Вопросы по физике
Строение атомов. Квантовые числа. Механизм излучения электромагнитных волн атомами и молекулами. Спонтанное и вынужденное излучение.
Открытие сложного строения атома – важнейший этап становления современной физики. В древние времена и далее атомы считались неделимыми. Большую роль в развитии атомистической теории сыграл Д.И.Менделеев, разработавший в 1869 периодическую систему элементов. Во второй половине XIX было экспериментально доказано, что электрон является одной из основных частей любого вещества. Первые косвенные подтверждения о сложной структуре атомов были получены при изучении катодных лучей, возникающих при электрическом разряде в сильно разреженных газах. Изучение с-в этих лучей привело к заключению, что они представляют собой поток мельчайших частиц, несущих отрицательный электронный заряд и летящих со скоростью, близкой к скорости света. Это и есть электроны. Заряд электрона есть наименьший электрический заряд. Томсон предложил первую модель атома, по которой атом – сгусток материи, обладающий положительным электрическим зарядом, в который вкраплено столько электронов, что в целом атом – электрически нейтральное образование. Но эта модель не объясняла испускание положительно заряженных частиц. Эксперименты Резерфорда послужили основой для создания протонно-нейтронной модели атома. Эта модель и определяет современные представления об устройстве атома. В центре атома находится атомное ядро, весь остальной объем – это электроны. Внутри ядра электронов нет, ядро состоит из положительно заряженных протонов и не имеющих заряда нейтронов. Число электронов в атоме равно числу протонов в ядре. Вся масса атома сосредоточена в ядре. Электроны движутся вокруг ядра (планетарная модель). Эта модель необходима для объяснения опыта по рассеиванию а-частиц, но она противоречит законам механики и электродинамики, т. к. не позволяет объяснить устойчивость атома. Ведь движение электронов по орбитам происходит с ускорением. Но атомы устойчивы и в невозбужденном состоянии могут существовать неограниченно долго, не излучая электромагнитных волн.
Это доказал Бор, который ввел свои квантовые постулаты, определяющие строение атома и условия испускания и поглощения им электромагнитного излучения:
Атомная система может находиться только в особых стационарных, или квантовых, состояниях, каждому из которых соответствует определенная энергия Е. В стационарном состоянии атом не излучает.
При переходе атома из одного стационарного состояния в другое испускается или поглощается квант электромагнитной энергии.
Переход атома из состояния с меньшей энергией в состояние с большей возможен только при поглощеени атомов энергии. Излучение происходит при переходе атома из состояния с большей энергией в состояние с меньшей. Энергия фотона равна разности энергий атома в двух его стационарных состояниях :
Излучение, испускаемое при самопроизвольном переходе атома из одного состояния в другое, называется спонтанным. Спонтанное излучение различных атомов происходит некогерентно, так как каждый атом начинает и заканчивает излучение независимо от других. В 1916 Эйнштейн предсказал, что переходы электрона в атоме с верхнего энергетического уровня на нижний с испусканием излучения могут происходить под влиянием внешнего электромагнитного поля. Такое излучение называют вынужденным или индуцированным.
Атомные ядра и нуклоны. Изотопы. Дефект массы и энергия связи ядер. Деление ядер и термоядерный синтез. Цепная реакция.
Согласно протонно-нейтронной модели атомные ядра состоят из элементарных частиц двух видов: протонов и нейтронов. Протоны — это элементарные частицы, которые являются ядрами атомов легчайшего элемента — водорода. Число протонов в ядре равно порядковому номеру элемента в таблице Менделеева и обозначается Z. Протон имеет положительный электрический заряд, по абсолютному значению равный элементарному электрическому заряду. Протон имеет конечные размеры порядка 10-13 см, хотя его нельзя представить как твердый шарик, скорее он напоминает облако с размытой границей, состоящее из рождающихся и аннигулирующих виртуальных частиц. Нейтроны электрически нейтрален, т.е. его заряд равен 0. Нейтрон устойчив только в составе стабильных атомных ядер, свободный нейтрон распадается на электрон, протон и электронное антинейтрино. В веществе в свободном виде нейтроны существуют еще меньше времени вследствие сильного поглощения их ядрами. Общее название протона и нейтрона - нуклон. В ядре нуклоны связаны силами особого рода - ядерными. Проведенные измерения показали, что размеры ядер атомов всех элементов порядка 10-15 - 10-14 м, что в десятки тысяч раз меньше размеров атома.
Изотопы - разновидности атомов одного и того же химического элемента, отличающиеся числом нейтронов всоставе ядра. Химически простые природные вещества являются смесью изотопов.
Мааса ядра определяется массой входящих в его состав нейтронов и протонов. Поскольку любое ядро состоит из Z протонов и N нейтронов N=A-Z, где А - массовое число нуклонов в ядре, то на первый взгляд масса ядра должна просто равняться сумме масс протонов и нейтронов. Однако, как показывают результаты измерений, реальная масса всегда меньше такой суммы. Их разность получила название дефекта массы Dm.
Минимальная энергия DЕсв , которую нужно затратить для разделения атомного ядра на составляющие его нуклоны, называется энергией связи ядра. Эта энергия расходуется на совершение работы против действия ядерных сил притяжения между нуклонами. На основании закона сохранения энергии можно утверждать, что при образовании ядра из отдельных нуклонов выделяется энергия, равная энергии связи. Энергия связи очень велика. С энергией связи непосредственно связано происхождение дефекта массы. Есв = Dmс2.
Деление атомных ядер - это особый процесс, характерный только для самых тяжелых ядер, начиная от тория и далее в сторону больших Z. Этот процесс может происходить под действием различных частиц (в основном нейтронов) и носит характер ядерной реакции. Но может происходить спонтанно и носить характер особого вида радиоактивного распада. Суть процесса деления состоит в раскалывании тяжелого ядра на два осколка с примерно равными зарядами и массами. Чтобы деление произошло, ядро должно деформироваться, вытянуться, что требует первоначальных затрат энегрии. Эту энергию оно получает при захвате какой-то частицы. Другой способ - чем тяжелее ядро, тем меньше период спонтанного деления.
Так как между атомными ядрами на малых расстояниях действуют ядерные силы притяжения, при сближении двух ядер возможно их слияние, т.е. синтез более тяжелого ядра. Ядра должны обладать достаточной кинетической энергией, чтобы преодолеть электростатическое отталкивание. В природе реакции синтеза происходят в очень горячем веществе: в недрах звезд. Ядерный синтез, происходящий в разогретом веществе, называется термоядерным. Особенность термоядерных реакций как источника энергии - очень большое ее выделение на единицу массы реагирующих веществ - в 10 млн. раз больше, чем в химических реакциях.
Цепная реакция была открыта в 1939 году: выяснилось, что при попадании в ядро одного нейтрона оно делится на две-три части. Было также обнаружено, что при делении ядер урана, кроме осколков, вылетают также 2-3 свободных нейтрона. При благоприятных условиях они могут попасть в другие ядра урана и вызвать их деление. Необходимое условие для осуществления цепной реакции - наличие большого кол-ва урана-235, так как для разрушения ядер изотопа урана-238 энергия нейтронов недостаточна.
Систематика элементарных частиц. Кварки и лептоны. Античастицы и барионная ассиметрия природы. Представление о физическом вакууме и виртуальных частицах. Объединение электромагнитного и слабого взаимодействий.
Элементарные частицы - первичные, неразложимые частицы, из которых, по предположению, состоит вся материя. Всего их более 350 (протоны, электроны, мюоны и др.). В зависимости от времени жизни частицы делятся на стабильные (электрон, протон, фотон и нейтрино), квазистабильные (распадающиеся при электромагнитном и слабом взаимодействиях) и резонансы (частицы, распадающиеся за счет сильного взаимодействия).
В соответствии с четырьмя видами фундаментальных взаимодействий различают соответственно четыре вида элементарных частиц: адроны (мезоны - пионы и каоны, и барионы - нуклоны и гипероны), участвующие во всех взаимодействиях, лептоны (электрон, мюон,электронное нейтрино, мюонное нейтрино), не участвующие только в сильном (а нейтрино и в электромагнитном), фотон, участвующий только только в электромагнитном взаимодействии, и гипотетический гравитон - переносчик гравитационного взаимодействия.
Кварки и лептоны - это истинно элементарные частицы, которые на данном этапе науки считаются неразложимыми. Они относятся к частицам вещества. Кварк - частица со спином 1/2 и дробным электрическим зарядом, составной элемент атомов. Кварки также имеют две внутренние степени свободы - «аромат» и «цвет» (степень свободы - независимое возможное изменение состояния физической системы, обусловленное вариациями ее параметров). Каждый кварк может находиться в одном из трех цветовых состояний, которые условно называют красным, синим и желтым. В наблюдаемых адронах кварки скомбинированы таким образом, что возникающие состояния не несут цвета - являются «бесцветными». Ароматов известно пять и предполагается наличие шестого. Свойства кварков разных ароматов различны. Обычное вещество состоит из легких u- и d- кварков, входящих в состав нуклонов ядер. У кварка дробный электрический заряд, кратный или равный одной трети заряда электрона. Лептоны - это эелментарные частицы, не участвующие в сильном взаимодействии. Каждая из пар лептонов объединяется с соответствующей парой кварков в четверку, которая называется поколением.
У многих частиц существуют двойники в виде античастиц, с теми же массой, временем жизни, спином, но отличающиеся знаками всех зарядов: электрического, барионного, лептонного и т.д. (электрон - позитрон, протон - антипротон и др.). Существование античастиц впервые предсказал П. Дирак в 1928 г. Из уравнения Дирака для релятивистского движения электрона следовало второе решение для его двойника, имеющего ту же массу, но положительный электрический заряд. Характерная особенность поведения астиц и античастиц - их аннигиляция при столкновении, т.е. переход в другие частицы с сохранением энергии, импульса, электрического заряда и т.п. Операция замены частиц на античастицы называется зарядовым сопряжением. Истинно нейтральные частицы характеризуются особым квантовым числом С, которое называется зарядовой четностью и показывает, как ведет себя волновая функция такой частицы при зарядовом сопряжении - меняет знак или нет. Внутренняя четность Р - квантовое число, характеризующее поведение системы при зеркальном отражении. Операция замены знака времени определяется числом Т. Опыты китайских ученых в 1956 г. показали, что сохранение пространственной четности подтверждается экспериметнально только для сильного и электромагнитного взаимодействий, а в слабом скорее всего не соблюдается. Одновременно с этим открытием оказалась опровергнутой симметрия природы относительно операции зарядового сопряжения С. Так, потеряв симметрию пространства и заряда по отдельности, мир оставался СР-симметричным, т.е. античастицы стали рассматриваться как зарядовосопряженные, отраженные в зеркале. Но в 1964 г. был проведен опыт, демонстрирующий нарушение СР-симметрии. В науке все больше укрепляется мнение, что именно благодаря нарушению СР-симметрии произошло разделение вещества и антивещества во Вселенной, без чего вся материя существовала бы в виде океана послеаннигиляционных фотонов. ЗАГАДКА БАРИОННОЙ АССИМЕТРИИ ПРИРОДЫ: Закон - сколько появляется положительного вещества, столько и антивещества. Загадка - куда исчезло антивещество.
Физический вакуум - возможный вид материи, первые представления о котором дал один из создателей квантовой теории поля П. Дирак. Хотя вакуум мы непосредственно не видим (он прозрачен для электромагнитных излучений и не оказывает никакого сопротивления движению материальных частиц и тел), но все же он может проявляться при взаимодействии с ним тех же частиц или электромагнитных волн (гамма-квантов), обладающих достаточной энергией. Если эта энергия превышает удвоенную энергию покоя, например, электрона, гамма-квант при наличии еще одной частицы (атомного ядра) может, сам исчезнув, породить пару электрон-позитрон, как бы «вырванную» из вакуума.
Виртуальные частицы в квантовой теории - это частицы, которые имеют такие же квантовые числа (спин, электрический и барионный заряды и др.), как и соответствующие реальные частицы, но для которых не выполняется обычная связь между энергией, импульсом и массой. Возможность такого нарушения вытекает из квантового соотношения неопределенностей между энергией и временем и может происходить лишь в течение малого промежутка времени, что препятствует экспериментальной регистрации виртуальных частиц. Соотношение неопределенностей, или принцип неопределенности для энергии и времени гласит: энергию физической системы даже в стационарном состоянии можно измерить лишь с точностью, не превышающей результат деления постоянной Планка на время измерения.
Электромагнитное взаимодействие ответственно за связь электронов с ядрами, атомов в молекулах. Обусловленные им процессы менее интенсивны, чем при сильном взаимодействии. Слабое взаимодейтсвие вызывает переходы между разными типами кварков и, в частности, определяет бета-распады нуклонов в ядрах, когда один из трех кварков, составляющих нуклон, переходит в кварк другого типа и излучает электроны и антинейтрино. Оно также управляет взаимными переходами между различными типами лептонов.
Основные понятия синергетики и принципы самоорганизации открытых систем. Необходимые условия самоорганизации. Уровни самоорганизации в природе. Бифуркации и катастрофы.
Синергетика - это наука о самоорганизации сложных открытых систем. Самоорганизация - процесс формирования в системе все более сложных и сложных подсистем. Этот процесс естественен. Этот процесс вызван не специфическим воздейтсвием извне. Другими словами, самоорганизация в общем понимании - это присущая материи способность к усложнению элементов и созданию все более упорядоченных структур в ходе своего развития; в узком понимании - это скачок, фазовый переход системы из менее в более упорядоченное состояние. В самоорганизации всегда возникает нечто новое, чего раньше не было. Самоорганизация - это междисциплинарная обоасть знания, ведущий принцип всего современного естествознания, применение ко многим предметам, наукам.
В процессе усложнения систем различают два взаимодополняющих механизма: объединение частей и разделение (фракционирование) систем. Механизмы, основанные на этих двух принципах, обнаруживаются на всех уровнях сложности и упорядоченности, начиная с макромира и кончая крупномасштабными структурами Вселенной. На разных уровнях сложности системы в основе лежат силы, казалось бы, разной природы, но в конечном счете все они сводятся к четырем фундаментальным взаимодействиям.
Другая сторона явления самоорганизации - информативность, способность системы любого уровня создавать, накапливать, хранить и использовать информацию, в том числе и о направлении своего развития.
Примеры самоорганизации: торнадо, химические часы, биологические процессы (эволюция), социальные системы (общество), формирование человеческой психики на протяжении жизни.
Необходимые условия самоорганизации:
Открытость системы (взаимодействие с другими системами, с окружающей средой): обмен энергией, обмен веществом, обмен информацией при деградации.
Формирование циклических процессов.
Принцип колыбели. Самоорганизация не происходит везде, а лишь в отдельных, особо сложных частях. Система должна быть погружена в другую систему, более большую ( как бы в колыбели). Нет равноправия. Характер самоорганизации - глобальность деградации и локальность самоорганизации.
Достаточно длительный срок. Системе проще ничего не делать, чем что-то делать. Система обычно находится в состоянии динамического равновесия, т.е. проходят какие-то процессы в системе, но в общем она не изменяется.
Система должна быть достаточно далека от состояния термодинамического равновесия. Иначе больше вероятность деградации, чем самоорганизации.
Уровни самоорганизации в природе:
Космологический - происхождение вещества из вакуума, появление барионной ассиметрии, разделение различных типов фундаментальных взаимодейтсвий, формирование протонов и нейтронов, формирование атомов водорода и гелия, первичный нуклеосинтез, разделение атомов вещеста и электромагнитного излучения.
Астрофизический - формирование галактик, звезд и планетных систем, звездный нуклеосинтез, образование в космосе простейших молекул вплоть до органических.
Геофизический - формирование и эволюция литосферы, гидросферы и атмосферы Земли как благоприятного резервуара для появления сложных органических молекул.
Химический и биохимический - химическая и биохимическая эволюция молекул и молекулярных агрегатов.
Биологический - биологическая эволюция от появления первых клеток до высших животных и человека, формирование и развитие общего в биосфере.
Социальный - социальная эволюция как историческое развитие различных форм человеческих сообществ от первобытных племен до современной всемирной цивилизации.
Психический и интеллектуальный - психическая и интеллектуальная эволюция от появления языка и письменности, мифологии ирелигии до современного состояния единой мировой науки; попытки формирования ноосферы.
Система обязательно когда-нибудь находится в состоянии кризиса, когда любая маленькая деталь может привести к непредсказуемым последствиям, гибели системы. Теория катастроф с математической точки зрения. Катастрофа - это когда при малом взаимодействии система уходит от прежнего динамического состояния и переходит в новое состояние. Система должна пережить катастрофу, чтобы самоорганизоваться.
Бифуркация - разветвление траектории движения тела или дальнейшего пути развития системы в некоторый момент времени. Если предсказание самоорганизации и возможно, то лишь ограниченно, локально, т.к. состояние катастрофы непредсказуемо - бифуркация : либо система «выздоравливает», либо «умирает».
При подготовке этой работы были использованы материалы с сайта http://www.studentu.ru
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Вопросы по физике
Виды электромагнитных излучений. Спектры излучений и их характеристики.Инфракрасные лучи – это электромагнитные волны, которые испуск
- Второе начало (закон) термодинамики. Концепция энтропии и закон её возрастания
В системе тел, находящихся в термодинамическом равновесии, без внешнего вмешательства невозможны никакие реальные процессы. Следовате
- Связь между массой и энергией
Важнейшее следствие теории относительности, играющее одну из главных ролей в ядерной физике и физике элементарных частиц - универсальн
- Основная задача классической механики и границы ее применимости
Классическая механика Ньютона сыграла и играет до сих пор огромную роль в развитии естествознания. Она объясняет множество физических
- Происхождение и развитие галактик и звезд
Введение. К началу нашего века границы разведанной Вселенной раздвинулись настолько, что включили в себя Галактику. Многие, если не все,
- Изучение радиоактивного излучения
Общие сведенияРадиоактивное излучение бывает трех типов: альфа-, бета- и гамма-излучение.Альфа-излучение отклоняется электрическим и ма
- Уравнения и способы их решения
Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культу