Использование компьютерных технологий в изучении наглядной геометрии
Преподавание геометрии не может обойтись без наглядности. В тесной связи с наглядностью обучения находится и его практичность. Ведь именно из жизни мы черпаем конкретный материал для формирования наглядных геометрических представлений, делая обучение согласованным с жизнью ребенка, его опытом. Процесс обучения упрощается при разумном использовании принципа наглядности. Обучение не должно быть перенасыщено иллюстрациями, схемами, таблицами и другими формами наглядности, но в некоторых труднодоступных вопросах применение наглядности необходимо. И именно использование средств мультимедиа позволяет учителю разнообразить урок новыми видами деятельности, насытить его наглядной информацией, повысить мотивацию учащихся, интерес к предмету.
В процессе изучения геометрии, как известно, у учащихся развивается пространственное мышление как разновидность образного, формируются абстрактные образы, в которых фиксируются формы, величина, взаимное положение объектов, расположение фигур на плоскости и в пространстве относительно заданной точки отсчёта.
Геометрия как учебный предмет способствует развитию таких психических функций человека как мышление, ощущение и интуиция. Только при взаимно дополняющем развитии этих функций, обеспечиваемом межполушарными взаимодействиями головного мозга, из человека получается гармонично развитая личность.
Все эти замечательные характеристики геометрии делают её незаменимым элементом общей культуры, в равной степени нужным художнику и математику, инженеру и физику, биологу и экономисту.
Анализ методической литературы свидетельствует о том, что геометрия в современной общеобразовательной школе становится непреодолимым барьером для многих учащихся. Причину этого многие ученые видят в преобладании в традиционном обучении аналитических методов, наличии непосильных для понимания учеников скрупулезных доказательств очевидных фактов, тогда как логическое мышление школьников, особенно к началу изучения геометрии, развито недостаточно, а образное мышление не окончательно упорядочено. Поэтому целесообразно и психологически обоснованно, особенно на первых этапах изучения геометрии, опираться на наглядно-действенное мышление как первую и основную ступень в развитии мышления, опору для формирования образов и понятий и включить в процесс обучения геометрии практическую, конструктивную деятельность.
Всё это создаёт проблему необходимости разработки методов обучения геометрии, сочетающих наглядность, конструктивную практическую деятельность, словесно-логический анализ.
Таким образом, метод геометрических преобразований, как реализация конструктивного подхода к преподаванию систематического курса геометрии, открывает путь к развитию пространственного мышления.
Метод геометрических преобразований является одной из фундаментальных идей, последовательно применяемых в систематическом курсе геометрии, что обусловлено следующими положениями:
- практические операции играют важную роль в мышлении (согласно Ж Пиаже, все мыслительные операции образуют структуру группы, подобную группе преобразований в геометрии);
- с понятием преобразований связан «групповой подход» в геометрии, в соответствии с которым геометрия изучает свойства фигур, являющихся инвариантами фундаментальной группы преобразований;
- геометрические преобразования являются ни чем иным, как обобщением понятия о функции, их изучение открывает возможность «обозреть с одной точки зрения, как отдельные части геометрии, так и их взаимные связи» (Ф. Клейн), подчинить единой идее – идее функциональной зависимости – всю школьную математику;
- большая общность геометрических преобразований позволяет значительно упростить доказательство многих теорем;
- изучение геометрических преобразований способствует формированию пространственного мышления, использование их вооружает учащихся способами (методами) решения задач на построение, которые, в свою очередь, являются одним из эффективных средств развития геометрического мышления школьников;
- геометрические преобразования отражают общие закономерности взаимосвязи явлений природы, изучение их позволяет наиболее полно раскрыть практическую значимость, показать область применения геометрических знаний;
- геометрические преобразования используются не только в курсе геометрии, но и в школьных курсах алгебры (построение графиков функций), физики (механика, оптика), химии (кристаллические тела), черчения (построение изображений в различных проекциях) и др., то есть позволяет укрепить межпредметные связи геометрии с другими дисциплинами.
Анализ основных учебников, учебных пособий по рассматриваемой проблеме показывает, что в преподавании геометрии до сих пор недостаточно внимания уделяется геометрическим преобразованиям, в то время как развитие геометрической науки давно показало, что теория геометрических преобразований является одной из фундаментальных областей геометрии.
Авторы рассматривают вопросы построения теории геометрических преобразований, взаимосвязи между видами преобразований, методику их изложения. Но многие аспекты данной проблемы недостаточно разработаны. По-разному решается вопрос о роли геометрических преобразований в логическом построении геометрии, о том, в каком объеме должны изучаться преобразования в школьном курсе.
Таким образом, в настоящее время в процессе преподавания систематического курса геометрии:
- не всегда удается осветить вопросы прикладной направленности геометрических преобразований;
- не в полной мере используются возможности геометрических преобразований для установления межпредметных связей геометрии с другими дисциплинами;
- не учитываются профессиональные намерения, интересы, склонности учащихся;
- недостаточно осуществляется дифференцированный подход к изложению теоретического материала и подбору упражнений.
Методическая подготовка к преподаванию школьного курса геометрии традиционно сводится к подготовке учителя в рамках методики преподавания математики, она опирается на учебно-методический комплекс, который недостаточно ориентирован на подготовку учителя к работе в условиях многообразия подходов к построению курса геометрии, уровневой и профильной дифференциации в современной школе. Кроме того, методическая подготовка направлена в основном на усвоение будущим учителем методических и геометрических знаний и умений, но не на целенаправленное развитие его мыслительной деятельности при решении геометрических задач.
Средства мультимедиа способствуют более глубокому и осознанному усвоению изучаемого материала, так как ученик, освоив основные понятия на уроке, сможет без труда вернуться к просмотренному материалу для закрепления или повторения его во внеучебное время.
Все сказанное определяет актуальность проблемы нашей дипломной работы, которая состоит:
· в необходимости усиления роли геометрических преобразований в школьном курсе геометрии;
· в поиске путей усовершенствования методики изучения и применения геометрических преобразований путем разработки интерактивного дидактического пособия по теме раздела.
Как уже говорилось, прерогатива геометрии как учебного предмета общекультурного уровня – развитие абстрактного, логического, пространственного мышления, связь с реальностью – включает ее в число обязательных предметов. Однако, учитывая ее объективную сложность, гуманизация образования требует, чтобы дифференциация обучения математике, в частности геометрии, учитывала потребности всех школьников не только сильных, но и тех, кому это предмет дается с трудом, чьи интересы лежат в других областях.
Цель данной дипломной работы – на основе анализа психолого-педагогической, методической и учебной литературы разработать дидактическое пособие «Движения на уроках геометрии» для учащихся 8-9 классов, содержащее динамические иллюстрации, изучение которых позволит учащимся получить более глубокое представление о понятии движения и его видов.
Для достижения указанной цели необходимо было решить следующие задачи:
1. Изучить психолого-педагогические основы использования компьютерных изображений как средства наглядности в обучении школьников, в частности, установить роль и виды компьютерной наглядности в обучении, требования, предъявляемые к компьютерным средствам обучения;
2. Проанализировать содержание учебников, дидактических материалов, рабочих тетрадей различных авторов по геометрии по теме «Движение»;
3. Разработать мультимедийное дидактическое пособие по теме «Движения на уроках геометрии»;
4. Разработать методические рекомендации по использованию мультимедийного дидактического пособия.
5. Экспериментально проверить эффективность использования мультимедийного дидактического пособия «Движение на уроках геометрии»
Для решения поставленных в работе задач использовались следующие методы:
· анализ психолого-педагогической, научно-методической литературы по теме;
· анализ действующих школьных учебников и учебных пособий по геометрии;
· изучение опыта работы учителей;
· педагогическое наблюдение;
· беседы с учащимися и учителями;
· опытная проверка.
В соответствии с поставленными задачами разработана структура работы. Она состоит из двух глав, введения, заключения, библиографии и приложения.
Первая глава посвящена рассмотрению вопросов истории внедрения раздела о движениях в школьный курс геометрии, роли движений в геометрии как науке, возможностей программы Flash, предоставляющей среду разработки мультимедийных пособий; изучению психолого-педагогических основ использования компьютерных изображений в процессе обучения; анализу современных учебников по геометрии по теме «Движение». Рассматривается целесообразность использования компьютерной наглядности; выделяются возможности использования современных компьютерных средств в процессе обучения, определяются требования, предъявляемые к ним.
Во второй главе описывается мультимедийное пособие по теме «Движение», задача которого состоит в визуализации учебного материала, связанного с изучением понятия движения и его видов, а также методические рекомендации по применению дидактического пособия.
К работе прилагается компакт-диск, содержащий мультимедийное пособие по теме «Движения на уроках геометрии».
Глава I. Психолого-педагогические основы изучения движений в школьном курсе геометрии 7-9 классов
§1. Роль и место движений в геометрии
Идея геометрических преобразований как основы геометрии установлена еще немецким математиком Феликсом Клейном на базе теории групп в «Эрлангенской программе» 1872 года. Этот документ свидетельствует о том, что понятие геометрического преобразования играет в геометрии основополагающую роль и может быть положено в основу самого определения геометрии как науки. Понятие преобразования тесно связано с фундаментальными понятиями функции и группы. Поэтому одной из основных идей реформы математического образования 1967 года была идея внедрения в школьный курс математики геометрических преобразований. Она диктуется и методическими соображениями: доказательство многих геометрических теорем, связанных с геометрическими преобразованиями, доступнее учащимся, чем дедуктивные выводы из аксиом. Многие задачи на построение и доказательство решаются более естественно и просто, исходя из идеи геометрических преобразований.
«Многие из существующих курсов планиметрии неудачны, прежде всего, потому, что отсутствуют понятные учителям и ученикам, цементирующие курс математические идеи. Ученики знакомятся с наборами теорем, а не их системам. Одна из таких «цементирующих идей» – геометрические преобразования».
В программе по геометрии сформулированы цели и задачи обучения этому предмету в средней школе, в соответствии с которыми основными из них являются:
1) систематическое изучение основных фактов геометрии, методов их получения и возможностей их применения;
2) развитие умений и навыков учащихся, обеспечивающих применение полученных знаний для изучения смежных дисциплин и в сфере производства;
3) развитие пространственного воображения и логического мышления учащихся.
Особая роль в решении этих задач отводится последовательному применению в школьном курсе геометрии наряду с другими традиционными методами идеи геометрических преобразований и формированию понятия геометрического преобразования.
Понятия являются одной из главных составляющих содержания любого предмета, в том числе и геометрии. Начиная изучать геометрию, учащиеся сразу же встречаются с понятием точки, линии, угла, а далее — с целой системой понятий, связанных с видами геометрических объектов (линий, углов, треугольников и др.). Задача обучения в общеобразовательной школе обеспечить полноценное усвоение вводимых понятий.
Понятие преобразования является одним из фундаментальных понятий в геометрии. Это обусловлено, во-первых, ведущей ролью практических операций в мышлении (согласно Ж. Пиаже, все мыслительные операции образуют структуру группы, подобную группе преобразований в геометрии). Во-вторых, с понятием преобразования связан «групповой подход» к геометрии, в соответствии с которым геометрия — это наука, занимающаяся изучением свойств фигур, являющихся инвариантами фундаментальной группы преобразований.
Логика в любом понятии различает объем и содержание. Под объемом понимают тот класс объектов, которые относятся к этому понятию, объединяются им. Так, в объем понятия «преобразование» входят преобразования всех известных групп независимо от их конкретных характеристик: движения, подобия, аффинные, проективные, топологические, гиперболические, эллиптические преобразования. Под содержанием понятий понимается та система существенных свойств, по которой происходит объединение данных объектов в единый класс. Содержание понятия «преобразование» составляют свойства: отображение пространства на себя (при котором каждая точка пространства переходит в некоторую точку этого же пространства); взаимнооднозначное (биективное) отображение.
В совокупности свойства, по которым объекты объединяются в один класс, называется необходимыми и достаточными признаками. Важно отметить, что отношение между этими признаками в разных понятиях разное. Различают понятия с конъюнктивной и дизъюнктивной связью признаков. В понятиях с конъюнктивной связью эти признаки дополняют друг друга, образуя вместе то содержание, по которому и объединяются объекты в единый класс. Так, у объектов, относящихся к понятию «преобразование плоскости», обязательно должны быть два выше указанных признака (отображение плоскости на себя и биективность отображения), по отдельности ни один из них не позволяет опознать объекты этого класса. Как уже говорилось, в логике понятия с такой связью называются конъюнктивными: признаки связаны союзом «и» (в случае преобразования отображение должно быть и взаимнооднозначным и отображением плоскости на себя).
Итак, под преобразованием в геометрии понимают, например, в случае плоскости отображение всей плоскости на себя, при котором каждая точка X отображается в единственную точку , а каждой точке соответствует единственная точка У.
Понятие не может быть передано учащимся в готовом виде, они должны получить его сами, взаимодействуя с относящимися к нему известными понятиями. Определение задает как бы точку зрения — ориентировочную основу — для оценки понятий, с которыми взаимодействует обучаемый. Так, получая определение понятия преобразования, ученик может анализировать различные преобразования с точки зрения наличия или отсутствия в них тех признаков, которые содержатся в определении. При этом, например, он может использовать аналогию между понятием движения в геометрии и равномерного прямолинейного движения предметов (твердых тел) в механике. Такая реальная работа по оценке различных предметов с точки зрения, заданной определением, и создает постепенно в голове учащихся идеальное понятие как обобщенный и абстрактный образ.
Обязательная программа не предусматривает широкого изучения различных свойств геометрических преобразований. Вопрос использования преобразований при решении геометрических задач предлагается вынести, как вариативный компонент, на факультативные занятия и внеклассную работу.
Геометрические преобразования являются обобщением понятия о функции, и поэтому позволяют «обозреть с одной точки зрения, как отдельные части геометрии, так и их взаимные связи» (Ф. Клейн) – это значит, что изучение геометрических преобразований открывает возможность подчинить единой идее – идее функциональной зависимости – всю школьную математику. Большая общность геометрических преобразований позволяет значительно упростить доказательство многих теорем. Также изучение преобразований вооружает учащихся способами (методами) решения задач на построение, которые являются одним из средств развития геометрического мышления учащихся.
Ф. Клейн (1849-1925) знаменит своей общей концепцией геометрии, в основу которой положил учение об «автоморфизмах» соответствующей геометрической теории. Хотя точка зрения Ф. Клейна не исчерпывает всего богатства современной геометрии, – в ее рамки не укладывается ряд современных геометрических теорий, – теоретико-групповой подход к построению геометрии охватывает практически все геометрические теории, изучаемые в высшей школе. Однако групповая точка зрения не была реализована в практике массового школьного обучения.
Приобщая школьников к основным идеям геометрии, можно доступно изложить им основные положения группового подхода, которые составляют вводную часть знаменитой лекции Ф. Клейна «Эрлангенская программа» (1872), примерно так.
«Что такое геометрия? Наука о геометрических свойствах фигур. Какие же свойства следует называть геометрическими? Те, что не зависят от положения, занимаемого фигурой в пространстве, от ее абсолютных размеров и, наконец, от ориентации (под этим понимают то свойство расположения, которое является источником различия между данной фигурой и ее зеркальным изображением). Отсюда вытекает, что геометрические свойства фигуры не изменяются от параллельных переносов и поворотов, от преобразований подобия, от зеркального отражения и от всех преобразований, которые могут быть составлены из перечисленных. Отметим, что все они в совокупности образуют группу. Можно сказать, геометрические свойства – это те, которые не изменяются в результате любого преобразования из группы перечисленных выше.
Будем говорить теперь о произвольной группе преобразований. Как обобщение геометрии тогда получится следующая задача. Дано пространство и в нем группа преобразований. Нужно исследовать те свойства фигур, которые не изменяются при преобразованиях этой группы. Иными словами, требуется развить теорию инвариантов этой группы. Это — общая задача, включающая в себя не только обыкновенную геометрию, но и новейшие геометрические теории. Так говорил Клейн. С тех пор каждую геометрию, порождаемую некоторой группой преобразований, называют клейновской геометрией.
Так, например, школьная евклидова геометрия порождена группой преобразований подобия, как отметил сам Клейн. Как одну из других клейновских геометрий было бы любопытно изложить неевклидову геометрию Лобачевского или Римана».
Итак, понятие преобразования как основной операции, охватывающей не только математические, но и другие, более широкие отношения, является важным основанием для развития геометрического мышления учащихся.
С понятием преобразования связывают различные представления у школьников. Одни из них опираются на представление перемещения некоторого материального «твердого» тела. Такую точку зрения принято называть механической или динамической, связанной с представлениями о силе, вызывающей движение (перемещение). Другая точка зрения, кинематическая, опирается на более отвлеченное представление о движении, не связанное с представлениями о силе, вызывающей это движение. На него опираются в школьном курсе геометрии при доказательстве признаков равенства треугольников наложением, при установлении равенства отрезков и углов и т.п. Наконец, принятая сейчас в школьном обучении точка зрения на преобразование опирается на теоретико-множественный подход к геометрии, несмотря на то, что ввиду методологической сложности он отсутствует в современных школьных учебниках.
Понятие геометрического преобразования неразрывно связано с развитием функционального мышления учащихся. Геометрическое преобразование трактуется с теоретико-множественной точки зрения как отображение (функция). Как известно, понятие функции — одно из фундаментальных математических понятий, непосредственно связанных с реальной действительностью. В нем ярко воплощены изменчивость и динамичность реального мира, взаимная обусловленность реальных объектов и явлений. Именно в понятии функции в определенной степени отображается бесконечное многообразие явлений реального мира.
В настоящее время существует несколько вариантов определения понятия функции. При одном из них под числовой функцией понимается отображение одного числового множества в другое, что адекватно сочетается с определением геометрического преобразования как точечного отображения плоскости (пространства) на себя.
Ф. Клейн считал понятие функции центральным понятием всей математики. По его мнению, оно должно играть руководящую роль в курсе средней школы, должно быть выяснено учащимися очень рано и пронизывать все преподавание алгебры и геометрии. С точки зрения Ф. Клейна, всякое научное знание не может быть усвоено школьниками без обращения к наглядности. Поэтому введение понятия функции с помощью геометрических образов, в геометрической форме, в частности с помощью элементарных геометрических преобразований, является наиболее целесообразной в школьном обучении.
Условия для введения понятий функции, геометрического преобразования создает теоретико-множественная концепция как основа школьного курса. В этой связи очень коротко остановимся на проблеме использования теории множеств в методике школьного обучения геометрии.
А.Н. Колмогоров и др. в своем учебнике включил теорию множеств в обучение геометрии, что в целом не сумела преодолеть общеобразовательная школа. В последующих учебниках геометрии (А.В. Погорелов, Л.С. Атанасян и др.) методология была достаточно умеренной, был сделан шаг назад, в частности, отказ от теоретико-множественного подхода. Это связано с определенными достоинствами и недостатками методологического подхода и методических принципов построения школьного курса геометрии и, в частности, методики введения понятия геометрических преобразований. Но в преподавании геометрии до сих пор не уделяется должного внимания геометрическим преобразованиям, в то время как развитие геометрической науки давно показало, что преобразования являются одной из фундаментальных областей научной геометрии, тесно связанной с курсом алгебры.
§2. Из истории возникновения раздела о движениях в школьном курсе геометрии
Геометрия – одна из наиболее древних математических наук, первые упоминания о которой можно найти в египетских папирусах (III тыс. до н.э.) и вавилонских клинописях.
Одним из важнейших обогащений геометрии стало создание теории геометрических преобразований и, в частности, движений (перемещений).
Движение и, в частности, наложение, было основным методом доказательства у Фалеса, а также играет существенную роль в «Началах» Евклида. Определение равенства фигур у Евклида основано на совмещении фигур. Евклид постоянно производит перенос отрезков с помощью циркуля, да и само описание прямых линий и окружностей производится с помощью движений. Например, Евклид определяет сферу как результат вращения полуокружности вокруг диаметра. Однако во всех случаях, когда Евклид может обойтись без движений, он так и поступает. Евклид не определяет движение и его виды.
Стремясь уточнить изложение геометрии у Евклида, Д. Гильберт в «Основаниях геометрии» (1899) отказался от самого понятия движения. Вместе с тем, существует вариант аксиоматики геометрии, предложенный Ф. Шуром, в которой гильбертовские аксиомы конгруэнтности заменены аксиомами движения.
Идея геометрических преобразований как основы геометрии выросла на базе теории групп. Впервые теорию групп применил к геометрии немецкий математик Ф. Клейн. В своей «Эрлангенской программе» (1872) он высказал идею построения геометрии на основе геометрических преобразований и определил геометрию как предмет, изучающий инварианты некоторой группы преобразований.
После публикации «Эрлангенской программы» Ф. Клейна реформисты постарались использовать идею геометрических преобразований при построении школьного курса геометрии. В учебниках геометрии идея движения находит свое отражение уже в XIX веке.
В Германии в 1882-1883 годах выходит «Учебник элементарной геометрии» Генрицы и Трейтлейна, в основу которого положена идея геометрического преобразования.
Наиболее полно геометрические преобразования представлены в учебнике А.Н. Глаголева «Элементарная геометрия» (1895). Автор вводит аксиому движения и при доказательстве ряда теорем пользуется наложением фигур. Наряду с симметрией в учебнике рассматривается параллельный перенос и вращение вокруг точки.
Использование геометрических преобразований при решении задач на построение находит широкое отражение в учебной литературе второй половины XIX века в книгах Ю. Петерсена «Методы и теории для решения геометрических задач на построение» (1866), И.И. Александрова «Методы решения геометрических задач на построение» (1883). Авторы дают характеристику каждому методу и иллюстрируют его на примере решения задач. В «Элементарной геометрии» Ж. Адамара (1898-1901) рассматриваются такие виды геометрических преобразований, как симметрия, поступательное перемещение, гомотетия и подобие, вращение, теория полюсов и другое. Однако геометрические преобразования не связываются с основным материалом курса.
Таким образом, геометрические преобразования присутствуют во многих учебниках XIX века, хотя применение они находят при незначительном числе доказательств и решении отдельных видов задач.
В начале XX века возрастает интерес к геометрическим преобразованиям и в русской школе. В учебнике «Элементарной геометрии» (1909) К.Н. Рашевский рассматривает такие виды геометрических преобразований, как симметрия относительно точки и прямой, параллельное перенесение, вращение около точки, гомотетия. Идея геометрических преобразований не охватывает весь курс геометрии. В «Геометрии пространства» Б.А. Марковича (1910) показывается применение движения при доказательстве теорем и построении курсов планиметрии и стереометрии. В 1911 году выходит работа Н.А. Извольского «Первые шаги курса геометрии», в которой автор при изучении материала пользуется наложением, вращением вокруг точки.
В 1911-1914 годах на I и II Всероссийских съездах преподавателей математики России в числе других вопросов был поставлен вопрос о внедрении в школьный курс геометрических преобразований. С докладом «Об упрощении построения курса геометрии и расширении ее содержания» выступил А.В. Годнев, где высказался за введение в курс геометрии движений. Аналогичную точку зрения осветил в докладе «Идея движения в современной геометрии и область ее применимости в курсе средней школы» А.Р. Кулишер.
Учебник А.П. Киселева «Элементарная геометрия для средних учебных заведений» (1923), который являлся долгое время основным учебником для средней школы, очень сдержан в применении геометрических преобразований. В нем присутствовали указания на применение параллельного переноса, вращения или симметрии относительно прямой к решению задач на построение. С 1938 года учебник А.П. Киселева выходит под редакцией Н.А. Глаголева, который выдвинул на первый план основные геометрические идеи о движении, о симметрии, о подобии, как геометрическом преобразовании.
В первом издании «Элементарной геометрии» (1944) Н.А. Глаголева усиливается роль геометрических преобразований. Наиболее полно рассматриваются гомотетия и симметрия, которые используются автором для доказательства соответственно признаков подобия треугольников и признаков равенства треугольников, что явилось значительным продвижением в реализации этой идеи в школьном преподавании геометрии.
Учебник «Геометрия» для 6-9 классов Н.Н. Никитина и А.И. Фетисова (1956) содержит материал о геометрических преобразованиях. Авторы рассматривают осевую и центральную симметрии, гомотетию и подобие.
К началу 60-х годов была объявлена реформа школьного образования. Основными среди целей геометрического образования были названы систематичность и научность. Академик А.Н. Колмогоров, возглавивший реформу, предпринял радикальную перестройку курса геометрии: он создал новую аксиоматику, которая готовила учащихся к лучшему пониманию геометрических положений. В учебном пособии под редакцией А.Н. Колмогорова преобразования занимали центральное место, именно они служили основой доказательства многих теорем, их обоснованию была посвящена специальная аксиома подвижности.
В 1963-1964 учебном году в программу по геометрии 9 класса была включена тема «Геометрические преобразования». Целью изучения этой темы явилось ознакомление учащихся с идеей и методом геометрических преобразований. Учебным пособием являлся учебник «Геометрия» В.Г. Болтянского и И.М. Яглома, где авторы рассматривают осевую и центральную симметрии, поворот, параллельный перенос, гомотетию. Раздел «Осевая симметрия» начинается с рассмотрения конкретных симметричных фигур. Далее дается определение точек, симметричных относительно прямой. При изложении теории центральной симметрии, параллельного переноса и поворота значительное место уделяется наглядности. Большое внимание в учебном пособии уделяется учению о гомотетии, которая рассматривается как с положительным, так и с отрицательным коэффициентом. После рассмотрения отдельных видов преобразований авторы знакомят читателя с понятием геометрического преобразования. В итоге дается определение движения и раскрывается его роль в курсе геометрии. В учебнике содержатся примеры на формирование у учащихся приемов метода геометрических преобразований.
В соответствии с действующей в настоящее время программой для средней общеобразовательной школы, геометрические преобразования плоскости включены в качестве обязательного материала в курс планиметрии 8-9 классов. Геометрические преобразования представляют собой некоторую часть (главу или отдельные параграфы) учебника геометрии.
§3. Содержание раздела «Движение» и требования к математической подготовке учащихся
Теоретические основы содержания общего среднего образования разработаны Г.В. Дорофеевым, И.Я. Лернером, М.Н. Скаткиным и др. В частности, разработаны принципы и критерии отбора содержания школьного математического образования. В педагогике «принципы... указывают общее направление деятельности по формированию содержания образования..., критерии же реализуют процедуру конструирования, отбор учебного материала, его последовательность (24). Н.В. Метельский сформулировал два требования, предъявляемые к научной информации, которая отбирается для включения в школьный курс — информация должна обладать общеобразовательной ценностью и быть доступной учащимся. Оценку общеобразовательного значения материала автор предлагает производить с учетом его потенциальных возможностей: «1) формировать мировоззрение; 2) развивать мышление, творческие силы и способности; 3) вооружать жизненно - прикладными знаниями и умениями; 4) готовить к самообразованию; 5) расширять научный кругозор» (21). Системы принципов и критериев отбора содержания обучения математике, по мнению В.А. Оганесяна, должны базироваться на принципах дидактики, которые автор объединил в четыре следующие группы:
1. Принцип воспитывающего и развивающего обучения;
2. Принцип научности и доступности обучения;
3. Принцип систематичности и последовательности обучения;
4. Принцип связи обучения с жизнью и его политехнической направленности.
В своей работе Г.В. Дорофеев подразделяет принципы отбора содержания на внешние, социально обусловленные, и внутренние, обусловленные психолого-педагогическими и методическими требованиями. К внешним относятся два принципа: информационной емкости и социальной эффективности, в соответствии с которыми обучение математике должно обеспечивать приобретение всеми учащимися объема знаний, достаточного для реализации цели математического образования и формирование кадрового потенциала общества во всех сферах деятельности, требующих математических знаний и интеллектуальной культуры. К внутренним автор относит принципы интеллектуальной емкости, дифференцированной реализуемости, познавательной емкости и др.
Г.В. Дорофеевым разработан также механизм отбора содержания, основанного на разделении знаний на целевые (непосредственно отражающие цели обучения математике) и вспомогательные, которые не являются необходимыми в плане достижения целей математического образования, но без предварительного изучения которых, не могут быть освоены знания
Результаты исследований А.К. Марковой, И.М. Смирновой, Г.И. Щукиной и др. содержат в себе особенности содержания учебного материала, влияющие на формирование познавательного интереса. Содержание в том случае стимулирует развитие познавательного интереса учащегося, если оно является занимательным, постоянно обновляется, включает исторические сведения, показывает современные достижения науки, имеет личностную значимость для учащегося. Именно эти особенности содержания оказывают положительное влияние и на формирование профессиональных интересов школьников.
Перечисленные особенности в полной мере можно отнести и к геометрическому материалу. Чисто геометрическое содержание материала не может оказать влияния на формирование интереса к другим учебным дисциплинам. Поэтому, чтобы в процессе изучения геометрических преобразований было возможно выявлять, учитывать и развивать познавательные интересы к различным предметным областям, содержание темы целесообразно дополнить сведениями межпредметного и практического характера.
Например, развитию математических способностей учащихся способствуют такие особенности содержания учебного материала как: абстрактность, обобщенность, логичность, формализованность, наличие взаимно обратных утверждений. Для развития способностей естественнонаучного мышления имеет значение исследовательский характер заданий, обобщенность изложения, привлечение наглядности. Развитию гуманитарных способностей отвечает содержание, излагаемое естественным языком и наполненное образами, личностными отношениями, эстетическими образами.
Рассмотрим дидактические особенности темы «Геометрические преобразования плоскости и пространства», которые включают в себя:
1. Наличие внутрипредметных связей.
Данная тема может быть использована при изучении других тем школьного курса геометрии. Например, при доказательстве пропорциональности отрезков, равенства фигур, при решении задач на построение, при изучении площадей фигур и т.д.
2. Наличие межпредметных связей.
Основные знания и умения, приобретенные при изучении данной темы, могут быть использованы при изучении других учебных предметов в школе. Например, понятие движения и его видов могут быть использов
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Использование мультимедийной и интерактивной техники при обучении информатике учащихся основной школы
Глава 1. Курс информатики и особенности использования мультимедийной и интерактивной техники в школе1.1 Особенности обучения информати
- Логопедическая работа с детьми старшей группы специального детского сада с общим нарушением речи
Данная тема актуальна так как, современный этап развития теории и практики логопедии, характеризуется усилением внимания к изучению д
- Метод наблюдения при обучении естествознанию в 3 классе
Глава 1. Теоретические основы применения метода наблюдения при обучении естествознанию в начальных классах1.1 Из истории развития препо
- Методика написания дипломной работы по маркетингу
СодержаниеВведение. 31. Методология выполнения дипломной работы.. 51.1 Основные цели и задачи настоящего пособия. 51.2 Критерии корректност
- Методика обучения старшеклассников работе с текстовым процессором с учетом методов психологического воздействия
Глава 1. Психолого-педагогические особенности обучения старшеклассников на уроках информатики§1.1 Особенности обучения информатике в
- Методика обучения технологии web 2.0 на примере создания школьного сайта спортивной тематики
Глава 1. Теоретические основы создания школьного сайта1.1 Психолого-педагогические особенности преподавания web-технологий в школе2.1 Те
- Методика преподавания наречий и слов категорий состояния в школе
Чтобы учащиеся овладели грамотным русским литературным языком, им необходимо усвоить его основные компоненты: звуковую систему, лекси