Задачи по кинетике цепных, фотохимических и гетерогенных реакций при подготовке школьников к олимпиадам
Физическая химия – наука, которая изучает общие закономерности физических процессов и является теоретической основой всей химической науки и технологии химических производств. Одним из наиболее важных разделов физической химии является химическая кинетика. В данной курсовой работе приведен перечень вопросов и задач по трем разделам химической кинетики. Эти задачи носят комплексный характер и позволяют ученикам подготовиться к химическим олимпиадам. Целью курсовой работы явился подбор заданий по химической кинетике, адаптация их к требованиям химических олимпиад для школьников, а так же разработка методики их решения с учетом межпредметных связей с математикой и физикой.
Решение задач дает возможность применить теоретические знания на практике, расширить, углубить и систематизировать их, стимулируют мыслительную деятельность учеников, развивают последовательность в действиях.
Глава 1. Кинетика цепных реакций
1.1 Вопросы и задания для самоконтроля
1. Дайте определение цепных реакций.
2. Поясните термин «активный центр». Какие частицы можно отнести к этому понятию?
3. В чем различия между материальными и энергетическими цепями? Приведите примеры.
4. Перечислите стадии цепной реакции на конкретном примере.
5. Каковы возможные пути возникновения свободных радикалов и атомов?
6. Какие вещества называют инициаторам? Приведите примеры.
7. Укажите различные типы реакций продолжения цепи.
8. Сформулируйте принцип неуничтожимости свободной валентности, введенный Н.Н. Семеновым.
9. Поясните на примерах термины: а) «линейный обрыв»; б) «квадратичный обрыв».
10. Какие превращения являются неразветвленными цепными реакциями?
11. Поясните термины: «звено цепи», средняя «длина цепи». Приведите математическое определение средней длины цепи.
12. Покажите на конкретном примере, что при стационарном протекании неразветвленной цепной реакции скорость зарождения цепи равна скорости обрыва. υ0= υf.
13. Приведите выражение для определения скорости неразветвленной цепной реакции с учетом длины цепи.
14. Перечислите кинетические особенности неразветвленной цепной реакции.
15. Приведите вывод кинетического уравнения зависимости скорости неразветвленной цепной реакции от времени.
16. В чем заключается различие диффузионной и кинетической областей протекания реакций обрыва цепей?
17. Приведите уравнения константы скорости реакции обрыва цепей на стенках для цилиндрического сосуда.
18. Покажите, какой вид принимает уравнение константы скорости реакции обрыва, если реакция протекает: а) в диффузионной области, б) в кинетической области.
19. Какие реакции называют разветвленными? Приведите примеры.
20. Выведите уравнение для зависимости скорости разветвленной цепной реакции от времени.
21. Проанализируйте кинетическое уравнение в случая: а) g > f; б) f > g ; в) f = g.
22. Сформулируйте принцип частично-стационарных концентраций Н.Н. Семенова.
23. Выведите кинетическое уравнение для скорости реакции окисления водорода с учетом общепринятого механизма, используя принцип частично – стационарных концентраций. Полученный результат сравните с уравнением из вопроса 20.
24. Какие типы самовоспламенения возможны в химических реакциях? В чем существенное различие между ними?
25. Поясните термин: «предел воспламенения». Объясните с помощью теории Н.Н. Семенова появление первого (нижнего) и второго (верхнего) пределов воспламенения на примере реакции окисления фосфора.
26. От каких параметров зависит положение первого и второго пределов воспламенения?
27. представьте в координатах (p, T) область воспламенения гремучей смеси (H2 и O2). Какое название получила эта область? Укажите положение первого и второго пределов воспламенения. Какой характер имеет их зависимость от температуры?
28. Какова природа третьего предела воспламенения : в общем случае; для реакций окисления водорода?
29. Каким путем можно определить выражение для точки мыса полуострова воспламенения?
30. Перечислите кинетические особенности разветвленных цепных реакций.
31. В чем различие понятий: отрицательное и положительное взаимодействия цепей?
32. покажите в случае положительного взаимодействия цепей, почему смесь может воспламеняться при условии f 33. Какие процессы называют реакциями «вырожденного взрыва» или цепными реакциями с вырожденным разветвлением цепей? Приведите примеры. 34. Выедите кинетическое уравнение для начальной стадии реакции с вырожденным разветвлением и линейным обрывом цепей. 35. Получите кинетическое уравнение для реакции с вырожденным разветвлением и квадратичным обрывом цепей. 1.2Примеры 1.1 М. Боденштейн и С. Линд при изучении реакции H2 + Br2 → 2HBr экспериментально установили (1906), что скорость образования HBr в интервале температур 501-575 К выражается кинетическим уравнением d(HBr) l (H2)(Br2)½ υ = ———— = ———————— dt 1+ m(HBr)/ (Br2) где l и m – константы. Дж. Христиансен, К. Герцфельд и М. Поляни (1919) независимо предложили следующую схему цепного процесса для объяснения механизма данной темновой реакции и опытных данных 1 Br2 → Br· + Br· - зарождение цепи 2 Br· + H2 → HBr + H· 3 - реакции продолжения цепи H· + Br· → HBr + Br· 4 H· + HBr → H2 + Br· - ингибирование цепи 5 Br· + Br· → Br2 - обрыв цепи (Позднее было показано, что правильнее записать последнюю стадию в виде Br· + Br· + М → Br2 + М, где М – некоторая молекула, но в данном случае это несущественно.) Задание: на основании предложенного механизма, полагая концентрации (H·) и (Br·) малыми и стационарными, получите кинетическое уравнение реакции и выразите l и m через константы элементарных стадий. Решение : запишем выражение для скорости образования продукта HBr, исходя из приведенной в условии схемы d(HBr) υ = ———— = k2(Br·)(H2) + k3(H·)(Br2 -k4(H·)(HBr) dt Применив принцип квазистационарных концентраций к H· и Br·, можно записать d(Br·) ———— = 2k1(Br2) - k2(Br·)(H2) + k3(H·)(Br2) – dt - k4(H·)(HBr) - 2k5 (Br·)2 = 0 (2) d(H·) ———— = k2(Br·)(H2) - k3(H·)(Br2) – k4(H·)(HBr) = 0 (3) dt суммируя (2) и (3), получим k1(Br2) - k5 (Br·)2 = 0 (4) откуда k1 (Br·) = (——)½(Br2)½ (5) k5 из уравнения (3) выразим (H·) через (Br·) и (5) k2(Br·)(H2) k2(k1/ k5)½ (H2) (Br2)½ (H·) = ——————— = ———————— k3(Br2) +k4(HBr) k3(Br2) +k4(HBr) (6) Соотношения (5) и (6) указывают на то, что концентрации инициаторов цепного процесса зависят от констант скорости элементарных стадий, приведенных выше, и концентраций исходных веществ и продуктов (для (H·)). Подставляя в (1) концентрации H· и Br· - соотношении (5) и (6), получим искомое кинетическое уравнение для скорости образования HBr d(HBr) ———— = k2(k1/ k5)½ (H2) (Br2)½ + { k3(Br2) – k4(HBr) }× dt k2(k1/ k5)½ (H2) (Br2)½ 2k2(k1/ k5)½ (H2) (Br2) × ———————— = —————————— (7) k3(Br2) +k4(HBr) 1+ k4(HBr)/ k3(Br2) Уравнение (7) идентично опытному при условии, что l =2k2(k1/ k5)½ и m = k4/ k3 1.2 Кинетическое исследование разложения диметилсульфоксида (CH3SOCH3) путем измерения скорости образования метана показало, что эта реакция имеет первый порядок, опытная энергия активации равна 11,5 кДж · моль-1 . Для объяснения экспериментальных данных был предложен следующий цепной механизм реакции k1 CH3SOCH3→·CH3+ SOCH3 (1) k2 ·CH3+CH3SOCH3→CH4 + ·CH2SOCH3 (2) k3 ·CH2SOCH3→CH2SO+·CH3 (3) k4 ·CH3+·CH2SOCH3→ продукты (4) Энергия активации элементарных стадий соответственно равны Е1 = 16 кДж · моль-1 , Е2 = 2,4 кДж · моль-1 , Е3 = 4,8 кДж · моль-1 , Е4 ≈ 0. Применив принцип квазистационарных концентраций к радикалам ·CH3 и ·CH2SOCH3 и полагая, что скорость обрыва цепи (4) существенно меньше скорости ее продолжения (2), покажите, что схема согласуется с экспериментальными кинетическими результатами. Решение: обозначим скорости элементарных стадий через υ1, υ2, υ3, υ4. в этом случае скорость образования метана запишется так υ2=k2(·CH3)(CH3SOCH3). (1) Применение принципа квазистационарных концентраций к ·CH3 и ·CH2SOCH3 позволяет написать d(·CH3) (2) ——— = υ1 - υ2 + υ3 - υ4 = 0 dt (3) d(·CH2SOCH3) —————— = υ2 - υ3 - υ4 = 0 dt путем сложения (2) и (3) находим, что υ1 = 2υ4, т.е. k1 (CH3SOCH3) (·CH2SOCH3) = ——————— (4) 2к4(·CH3) Согласно уравнению (3) с учетом условий задачи, υ2=υ3+υ4≈υ3 (5) на основании предложенного механизма процесса, учитывая (4) , получим k1 (CH3SOCH3) k2 (·CH3) (CH3SOCH3) =k3 ——————— или 2k4 (·CH3) k1k3 (CH3SOCH3) k2 (·CH3)2 (CH3SOCH3) =——————————— 2 k4 Откуда извлекаем (·CH3) k1k3 (·CH3) = (————)½ (6) 2k2 k4 Подстановка выражения (6) в формулу (1) позволяет получить искомое уравнение для скорости образования метана k1k2 k3 υ= υ2 = (————)½(CH3SOCH3) (7) 2 k4 Которое имеет первый порядок по исходному веществу, что соответствует опытным данным. Выразим теперь опытную константу скорости через ki Ea k1k2 k3 kоп = Аexp(- ——) = (———)½ (8) RT 2 k4 Учитывая, что каждую константу скорости элементарной стадии можно выразить аналогичным образом Ea ki = Аi,exp(- ——)(9) RT Путем несложных операций с выражениями (8) и (9) получаем (используется стандартный прием: последовательное логарифмирование и дифференцирование по температуре указанных уравнений) Еа = ½ (Е1 + Е2 + Е3 – Е4) = ½(16+ 4,8 + 2,4)= 11,6 кДж · моль-1 (10) Рассчитанное значение энергии активации изучаемого процесса хорошо совпадает с указанной в условии опытной величиной 1.3*.Исследуют полимеризацию алкена М (мономер)в подходящем растворителе в присутствии инициатора А-источника свободных радикалов Стадия инициирования цепи: иниц-р А распадается на свободные радикалы А → 2R·(k1) затем часть радикалов вступает в реакцию R· +М→RМ·( k2). Скоростью инициирования цепи является скорость образования частиц RМ· , полагают, что υ2>>υ1. Обозначают через ƒ долю радикалов R· которые действительно участвуют в стадии инициирования, т.е. образования RМ·, ƒ называют эффективностью процесса инициирования. Стадия развития цепи RМ·+М→ RМ2·(kr) RМ2·+М→ RМ3·
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Золь-гель метод
1. Получение коллоидных систем1.1 Основные понятия и определения1.2 Теоретический анализ процессов формирования кварцевых стекол золь-ге
- Извлечение никеля из полировальных ванн для никелирования
При нанесении декоративных хромовых покрытий на деталь для защиты от коррозии сначала наносят слой никеля. Для получения гладкой и блес
- Извлечение серебра из отработанных фотографических растворов
В процессе фиксации фотографической пленки для удаления невосстановившегося серебра с пленки применяют тиосульфат натрия или аналоги
- Извлечение сульфатного варочного раствора из отработанного варочного раствора
ВВЕДЕНИЕВ современных целлюлозных заводах бойлер для регенерации химических растворов является наиболее дорогостоящим аппаратом. Чер
- Извлечение сульфит натрия из отходов процесса производства тринитротолуола
Сточные воды процесса производства тринитротолуола (ТНТ), окрашенные в красный цвет, содержат сульфит натрия, который может быть выделе
- Изотермы адсорбции паров летучих органических веществ на пористых углеродных материалах
Антропогенные изменения окружающей среды становятся все более значимыми по мере усиления хозяйственной деятельности человека. Научно
- Изучение возможности применения магнитных жидкостей для синтеза магнитных сорбентов
1. Обзор литературы1.1.Магнитные сорбенты1.1.1. Синтез пористых ферритов с применением выгорающих добавок1.1.2. Неорганические магнитона
Copyright © https://www.referat-web.com/. All Rights Reserved