Интервальный анализ дохода трамвайного парка в очередные сутки с применением доверительной вероятности
ГОУ ВПО
Уфимский Государственный Авиационный Технический Университет
Кафедра вычислительной математики и кибернетики
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
к курсовой работе
по теории вероятности
на тему:
Интервальный анализ дохода трамвайного парка в очередные сутки с применением доверительной вероятности
Уфа 2010 гЗадание 1
Условие
Исходные данные – суточный доход трамвайного парка (млн. руб.):
12,56; 12,41; 12,52; 12,80; 12,98; 12,70.
Актуальные вопросы: Каков практический максимум суточного дохода трамвайного парка? В каких пределах практически будет находиться доход трамвайного парка в очередные сутки?
Сформулировать эти вопросы на языке теории вероятностей и дать на них ответы.
Высказать предположение (с обоснованием) о законе распределения суточного дохода трамвайного парка, найти оценки и построить доверительные интервалы для математического ожидания и дисперсии суточного дохода.
Решение
Исходный материал – данные наблюдений над суточным доходом трамвайного парка (млн. руб):
По условию известно:
х1=12,56; х2=12,41; х 3=12,52; х 4=12,80; х 5=12,98;х 6=12,70;=6.
Под Xбудем понимать случайную величину - доход, который получит трамвайный парк в будущий день. Данная величина дискретна, так как получить доход , например, 89,623 руб нельзя, существуют определенные стандарты. Но для решения этой задачи мы перейдем к идеализации и допустим, что π, е и др.– все это возможные значения X. Тогда X – непрерывная случайная величина.
Исчерпывающей характеристикой случайной величины является закон распределения, который зависит от условий проведения опыта. В нашем случае, опыт – это завтрашняя работа трамвайного парка. Учесть все условия невозможно. Может быть на следующий день резко возрастут цены на проезд в автобусах, и люди предпочтут пользоваться трамваями. А может это будет выходной, и людям просто захочется остаться дома. Так как же проанализировать условия?
1. В трамвайном парке работает множество трамваев. Пусть число трамваев – .
2. Доход каждого трамвая завтра зависит от случая. Занумеруем трамваи:
1, | 2, | 3 | … | h |
, | , | … |
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Математическая модель цифрового вольтметра
1. Структурная схема цифрового вольтметра2. Расчет основных параметров вольтметра3. Схемотехника узлов цифрового вольтметра3.1 Расчет вх
- Основные виды многогранников и их свойства
Многогранная поверхность. МногогранникПирамидаПризмаПараллелепипедОбъем телаЗаключениеСписок используемой литературыВведениеДо н
- Основные этапы становления и структура современной математики
Математика – это наука о количественных отношениях и пространственных формах действительного мира. В неразрывной связи с запросами н
- Уравнения смешанного типа
В современной теории дифференциальных уравнений с частными производными важное место занимают исследования вырождающихся гиперболи
- Аффинные преобразования
Глава I.Понятие о геометрическом преобразовании1.1 Что такое геометрическое преобразование?Осевая симметрия, центральная симметрия, п
- Використання можливостей системи Wolfram Mathematica при вивчені математичного аналізу
ВступНа сьогоднішній день в широких колах користувачів обчислювальних машин став досить популярним і широко використовуваним термін
- Кривые, заданные в полярных координатах
Тема «Полярная система координат» позволяет познакомить учащихся с красивейшими результатами математической науки.Полярная система
Copyright © https://referat-web.com/. All Rights Reserved