступление углерода в клетки.

В. Идеализированная октаэдрическая структура комплекса металл-ЭДТА

Физиологическая роль оксигеназ сводится к конкретной задаче увеличения водорастворимости, полярности окисляемой молекулы (8, 9).

ЭДТА-монооксигеназа состоит из двух субъединиц (10). Субъединица В является оксидоредуктазой, которая переносит восстановительные эквиваленты от NADH2 на FMN, а субъединица А трансформирует комплекс металл-хелатирующий агент при поглощении молекулярного кислорода, то есть выполняет роль собственно оксигеназы.

В результате двух последовательных отщеплений ацетильных концов образуется N,N1-EDDA. Метаболизм N,N1-EDDA до конца не изучен, предполагается, что он выглядит как показано на рис. 3. То есть молекула N,N1-EDDA теряет еще один ацетильный остаток. О метаболизме EDMA ничего не известно, здесь возможно два варианта: либо отщепляется последняя ацетильная группа и остается этилендиамин, либо происходит разрыв в молекуле этилендиамина с образованием глицина и аминоацетальдегида или аммиака и иминоацетальдегидацетата.

1.2.1. Бактерии, разрушающие ЭДТА

ЭДТА характеризуется высокой устойчивостью; микроорганизмы, способные разрушать это соединение, встречаются в природе очень редко. В настоящее время известно лишь четыре штамма ЭДТА-разрушающих бактерий, выделенные в чистую культуру:

1. Штамм, относящийся к роду Agrobacterium, способный разрушать комплекс Fe (III)-ЭДТА (11);

2. Штамм BNC-1, граммотрицательная бактерия, способный деградировать комплексы ЭДТА с Mg2+, Ca2+, Mn2+, Zn2+ (12);

3. Штамм DSM-9103 граммотрицательная бактерия относится к подклассу α-Proteobacteria (4), способный деградировать комплексы Mg2+-, Ca2+-, Mn2+-ЭДТА и частично хелаты с Co, Cu, Zn, Pb.;

4. Штамм LPM-410 идентифицирован как Pseudomonas sp. (13).


Характеристика штамма LPM-4

Штамм LPM-4 был выделен в лаборатории физиологии микроорганизмов ИБФМ РАН к.б.н. Чистяковой Т. И. из активного ила Пущинских очистных сооружений методом накопительной культуры (6). Клетки неподвижны, колонии на твердой питательной среде с ЭДТА через неделю роста 0,1-0,3 см в диаметре, круглые, перламутровые с синеватым блеском. Аэроб, не обладающий запахом.

Клетки штамма имеют палочковидную форму (0,1-0,2×0,5-0,6 мкм). На среде с ЭДТА клетки могут быть одиночными или парными. Это типичная граммотрицательная бактерия (рис. 4), о чем говорит достаточно толстая клеточная стенка с волнистыми краями. Клетка содержит электронно-плотные включения (при потреблении ЭДТА), которые, как показали исследования на других штаммах, содержат Ca2+, Mg2+ и PO43- (4).

Штамм LPM-4 уникален по потребностям в питательных веществах. Установлено, что штамм способен расти только на средах, содержащих ЭДТА, и не растет на средах, содержащих глюкозу, этанол, органические кислоты в качестве единственного источника углерода и энергии и неорганические (сульфат аммония, нитрат калия) или органические (мочевина, пептон, гидролизат казеина, аминопептид, дрожжевой экстракт) источники азота (6).

Данный штамм обладает положительной реакцией на наличие оксидазы и каталазы. Температурный оптимум для роста штамма 32-34˚С. Оптимум рН=7. На жидкой питательной среде с ЭДТА идет защелачивание среды в процессе роста клеток.

Клетки штамма способны разрушать различные комплексы ЭДТА с металлами. Суспензия отмытых клеток штамма разрушала ЭДТА и комплексы Ba2+-, Mg2+-, Ca2+-, Mn2+-ЭДТА с постоянной скоростью в диапозоне от 0,310 до 486 ммоль ЭДТА/(г·ч), удельная скорость разрушения Zn-ЭДТА достигала наибольшего значения (0,137 ммоль ЭДТА/(г·ч)) в течение первых 10 часов инкубации, а затем снижалась (6).

Установлено, что штамм LPM-4 способен совместно метаболизировать ЭДТА и глюкозу. Этот процесс можно назвать кометаболизмом.

1.3. Понятие о кометаболизме

Кометаболизм – это особый случай утилизации смешанных субстратов. Кометаболизм впервые наблюдал Фостер (14) в 1962 году у бактерий, утилизирующих углеводороды. Эти бактерии могут расти на метане, как на единственном источнике углерода, то есть они являются метанотрофами. Однако, они не могут утилизировать такие алканы, как этан или пропан, в качестве единственного источника углерода. Когда бактерии росли на смеси метана, этана и пропана, клетки использовали метан, а также этан и пропан, которые окислялись до продуктов, таких как ацетальдегид, уксусная кислота, пропионовая кислота и ацетон соответственно.

Фостер предложил термин соокисление для описания подобного типа трансформации субстратов. Позднее другие исследователи наблюдали подобное явление с другими типами микробной трансформации; они включают не только окисление, но также и гидролиз, дегалогенирование и так далее, то есть термин “кометаболизм” было предложено использовать в более широком смысле.

В 1982 году Дальтон и Стирлинг предложили следующее определение кометаболизма. Кометаболизм – трансформация неростового субстрата в присутствии ростового субстрата или иного метаболизируемого соединения. Под неростовыми субстратами понимают такие, которые не обеспечивают деление клеток. Ростовой субстрат выполняет несколько функций. Во-первых, поставляет энергию для бактериального роста и процессов поддержания метаболизма нерастущих клеток. Во-вторых, поставляет восстановительные эквиваленты, которые позволяют деградировать неростовые субстраты. В-третьих, ростовые субстраты индуцируют синтез катаболических ферментов, которые обнаруживают загрязняющие соединения (поллютанты) и катализируют их трансформацию. Метаболизм неростовых субстратов не поставляет никакой энергии или восстановительных эквивалентов для микроорганизмов.

Структура трансформируемого (соокисляемого) соединения часто не имеет никакой аналогии с ростовым субстратом. В этом случае связь между процессами окисления ростового и трансформируемого (неростового) субстратов реализуется на уровне интермедиатов катаболизма источника углерода. Под этим подразумевают, что при окислении ростового субстрата генерируется энергия, необходимая для функционирования ферментов, осуществляющих окисление неростовых субстратов (14).

На основе разных механизмов трансформации неростового субстрата, а также в зависимости от того, является косубстрат ростовым или неростовым, условно можно выделить четыре типа кометаболизма.

Первый тип – трансформация неростового субстрата до продукта при использовании в качестве косубстрата ростового субстрата.

Второй тип - трансформация неростового субстрата без использования ростового субстрата. Неростовой субстрат используется не как источник углерода, а только как источник энергии, необходимой для осуществления реакций кометаболизма. В обоих рассмотренных случаях трансформация ростового субстрата должна обеспечивать энергией метаболизм другого субстрата, и этот процесс осуществляется только до определенного продукта, который дальше не ассимилируется клетками.

К третьему типу кометаболизма относятся процессы ассимиляции неростовых субстратов, что сопряжено с использованием ростовых субстратов, в результате чего соединения углерода включаются в компоненты клетки. Сначала подобные процессы были описаны как миксотрофия, однако поскольку один из субстратов не является ростовым, этот термин в данном случае является некорректным. Включение углерода неростовых субстратов или продуктов их трансформации в конструктивный метаболизм, который приводит к увеличению биомассы, предложено называть дополнительным метаболизмом (15). Поскольку данные процессы осуществляются только при ассимиляции ростового субстрата, их можно отнести к кометаболизму. В этом случае продукты трансформации неростовых субстратов являются компонентами клеток.

Четвертый тип кометаболизма – синтаболизм – способность микроорганизмов расти на смеси двух или больше неростовых субстратов (16). Синтаболизм был выявлен у облигатных метанотрофов. Показано, что в определенных условиях они способны расти при наличии двух субстратов одновременно, каждый из которых сам по себе не является ростовым. В основе синтаболизма лежит способность метанотрофных бактерий сооокислять (вследствие неспецифичности метанмонооксигеназы) С2Н6 или СО. Установлено, что для прохождения реакции монооксигенирования С2Н6 необходима энергия, источником которой может служить окисленные производные метана или этана (метанол, формиат, этанол). Соответствующие эксперименты показали, что метанотрофы способны расти на этане (неростовой субстрат) в присутствии названных выше дополнительных неростовых субстратов.

Конечные продукты трансформации могут использоваться другими микроорганизмами в сообществе. Конечные продукты кометаболизма сложно прогнозировать, но несколько типов эффектов можно представить: если косубстрат исходно токсичен, то в результате кометаболизма будет происходить его детоксикация. Конечные продукты кометаболизма будут поставлять питательные вещества для каких-нибудь других микроорганизмов и это может привести к большему биологическому разнообразию. Конечные продукты могут быть токсичными для данных продуцентов или других микроорганизмов и результатом этого может быть эффект ингибирования. Конечные продукты кометаболизма могут быть устойчивыми и это может быть результатом увеличения устойчивости конечных продуктов (14).

В целом, процессы кометаболизма изучены недостаточно. Дальнейшее исследование их механизмов имеет не только практическую ценность, но и большое теоретическое значение, поскольку может раскрыть закономерности взаимодействия микроорганизмов с несколькими субстратами (17).

Кометаболизм – важный инструмент при изучении процессов микробиологического разложения ароматических и циклических соединений. Многие виды Pseudomonas, Nocardia, Corynebacterium, Alcaligenes, Mycobacterium, Micrococcus, Cellulomonas, Streptococcus, Flavobacterium, а также микромицетов кометаболизируют ароматические циклические и полициклические углеводороды, высшие полициклические ароматические углеводороды, их алкилзамещенные и другие производные. У одних и тех же микроорганизмов могут функционировать различные механизмы расщепления ароматического кольца, что обусловлено как строением молекулы неростового субстрата, так и условиями культивирования.

Так, Nocardia sp. DSM 43251 осуществляет кометаболизм фенола, изомеров крезола и оксианизола, 3,4-диметилфенола, галогенфенолов, 4-(метилтио)-фенола в присутствии косубстратов - сахарозы, этанола, фумарата. Фенол и монохлорзамещенные производные метаболизируются через путь 1,2-расщепления катехола (катехол-1,2-диоксигеназа); замещенные производные фенола в пара-положении (метокси- или метилтиогруппа) – через путь 2,3- расщепления.

Некоторые нокардии соокисляют n-ксилол и образуют или n-толуиловую кислоту и дигидрокси-п-толуиловую кислоты, или α, α’-диметилмуконовую кислоту в зависимости от рН среды. п-Ксилол трансформируется видами Nocardia двумя путями. Регуляция осуществляется за счет изменения специфичности оксигеназы при изменении рН. При рН 8 функционирует метильная группа оксигеназной системы и образуется п-толуиловая кислота и дигидрокси-п-толуиловая кислоты. При рН 6 метильная группа оксигеназы не функционирует, что приводит к образованию метилзамещенных муконовых кислот путем прямого дигидроксилирования и разрыва бензольного кольца. Иногда п-ксилол окисляется до п-оксиметилбензойной кислоты. Соокисление метил- и этилзамещенных нафталинов клетками Nocardia и Streptomyces, выращенными на гексадекане, приводит к окислению только одного метильного или этильного заместителя до соответствующей карбоновой кислоты. При этом имеет значение стерическое положение метильной группы.

Изучено соокисление циклоалканов. Культура граммотрицательных бактерий при росте на 2-метилбутане соокисляла циклоалканы и циклические моноалкены. Только при соокислении циклопропана происходил разрыв кольца. Соокисление С58- циклопарафинов приводило к накоплению соответствующих эпоксидов, спиртов и кетонов.

Приведенные примеры кометаболизма циклических соединений свидетельствуют о том, что типы реакций превращения этих неростовых субстратов достаточно хорошо изучены. Чаще всего способность кометаболизировать неростовые субстраты объясняется неспецифичностью некоторых ферментов. Если структурно неростовой субстрат подобен ростовому, то чаще всего реакции окисления двух субстратов катализируются одними и теми же ферментами, однако процессы трансформации ростового и неростового субстратов не всегда аналогичны. Например, клетки Arthrobacter продуцируют 2-, 3- и 4-гексадеканон из н- гексадекана при росте на дрожжевом экстракте, при этом обнаружены и соответствующие 2-, 3- и 4-спирты. Глюкоза стимулирует процесс кометаболизма гексадекана. Образование этих продуктов окисления, которые далее не трансформируются, свидетельствует о том, что начальные реакции окисления гексадекана являются результатом неспецифичности ферментов, функции которых не заключаются в окислении углеводородов (17).

Классический пример кометаболизма: окисление этана метаноокисляющими бактериями: образующийся при начальной довольно неспецифической монооксигеназной реакции этанол не метаболизируется далее метилотрофами и может только служить субстратом для других бактерий в данном местообитании. В результате активность окисления этана метаноокисляющей популяцией не увеличивается, пока присутствует метан как дополнительный субстрат (18).

Еще один пример, при разложении древесины легко гидролизуемая целлюлоза (косубстрат) служит источником энергии и электронов для образования Н2О2, с участием которого расщепляется устойчивый к деградации лигнин.

Такие микроорганизмы, как Bacillus cereus SNK 12, Paenibacillus polymyxa SNK 2, Azotobacter chroococcum ANK ΙΙ, Ochrobactrum intermedium ANK Ι cпособны к деградации азобензола в условиях кометаболизма. При этом В.cereus SNK 12 в качестве более доступного источника углерода использует глюкозу, а О. intermedium – хризоидин и метиловый оранжевый (19).

Другой пример: кометаболизм флуорена культурами Rhodococcus rhodochrous и Pseudomonas fluorescens. Исследована зависимость интенсивности трансформации флуорена бактериями Rhodococcus rhodochrous 172 при росте на сахарозе и Pseudomonas fluorescens 26K при росте на глицерине от концентрации ростового субстрата и фазы роста культур (20).

Исследования численности и функционирования различных групп бактериобентоса водохранилища вблизи г. Череповца выявили явление кометаболизма. При наличии легкоусвояемых соединений органических веществ, бактериальные сообщества подвергают соокислению трудноминерализуемые соединения сточных вод, таких как полихлорированные бифенилы, полиароматические углеводороды, нефтепродукты, металлы, фенолы, соединения азота, серы и др. вещества (21).

При исследовании кометеболизма винилхлорида и этена у Pseudomonas aeruginosa strain DL1 было обнаружено, что при длительном культивировании (более 40 суток) неростовой субстрат винилхлорид становится ростовым (22).

1.4. Периодическое культивирование

При внесении бактерий в питательную среду они обычно растут до тех пор, пока содержание какого-нибудь из необходимых им компонентов среды не достигает минимума, после чего рост прекращается. Если на протяжении этого времени не добавлять питательных веществ и не удалять конечных продуктов обмена, то получим периодическую культуру (популяцию клеток в ограниченном жизненном пространстве) (24). Кривая роста бактериальной культуры показана на рис. 1.5. Кривой роста называется кривая, описывающая зависимость логарифма числа живых клеток от времени. Кривая роста позволяет различить несколько фаз роста, сменяющих друг друга в определенной последовательности.

Лаг-фаза (начальная фаза). Эта фаза охватывает промежуток времени между инокуляцией и достижением максимальной скорости деления. Если инокулят взят из старой культуры (в стационарной фазе роста), то клеткам приходится сначала адаптироваться к новым условиям путем синтеза РНК, образования рибосом и синтеза ферментов. Если источники энергии и углерода в новой среде отличаются от тех, какие были в предшествующей культуре, то адаптация к новым условиям может быть связана с синтезом новых ферментов, которые ранее были не нужны и поэтому не синтезировались. Образование новых ферментов индуцируется новым субстратом. Хорошим примером влияния субстрата на синтез ферментов служит диауксия.

Экспоненциальная фаза характеризуется постоянной максимальной скоростью деления клеток. Эта скорость зависит от вида бактерий и от среды. Величина клеток у многих бактерий остается постоянной. Но нередко клетки периодической культуры претерпевают изменения, так как постепенно изменяется среда: уменьшается концентрация субстрата, увеличивается плотность клеточной суспензии и накапливаются продукты обмена. В связи с тем, что в экспоненциальной фазе скорость деления клеток относительно постоянна, эта фаза наиболее удобна для определения скорости деления (и скорости роста). Изучая влияние факторов среды (рН, температура), а также пригодность различных субстратов, следят за увеличением числа клеток или за мутностью (экстинкцией) клеточной суспензии во время экспоненциального роста.

Стационарная фаза наступает тогда, когда число клеток перестает увеличиваться. Скорость роста зависит от концентрации субстрата – при снижении этой концентрации, еще до полного использования субстрата, скорость роста начинает снижаться. Поэтому переход от экспоненциальной фазы к стационарной происходит постепенно. Скорость роста может уменьшаться также из-за большой плотности бактериальной популяции, из-за низкого парциального давления или накопления токсичных продуктов обмена. Все эти факторы вызывают переход к стационарной фазе.

Фаза отмирания и причина гибели бактериальных клеток в нормальных питательных средах изучены недостаточно. Число живых клеток может уменьшаться экспоненциально. Иногда клетки лизируются под действием собственных ферментов (автолиз) (рис. 5) (24).

1.5. Периодическое культивирование с подпиткой (fedbatchculture)

Термин «периодическая культура с добавлением источников питания» ввели Иошида и др. для обозначения периодической культуры, в которую непрерывно добавляется питательная cреда (25).

Простое периодическое культивирование характеризуется ростом клеток без подачи дополнительных порций субстрата после посева культуры. Лимит субстрата или образование токсичных компонентов могут привести к снижению продуктивности процесса. Для предотвращения негативных последствий лимита субстрата применяется техника культивирования с подпиткой, при этом субстрат или другие необходимые компоненты добавляются либо непрерывно, либо по сигналу от какого-либо датчика (26).

Периодическая культура с добавлением источников питания развивалась эмпирически для некоторых производственных ферментационных процессов, таких, как получение пенициллина, пекарских дрожжей и удаление отходов путем ферментации.

Для оптимизации выхода продуктов, выделяемых в среду, важно усилить биосинтетическую способность клеток бактерий, а метод культивирования с подпиткой позволяет продлить вторую фазу роста и повысить выход внеклеточных метаболитов. Ограничение скорости поглощения субстрата скоростью его доставки оказывается способом преодоления «катаболитной репрессии» образования продукта. При производстве пекарских дрожжей потребление кислорода регулируется скоростью добавления сахара.

Метод периодических культур с подпиткой использовали при культивировании рекомбинантного штамма Escherichia coli для получения аналога человеческого коллагена. Культура с подпиткой оказалась наиболее эффективным путём для достижения высокой плотности клеток и высокой продуктивности (27).

В периодическом режиме с подпиткой концентрированным субстратом исследовалась деструкция фенола при совершенствовании процесса обезвреживания токсичных стоков ксенобиотиков с использованием гибридной системы очистки с совмещением процесса химического и биологического окисления по месту и времени (28).

Периодическая культура с добавлением источников питания, кроме того, моделирует некоторые природные микробные системы, как, например, инфекцию мочевых путей. Теория такой культуры показывает, что она должна иметь важное и уникальное применение в управлении ферментационными процессами (25).


Глава 2. Материалы и методы

2.1 Условия культивирования

Штамм LPM-4 стерильно пересевали на скошенные косяки ЭДТА-содержащего агара и выдерживали в термостате 5 суток. Для получения инокулята осуществляли смыв культуры с косяков, засевали в жидкую среду с ЭДТА и культивировали 3-4 суток. После чего инокулят в количестве 10 мл переносили в стерильные 750-мл колбы с 200 мл стерильной жидкой среды и культивировали в течение 10 суток на качалке при 150 - 200 об/мин при температуре 28º- 30ºС.

Опыт включал два этапа. Эксперимент первого этапа состоял из 8 вариантов (рис. 6), а эксперимент второго этапа – из 10 вариантов (рис. 7).

Овал: 1
Овал: 3Овал: 4Овал: 5Овал: 6Овал: 7Овал: 8
Овал: 2


до посева