Скачать

Изучение защитного действия зубных паст

Наиболее распространенным средством гигиены полости рта является зубная паста. Сегодня потребителю предлагается достаточный ассортимент зубных паст и выбрать для себя наиболее подходящую бывает иногда сложно, тем более что все компании-производители преподносят свою продукцию, как самую лучшую! Сегодня отношение к рекламе стало более осторожным и многие задумываются: соответствует ли сказанное действительности? И что рекомендуют стоматологи?

Теоретическая часть

Кальций, фосфор

Роль кальция в организме человека:

Кальций - минеральный элемент, количество которого в организме человека составляет почти 2% от общего веса тела, значительно превышая содержание всех остальных минералов. При весе человека 60-70 кг общее количество кальция в его организме составляет 1,0-1,2 кг. При этом 99% кальция приходиться на кости и зубы, 1% кальция распределен в мягких тканях и крови. Как тот, так и другой кальций выполняют многие важные физиологические функции.

Одна из важнейших ролей кальция — обеспечение нормального функционирования и целостности костного скелета и зубов. Содержащийся здесь кальций находится в состоянии динамического равновесия с кальцием в кровеносной системе и служит в качестве буфера для поддержания стабильного его обмена. Сам по себе скелет не является местом депонирования кальция, напротив, постоянно происходит образование новых кристаллов кальция и разрушение старых. Скорость этого разрушения непостоянна, она зависит от возраста человека, пола и физиологического состояния. У младенцев может оборачиваться более 100% кальция костей в течение первого года жизни, у старших детей оборот составляет более 10% в год, у взрослых — 2-3%. Пик костной ткани может быть не достигнут вплоть до 25 лет. К 40-50 годам разрушение костей может превысить их построение. Потеря костной ткани начинается раньше и происходит с резкими последствиями чаще у женщин, чем у мужчин. В результате возникает остеопороз и сопряженный с ним риск переломов лучевых костей, позвонков, шейки бедра и других костей. При этом уменьшение костной массы долгое время протекает без каких-либо внешних проявлений, то есть при остеопорозе наступает постепенное разрушение костной ткани, и поэтому диагноз остеопороза ставится, как правило, уже после перелома костей.

Важную и многогранную роль играет кальций в крови и клетках различных тканей человеческого организма. Он обеспечивает взаимодействие и поддержание работы клеточных мембран, передачу нервных импульсов, регуляцию процессов свертывания крови, нормальный тонус скелетной и глазной мускулатуры, регуляцию сердечного ритма, участие в иммунных процессах, в синтезе и работе ферментов. Присутствуя в каждой клетке организма, он регулирует воспроизводство клеток и синтез белка в них. Кроме того, кальций предотвращает выделение клетками гистамина, который вызывает воспаление и боль в мышцах.

Потребность в кальции повышена у женщин в период беременности и кормления грудью, а также у всех людей в период после болезней, при стрессовых ситуациях и приеме некоторых лекарств.

Кальций, поступивший в организм, всасывается, в основном, в двенадцатиперстной кишке. Хуже всего всасывается кальций у людей с пониженной кислотностью. Следует иметь в виду, что значительное уменьшение желудочного сока происходит у людей, принимающих антацидные препараты, снижающие кислотность желудочного сока. Белок, входящий в рацион, значительно увеличивает всасывание кальция.

Потребление кофе, алкоголя, соли, и сахара снижает усвоение и увеличивает вывод кальция из организма.

Усвоение кальция снижается в зависимости от возраста, сидячего образа жизни, потребления жиров, избыточного потребления клетчатки.

Противосудорожные и стероидные препараты (типа преднизалон) ухудшает усвоение кальция. С другой стороны, кальций снижает усвоение тетрациклина, поэтому совместно их принимать нельзя.

При неправильном назначении гормона щитовидной железы (тиреодина) происходит интенсивное выведение кальция из организма, что становиться угрозой возникновения остеопороза.

Очень важно для эффективного усвоения кальция одновременное применение витамина Д, так как их обмен в организме человека взаимосвязан.

Избыток фосфора нарушает усвоение кальция, поэтому в идеале потребление кальция и фосфора должно находится в соотношении 1,67. Потребление фосфорсодержащих продуктов, в том числе газированных напитков, богатых фосфатами, нарушает это соотношение, что приводит к выводу кальция из организма. Это очень опасный процесс, особенно потому, что он начинается в раннем подростковом возрасте.

Усвоение элемента кальция в значительной мере зависит от того, в форме какого соединения он поступает в организм. В медицинских целях используется хлористый кальций, глюканат кальция, лактат кальция. В качестве биологически активных добавок кальций поступает в аптеки как правило в качестве карбоната (мела) с различными вкусовыми и витаминными добавками или в органической форме.

Кальций хлористый используют, как правило, внутривенно, так как при приеме внутрь он способен оказывать раздражающее воздействие.

Карбонат кальция в воде не растворяется, при приеме внутрь оказывает влияние только в пищеварительном аппарате, так как не всасывается в кровь. Взаимодействуя с соляной кислотой желудка, нейтрализует ее с образованием углекислого газа; 1 г препарата способен нейтрализовать 200 мл желудочного сока. В результате этой реакции образуется кальция хлорид, который в кишечнике взаимодействуя с натрием гидрокарбонатом, вновь превращается в карбонат кальция и выводится из организма.

Глюканат кальция и лактат кальция — химические аптечные препараты, по последним данным не обладают высоким усвоением, по сравнению с ними усвоение цитрата кальция в несколько раз выше.

Результаты многочисленных исследований последних лет показывают, что наиболее усвояемым и биосовместимым препаратом для организма является гидроксиапатит кальция – основной строительный материал костной ткани, присутствующий также в крови и других жидкостях организма.

Роль фосфора в организме человека:

В организме взрослого человека содержится около 670 г фосфора (1% массы тела), который необходим для образования костей и клеточного энергетического обмена. 90% фосфора, подобно кальцию, находится в скелете — костях и зубах. Вместе с кальцием они составляют основу твердого вещества кости. В костях фосфор представлен трудно растворимым фосфатом кальция (2/3) и растворимыми соединениями (1/3). Большая часть остального количества фосфора находится внутри клеток, 1% — во внеклеточной жидкости. Поэтому уровень фосфора в сыворотке крови не позволяет судить об общем его содержания в организме.

Фосфаты являются структурными элементами костной ткани, участвуют в переносе энергии в виде макроэргических связей (АТФ, АДФ, креатинфосфат, гуанинфосфат и других). Фосфор и сера — два элемента в организме человека, которые входят в состав различных макроэргических соединений. С участием фосфорной кислоты осуществляется гликолиз, гликогенез, обмен жиров. Фосфор входит в структуру ДНК, РНК, обеспечивающих синтез белка. Он участвует в окислительном фосфорилировании, в результате которого образуется АТФ, фосфорилировании некоторых витаминов (тиамина, пиридоксина и других). Фосфор важен также для функционирования мышечной ткани (скелетной мускулатуры и сердечной мышцы). Неорганические фосфаты входят в состав буферных систем плазмы и тканевой жидкости. Фосфор активирует всасывание ионов кальция в кишечнике. Суточная потребность в фосфоре составляет 30 ммоль (900 мг), у беременных она возрастает на 30-40%, в период лактации — в два раза. По данным В. И. Смоляра (1991), потребность в фосфоре у взрослых — 1600 мг в сутки, у детей — 1500-1800 мг в сутки.

В организм человека фосфор поступает с растительной и животной пищей в виде фосфолипидов, фосфопротеинов и фосфатов.

В растительных продуктах (в частности, в бобовых) содержится много фосфора, однако усвояемость его низкая. Важным источником его является мясо и рыба. В желудке и кишечнике фосфорная кислота отщепляется от органических соединений. Всасывание 70-90% фосфора происходит в тонком кишечнике. Оно зависит от концентрации фосфора в просвете кишки, активности щелочной фосфатазы (угнетение ее снижает всасывание фосфора). Активность щелочной фосфатазы повышает витамин D, а всасывание фосфатов — паратиреоидный гормон. Всосавшийся фосфор поступает в печень, участвует в процессах фосфорилирования, частично откладывается в виде минеральных солей, которые затем переходят в кровь и используются костной и мышечной тканью (синтезируется креатинфосфат). От обмена фосфатов между кровью и костной тканью зависит нормальное течение процессов окостенения, поддержания нормальной костной структуры.

В крови фосфор находится в виде четырех соединений: неорганического фосфата, органических фосфорных эфиров, фосфолипидов и свободных нуклеотидов. В плазме крови неорганический фосфор присутствует в виде ортофосфатов, но его концентрацию в сыворотке оценивают непосредственно (1 мг% фосфора=0,32 ммоль/л фосфата). Он проникает через полунепроницаемые мембраны, фильтруется в почечных клубочках. Концентрация неорганического пирофосфата в плазме крови составляет 1-10 мкмоль/л. Содержание неорганического фосфора в плазме крови взрослых людей — 3,5-4 мг фосфора/100 мл, несколько выше оно у детей (4-5 мг/100мл) и у женщин после менопаузы. В плазме также содержатся гексозофосфаты, триозофосфаты и другие. Скелет является резервуаром неорганического фосфора: при снижении его содержания в плазме он поступает из скелета и, наоборот, откладывается в скелете при повышении его концентрации в плазме. Концентрацию фосфора в сыворотке крови рекомендуется определять натощак: богатая фосфором пища повышает его, а углеводы, инфузия глюкозы — снижают. Фосфор выводится из организма через кишечник и почки в виде фосфата кальция. С мочой выделяется 2/3 растворимых одно- и двузамещенных фосфатов натрия и калия и 1/3 фосфатов кальция и магния. В почках за сутки фильтруется около 208 ммоль фосфата, экскретируется 16-26 ммоль. Соотношение одно- и двузамещенных солей фосфора зависит от кислотно-основного состояния. При ацидозе однозамещенных фосфатов выводится в 50 раз больше, чем двузамещенных. При алкалозе усиленно образуются и выделяются двузамещенные соли фосфатов.

Паратиреоидный гормон снижает уровень фосфора в сыворотке крови, угнетая реабсорбцию его в проксимальных и дистальных канальцах, усиливая выведение с мочой. Кальцитонин оказывает гипофосфатемическое действие, уменьшая реабсорцию и усиливая экскрецию. 1,25(ОН)2Д3, усиливая всасывание фосфата в кишечнике, повышает его уровень в крови, способствует фиксации фосфорно-кальциевых солей костной тканью. Инсулин стимулирует поступление фосфата в клетки и тем самым снижает его содержание в сыворотке крови. Гормон роста увеличивает реабсорбцию фосфатов, вазопрессин — экскрецию.

Обмен фосфора и кальция тесно взаимосвязаны. Считается, что оптимальным для совместного усвоения из пищи является соотношение между фосфором и кальцием равное 1:1-1,5. Гиперкальциемия, снижая секрецию паратиреоидного гормона, стимулирует реабсорбцию фосфатов. Фосфат может соединяться с кальцием и приводить к отложению кальция в тканях и гипокальциемии.

При нарушении обмена фосфора обнаруживаются повышение и снижение его в крови. Гиперфосфатемия часто наблюдается при почечной недостаточности, встречается при гипопаратиреозе, псевдогипопаратиреозе, рабдомиолизе, распаде опухолей, метаболическом и респираторном ацидозе. Гиперфосфатемия подавляет гидроксилирование 25-гидроксикальциферола в почках. Умеренная гипофосфатемия не сопровождается существенными последствиями. Тяжелая гипофосфатемия (менее 0,3 ммоль/л (1 мг%) сопровождается нарушением функции эритроцитов, лейкоцитов, мышечной слабостью (нарушается образование АТФ, 2,3-дифосфоглицерата). Она наблюдается при злоупотреблении алкоголем и абстиненции, респираторном алкалозе, нарушении всасывания в кишечнике, приеме средств, связывающих фосфат, возобновлении приема пищи после голодания, при переедании, тяжелых ожогах, лечении диабетического кетоацидоза. При диабетическом кетоацидозе гипофосфатемия не является признаком истощения запасов фосфата. Умеренная гипофосфатемия (1,0-2,5 мг%) может наблюдаться при инфузии глюкозы, дефиците витамина D в пище или снижении его всасывания в кишечнике, при гиперпаратиреозе, остром тубулярном некрозе, после пересадки почек, при наследственной гипофосфатемии, синдроме Фанкони, паранеопластической остеомаляции, увеличении объема внеклеточной жидкости. Респираторный алкалоз может вызвать гипофосфатемию, стимулируя активность фосфофруктокиназы и образование фосфорилированных промежуточных продуктов гликолиза. Хроническая гипофосфатемия приводит к рахиту и остеомаляции.

Гипофосфатемия проявляется потерей аппетита, недомоганием, слабостью, парестезиями в конечностях, болью в костях. Гипофосфатурия наблюдается при остеопорозе, гипофосфатемическом почечном рахите, инфекционных заболеваниях, острой желтой атрофии печени, снижении клубочковой фильтрации, повышенной реабсорбции фосфора (при гипосекреции ПТГ).

Гиперфосфатурия наблюдается при повышенной фильтрации и сниженной реабсорбции фосфора (рахит, гиперпаратиреоз, тубулярный ацидоз, фосфатный диабет), гипертиреозе, лейкозах, отравлениях солями тяжелых металлов, бензолом, фенолом.

Строение зуба

Эмаль (enamelum) - это ткань, покрывающая коронку зуба, самая твердая ткань организма. На жевательной поверхности ее толщина 1,5 - 1,7 мм. На боковых поверхностях эмаль значительно тоньше и сходит на нет к шейке, к месту соединения с цементом корня. Она на 98% состоит из неорганических веществ. Основными компонентами кристаллов эмали являются кальций и фосфор.
Дентин (dentinum) - составляет основную массу зуба, менее обызвествлен, чем эмаль. В нем содержится 70% неорганических веществ и 30% органических веществ и воды. Основу неорганического вещества составляют фосфат кальция (гидроксиапатит), карбонат кальция и фторид кальция. В дентине имеются канальцы, содержащие окончания чувствительных волокон.
Цемент (cementum) - это прослойка ткани, покрывающая корень зуба и состоящая из 68% неорганических и 32% органических веществ. По химическому составу цемент напоминает костную ткань. В отличие от кости цемент не имеет кровеносных сосудов.

Пульпа (pulpa) является самой чувствительной тканью зуба, состоящей из сплетения нервных волокон и кровеносных сосудов. Они проникают в зуб через отверстие, которое имеется на верхушке каждого корня. Воспаление пульпы носит название пульпит.

Между корнем зуба и стенкой лунки имеется щель, в которой располагаются связки, обеспечивающие фиксацию корня и распределяющие жевательное давление, а также большое количество сосудов и нервов. Это щелевидное пространство носит название периодонта. Воспаление периодонта - периодонтит.

Весь комплекс тканей, удерживающих зуб - корень. лунка, периодонт, десна - носит название пародонта. Воспаление пародонта - пародонтит. (Не путать с периодонтитом и пародонтозом !!!).

С химической точки зрения, эмаль зрелого зуба состоит из неорганического (около 95% по весу), органического (1-1,5%) компонента и воды (4%). Органический компонент представлен преимущественно коллагеновыми белками, которые (вместе с другими органическими компонентами – углеводами) образуют органическую матрицу – коллагеновые волокна. Эти и другие белки, кроме каркасной, выполняют защитную и регуляторную функцию в процессе реминерализации. Неорганическим компонентом является фосфат кальция в виде апатита Ca5(PO4)3X, где Х – это гидроксильная группа (преимущественно, т.н. гидроксиапатит), фтор, хлор. Биологически образованные фосфаты кальция обычно называют "биологическим апатитом". Состав биологического апатита на самом деле более сложен. Часть ионов кальция замещена ионами магния, стронция, натрия, калия, ионы фосфата частично замещены ионами карбоната, а в качестве Х-ионов присутствуют не только вышеперечисленные, но и карбонат-ионы. Более того, для компенсации электрических зарядов образуются т.н. ионные вакансии, что в целом приводит к нестехиометрическому (переменному) составу биологического апатита. Именно поэтому невозможно говорить о точном химическом составе биологического апатита. Каждый кристалл апатита имеет гидратную оболочку (слой молекул воды, т.н. эмалевая лимфа) и содержит внутрикристаллическую воду. Молекулы воды играют важную роль в ионном обмене при деминерализации и реминерализации эмали. Существенное отличие зубной эмали от обычной костной ткани состоит в том, что эмаль не восстанавливается (в восстановлении обычной костной ткани участвуют специальные клетки – остеокласты и остеобласты). По данным, полученным в последнее время, ультраструктура зубной эмали представляет собой пучки белковых, в основном коллагеновых, волокон, на которых расположены кристаллы биологического апатита (т.н. кристаллические волокна). Кристаллические волокна изогнуты в толще эмали и выпрямлены в ее поверхностном слое. Данные образования обычно называют эмалевыми призмами, что не соответствует их геометрической форме. Компактность и прочность эмали является следствием перехода тесно перевитых между собой кристаллических волокон из одного ряда в другой. В эмали выделяют 3 зоны: внутреннюю (отдельный тонкий слой, примыкающий к дентину), среднюю и поверхностную (самый плотный слой жевательной поверхности). Все 3 слоя обладают микропористыми свойствами. Состав внутренней части зуба (дентина) также представлен биологическим апатитом (70-72%, преимущественно гидроксиапатит), органическим компонентом (20%, преимущественно коллаген, но есть и другие белки и углеводы; играют важную регуляторную роль в минеральном обмене) и водой (10%). Дентин составляет основную массу зуба и по структуре напоминает грубоволокнистую кость. В отличие от эмали, дентин пронизан большим количеством дентинных канальцев, заполненных дентинной жидкостью, веществом пульпы, клеточными отростками. Цемент корня имеет наименьшее количество неорганического компонента (50%, в основном фосфаты и карбонат кальция) и пронизан коллагеновыми волокнами и клеточными элементами.

Эмаль зуба – это полупроницаемая мембрана, внутренние области которой доступны для многих неорганических ионов. Степень проницаемости зависит от размера конкретного иона и его способности связываться с кристаллической решеткой биологического апатита. Несмотря на чрезвычайно низкую растворимость апатита, эмаль зуба участвует в равновесном процессе деминерализации (выход ионов кальция, фосфата и других в слюну) и реминерализации (обратная реакция). Источником реминерализации служат неорганические ионы кальция слюны. Положение равновесия зависит от большого количества факторов (внутренних и внешних) и их изменение может привести к смещению равновесия в сторону обеднения (по сравнению с нормой) эмали неорганическими компонентами. Реакция эмали, как части организма в целом, на действие таких факторов является ее деминерализация. Частным примером может служить резкое увеличение кислотности среды под зубными бляшками, локальная деминерализация и развитие кариеса на стадии белого пятна. В общем случае под воздействием неблагоприятных факторов (например, развитием внутренних болезней) деминерализация приводит к микропористости эмали и развитию гиперестезии.

Минеральн. вещ.Органич. вещ.Вода
Эмаль95%1 – 1,5%4%
Дентин70%20%10%
Цемент50%27%13%
Кость45%30%25%

Эти кристаллы имеют гексогенальную форму.

Минеральные компоненты эмали Они представлены в виде соединений, имеющих кристаллическую решетку A (BO) K A = Ca, Ba, кадмий, стронций В = РО, Si, As, CO.

K = OH, Br, J, Cl.

1) гидроксиапатит – Са (РО) (ОН) в эмали зуба 75% ГАП – самый распространенный в минерализованных тканях 2) карбонатный апатит – КАП – 19% Са (РО) СО – мягкий, легко растворимый в слабых кислотах, целочах, легко разрушается 3) хлорапатит Са (РО) Сl 4,4% мягкий 4) стронцевый апатит (САП) Са Sr (PO) - 0,9% не распространен в минеральных тканях и распространен в неживой природе.

Мин. в-ва 1 – 2% в неапатитной форме, в виде фосфорнокислого Са, дикальциферата, ортокальцифосфата. Соотношение Са / Р – 1,67 соответствует идеальному соотношению, но ионы Са могут замещаться на близкие по свойству химические элементы Ва, Сr, Mg. При этом снижается соотношение Са к Р, оно уменьшается до 1,33%, изменяются свойства этого апатита, уменьшается резистентность эмали к неблагоприятным условиям. В результате замещения гидроксильных групп на фтор, образуется фторапатит, который превосходит и по прочности и по кислотоустойчивости ГАП.

Са (РО) (ОН) + F = Ca (PO) FOH гидроксифторапатит Са (РО) (ОН) + 2F = Ca (PO) F фторапатит Са (РО) (ОН) + 20F = 10CaF + 6PO + 2OH фторид Са.

СаF - он прочный, твердый, легко выщелачивается. Если рн сдвигается в щелочную сторону, происходит разрушение эмали зуба, крапчатость эмали, флюороз.

Стронцевый апатит – в костях и зубах животных и людей, живущих в регионах с повышенным содержанием радиоактивного стронция, они обладают повышенной хрупкостью. Кости и зубы становятся ломкими, развивается стронцевый рахит, беспричинный, множественный перелом костей. В отличие от обычного рахита, стронцевый не лечится витамином Д.

Особенности строения кристалла. Наиболее типичной является гексогенальная форма ГАП, но может быть кристаллы с палочковидной, игольчатой, ромбовидной. Все они упорядочены, определенной формы, имеют упорядоченные эмаль. призмы – явл-ся структурной единицей эмали.

4 структуры: кристалл состоит из элементарных единиц или ячеек, таких ячеек может быть до 2 тысяч. Мол. масса = 1000. Ячейка – это структура 1 порядка, сам кристалл имеет Mr = 2 000 000, он имеет 2 000 ячеек. Кристалл – структура 2 порядка.

Эмалевые призмы являются структурой 3 порядка. В свою очередь, эм. призмы собраны в пучки, это структура 4 порядка, вокруг каждого кристалла находится гидратная оболочка, любое приникновение веществ на поверхность или внутрь кристалла связано в этой гидратной оболочкой.

Она представляет собой слой воды, связанной с кристаллом, в котором происходит ионный обмен, он обеспечивает постоянство состава эмали, называется эмалевой лимфой.

Вода внутрикристаллическая, от нее зависят физиологические свойства эмали и некоторые химические свойства, растворимость, проницаемость.

Вид: вода, связанная с белками эмали. В структуре ГАП соотношение Са / Р – 1,67. Но встречаются ГАП, в которых это соотношение колеблется от 1,33 до 2.

Ионы Са в ГАПе могут быть замещены на близкие по свойствам в Са другие хим. эл-ты. Это Ba, Mg, Sr, реже Na, K, Mg, Zn, ион H O. Такие замещения называются изоморфными, в тезультате соотношение Са / Р падает. Таким образом, образуется из ГАП – ГФА.

Фосфаты могут заместиться на ион РО НРО цитрат.

Гидрокситы замещаются на Cl, Br, F, J.

Такие изоморфные зам-я приводят к тому, что изменяется и св-во апатитов – резистентность эмали к кислотам и к кариесу падает.

Существуют другие причины изменения состава ГАП, наличие вакантных мест в кристалл. решетке, которые должны быть замещены с одним из ионов, возникают вакантные места чаще всего при действии кислот, уже в сформированном присталле ГАП, образование вакантных мест приводит к изменению св-в эмали, проницаемости, раствопимости, адсорб. св-ва.

Нарушается равновесие между процессом де- и реминерализации. Возникают оптим. усл-я для хим. реакций на поверхности эмали.

Физико-химические св-ва кристалла апатита Одним из важнейших вс-в кристалла явл-ся заряд. Если в кристалле ГАП 10 ост. Са, тогда считают 2 х 10 = 3 х 6 + 1 х 2 = 20 + 20 = 0.

ГАП электонейтрален, если в структуре ГАП содер-ся 8 ионов Са – Са (РО) , то 2 х 8 20 = 16 < 20, кристалл приобретает отриц. заряд. Он может и положительно заряжаться. Такие кристаллы становятся неустойчивыми. Они обладают реакционной способностью, возникает поверхностная электрохимич. неуравновешенность. ионы наход-ся в гидратной оболочке. Могут нейтрализовать заряд на поверхности апатита и такой кристалл снова приобретает устойчивость.

Стадии проникновения в-в в кристал. ГАП 3 стадии 1) ионный обмен между раствором, который омывает кристалл – это слюна и зубдесневая жидкость с его гдратной оболочкой. В нее поступают ионы, нейтрализующие заряд кристалла Са, Sr, Co, PО, цитрат. Одни ионы могут накапливаться и также легко покидать, не проникая внутрь кристалла – это ионы К и Cl, другие ионы проникают в поверхностный слой кристалла – это ионы Na и F. Стадия происходит быстро в течение неск. минут.

2) это ионный обмен между гидратной оболочкой и поверхностью кристалла, происходит отрыв иона от пов-сти кристалла и замена их на др. ионы из гидратной оболочки. В результате уменьшается или нейтрал-ся поверхн. заряд кристалла и он приобретает устойчивость. Более длительная, чем 1 стадия. В течение неск. часов. Проникают Ca, F, Co, Sr, Na, P.

3) Проникновение ионов с поверхности внутрь кристалла – называется внутрикристаллический обмен, происходит очень медленно и по мере проникновения иона скорость этой стадии замедляется. Такой способностью обладают ионы Ра, F, Са, Sr.

Наличие вакантных мест в кристалл. решетке явл-ся важным фактором в активации изоморфных замещений внутри кристалла. Проникновение ионов в кристалл зависит от R иона и уровня Е, которой он обладает, поэтому легче проникают ионы Н, и близкие по строению к иону Н. Стадия протекает дни, недели, месяцы. Состав кристалла ГАП и свойства их постоянно изменяются и зависят от ионного состава жидкости, которая омывает кристалл и состава гидратной оболочки. Эти св-ва кристаллов позволяют целенаправленно изменять состав твердых тканей зуба, под действием реминерализующих растворов с целью профилактики или лечения кариеса.

Органические в-ва эмали Доля орг. в-в 1 – 1,5%. В незрелой эмали до 20%. Орг. в-ва эмали влияют на биохимические и физические процессы, происходящие в эмали зуба. Орг. в-ва нах-ся между кристаллами апатита в виде пучков, пластинок или спирали. Осн. представители – белки, углеводы, липиды, озотсодержащие в-ва (мочевина, пептиды, цикл. АМФ, цикл. аминокислоты) .

Белки и углеводы входят в состав органич. матрицы. Все процессы реминерализации происходят на основе белковой матрицы. Большая часть представлена коллагеновыми белками. Они обладают способностью инициировать реминерализацию.

1. а) белки эмали – нерастворимы в кислотах, 0,9% ЭДТА. Они относятся к коллаген- и керамидоподобным белкам с большим количеством сер, оксипролина, гли, лиз. Эти белки играют защитную ф-цию в процессе деминерализации. Не случайно в очаге деминерализации на ст. белого или пигментированного пятна кол-во этих белков > в 4 раза. Поэтому кариозное пятно в течение нескольних лет не превращается в кариозную полость, а иногда вообще не развивается кариес. У пожилых людей к кариесу > резистентность. б) кальцийсвязывающие белки эмали. КСБЭ. Содержат ионы Са в нейтральной и слабощелочной среде и способствуют проникновению Са из слюны в зуб и обратно. На долю белков А и Б приходится 0,9% от общей массы эмали.

2. Б. растворимые в воде не связанные с минеральными в-вами. Они не обладают сродством к минер. компонентам эмали, не могут образовывать комплексы. Таких белков 0,3%.

3. Своб. пептиды и отд. аминокислоты, такие как промин, гли, вал, оксипролин, сер. До 0,1% 1) ф-я защитная. Белки окружают кристалл. Предупреждают процесс деминерализации 2) белки инициируют минерализацию. Активно участвуют в этом процессе 3) обеспечивают минер. обмен в эмали и др. твердых тканях зуба.

Углеводы представлены полисахаридами: глюкоза, галактоза, фруктоза, гликоген. Дисахариды нах-ся в свободной форме, а образуются белковые комплексы – фосфо-гликопротеиды.

Липидов очень мало. Представлены в виде гликофосфолипидов. При образовании матрицы они выполняют роль связующих мостиков между белками и минералами.

Дентин уступает по твердости. Наиболее важными элементами дентина являются ионы Са, РО, Со, Мg, F. Mg сод-ся в 3 раза больше, чем в эмали. Концентрация Na и Cl возрастает во внутренних слоях дентина.

Основное в-во дентина состоит из ГАП. Но в отличие от эмали, дентин пронизан большим количеством дентинных канальцев. Болевые ощущения передаются по нервным рецепторам. В дентинных канальцах нах-ся отростки клеток одонтобластов, пульпа и дентинная жидкость. Дентин составляет основную массу зуба, но явл. менее минерализов. в-вом, чем эмаль, по строению напоминает грубоволокнистую кость, но более твердый.

Органич. в-ва Белки, липиды, углеводы, ….

Белковый матрикс дентина - 20% от общей массы дентина. Состоит из коллагена, на его долю приходится 35% всех органических в-в дентина. Это свойство характерно для тканей лизин…мального происхождения, сод. глюкозаминогликогены (……. атинсульфат) , галактозу, гексазамиты и гелиуроновая кислоты. Дентин богат активными регуляторными белками, которые регулируют процесс реминерализации. К таким спец. белкам отн-ся амелогенины, энамелины, фосфопротеиды. Для дентина, как и для эмали, характерен заледленный обмен мин. компонентов, что имеет большое значение для сохранения стабильности тканей в условиях повышенного риска деминерализации, стресса.

Цемент зуба Покрывает тонким слоем весь зуб. Первичный цемент образован минеральным в-вом, в котором в разных направлениях проходят коллагеновые волокна, клеточные элементы – цементобласты. Цемент зрелого зуба мало обновляется. Состав: минер. компоненты в основном представлены карбонатами и фосфатами Са. Цемент не имеет как эмаль и дентин, собственных кровеносных сосудов. В верхушке зуба – клеточный цемент, основная часть – бесклеточный цемент. Клеточный напоминает кость, а бесклеточный состоит из колл. волокон и аморфного в-ва, склеивающего эти волокна.

Фтор является необходимым компонентом зубов. В состав здоровых зубов входит до 0,02% фтора, причем основная часть содержится в эмали (фторапатит). Фтор, необходимый для построения и сохранения нормальных свойств эмали, поступает в организм в основном с питьевой водой. По многочисленным данным, увеличение концентрации ионов фтора в слюне приводит к увеличению реминерализации эмали. Если содержание фтора в воде недостаточное (менее 0,00005%), прочность эмали резко снижается. Но постоянные высокие концентрации ионов фтора в воде приводят к развитию флюороза (почернению и выпадению зубов).

Болезни зубов

Чтобы сберечь зубы, нужно правильно ухаживать за ними.

Эту прописную истину каждый знает с детских лет, но тем не менее, очень сложно найти человека, ни разу в жизни не посетившего стоматолога по поводу больных зубов. Чаще всего виновником разрушения зубов становится кариес. По подсчетам специалистов кариесом страдает больше половины населения.

Утешает лишь то, что кариес - болезнь не смертельная, хотя и необратимая, ибо на месте разрушенных зубов новые не вырастают. Самым простым способом борьбы является профилактика, которая включает 3 основных компонента: правильная чистка зубов, эндо- и экзогенная профилактика. Одним из основных средств экзогенной профилактики является зубные пасты.

Гигиена полости рта является одним из разделов личной гигиены человека, она направлена на поддержание хорошего уровня здоровья и профилактику заболеваний. Одной из важнейших задач гигиены является очищение полости рта от остатков пищи, детрита, микрофлоры. Другой задачей гигиены является внесение в полость рта средств, положительно влияющих на ее состояние, укрепляющих защитные свойства и функциональные возможности. С позиций этих задач и создаются различные средства ухода за полостью рта.

Кариес зубов

Поверхность эмали покрыта пленкой, называемой "пелликулой" (пленка - лат.). Тогда как бактерии, составляющие нормальную флору полости рта, оказываются приклеенными к этой пленке, формируется бактериальная масса, называемая налетом. Бактерии налета (в особенности, Streptococcus mutans и лактобациллы) превращают принимаемые в пищу сахара посредством гликолиза в слабые органические кислоты (например, молочную, уксусную, пропионовую, муравьиную). Кислоты, произведенные этими бактериями, диффундируют сквозь налет и внутрь зуба, вымывая кальций и фосфор из эмали и впоследствии вызывая разрушение структур зуба и образование полости (рисунок 1).

Образование кариозного разрушения не происходит внезапно, а обычно по истечении нескольких месяцев или лет. Между периодами образования кислот вследствие принятия пищи буферы, такие как бикарбонаты, присутствующие в слюне, диффундируют в налет и нейтрализуют присутствующие кислоты. Это приостанавливает дальнейшую потерю кальция и фосфора, вплоть до следующего периода производства кислот.

Деминерализация / реминерализация

Минерал зубов в основном состоит из карбонированного гидроксиапатита кальция, который отличается от гидроксиапатита кальция замещением в гидроксиапатите кальция части фосфора на углерод. Карбонированный гидроксиапатит кальция более растворим, чем гидроксиапатит кальция, в особенности в кислой среде. Будучи практически нерастворимым, при значениях рН больше 7 карбонированный гидроксиапатит кальция становится повышенно растворимым при понижении рН.

После атаки сахаром рН налета снижается, в то время как бактерии налета превращают сахар в кислоту. В течение минут рН налета снижается до 4,0 или ниже. Пока рН налета остается в кислотном диапазоне и жидкости налета недонасыщены по сравнению с минералами зуба, происходит деминерализация. Нейтрализация кислот налета системой щелочного буфера в слюне может проходить на протяжении двух или трех часов. Как только кислоты налета нейтрализуются, может происходить реминерализация.

В дополнение к буферам, слюна содержит ионы кальция и фосфора, которые входят в эмаль в течение реминерализации. Реминерализация происходит между периодами деминерализации. Таким образом, деминерализация и реминерализация могут рассматриваться как динамический процесс, характеризуемый выходом кальция и фосфора из зубной эмали и назад в нее. Чтобы препятствовать развитию кариеса средняя величина деминерализации должна быть сбалансирована средней величиной реминерализации. Однако, концентрация кальция и фосфора в слюне, будучи достаточной для обеспечения нормальной реминерализации у людей находящихся на бессахарной диете, часто недостаточна, чтобы компенсировать многие эпизоды деминерализации, связанные с высоким потреблением сахара в современном обществе.

Величина рН, при которой происходит деминерализация или реминерализация зависит от концентрации кальция и фосфора в слюне и жидкости налета. Когда рН на поверхности эмали снижается, налет становится недосыщенным по отношению к минералам зубных тканей, что приводит к вымыванию их из эмали. Когда рН повышается, налет становится пересыщенным по отношению к минералу зубов, результатом чего является переход этих ионов из эмали в деминерализованные места.

Люди, страдающие от пониженного слюноотделения (ксеростомии), что бывает из-за применения определенных лекарственных средств, облучения головы и шеи или заболеваний типа синдрома Шегрена, и.т.д. испытывают недостаток буферов слюны, которые бы могли нейтрализовать кислоты налета, и увеличить содержание кальция и фосфора для реминерализации. Как результат, недостаток слюны внушительно повышает скорость развития кариеса.

Возможны 2 типа реакций в зависимости от кислотности:

Ca (PO) (OH) + 8H = 10Ca + 6 HPO + 2 H O

Ca (PO) (OH) + 2H = Ca(H O) (PO) (OH) + CA

Реакция № 2 приводит к образованию апатита в строении которого имеется вместо 10,9 атомов