Скачать

Энтропия и ее роль в построении современной картины мира

Реферат

по дисциплине Концепция современного естествознания

ТЕМА

Энтропия и ее роль в построении современной картины мира

2009


Содержание

1 Что такое энтропия

2 Термодинамическая энтропия

3 Энтропия Вселенной

4 Энтропия и информация

5 Негэнтропия

6 Энтропия и жизнь. Биологическая упорядоченность

Список использованных источников


1 Что такое энтропия

Среди всех физических величин, вошедших в науку в XIX в., энтропия занимает особое место в силу своей необыкновенной судьбы. С самого начала энтропия утвердилась в теории тепловых машин. Однако очень скоро рамки этой теории оказались ей тесны, и она проникла в другие области физики, прежде всего в Теорию излучения. Экспансия энтропии этим не ограничилась. В отличие, например, от других термодинамических величин энтропия довольно быстро перешагнула границы физики. Она вторглась в смежные области: космологию, биологию и, наконец, в теорию информации (6).

Понятие энтропии является многозначным, невозможно дать ему единственное точное определение. Наиболее общим же является следующее:

Энтропия – мера неопределенности, мера хаоса.

В зависимости от области знания, выделяют множество видов энтропии: термодинамическая энтропия, информационная (энтропия Шеннона), культурная, энтропия Гиббса, энтропия Клаузиуса и многие другие.

Энтропия Больцмана является мерой беспорядка, хаотичности, однородности молекулярных систем.

Физический смысл энтропии выясняется при рассмотрении микросостояний вещества. Л. Больцман был первым, кто установил связь энтропии с вероятностью состояния. В формулировке М. Планка утверждение, выражающее эту связь и называемое принципом Больцмана, представляется простой формулой

S = kBlnW.

Сам Больцман никогда не писал этой формулы. Это сделал Планк. Ему же принадлежит введение постоянной Больцмана kB. Термин «принцип Больцмана» был введен А. Эйнштейном. Термодинамическая вероятность состояния W или статистический вес этого состояния – это число способов (число микросостояний), с помощью которых можно реализовать данное макросостояние (6). Энтропия Клаузиуса пропорциональна количеству связанной энергии, находящейся в системе, которую нельзя превратить в работу. Энтропия Шеннона количественно характеризует достоверность передаваемого сигнала и используется для расчета количества информации.

Рассмотрим подробнее термодинамическую энтропию, энтропию Шеннона (информационную), связь энтропии и биологической упорядоченности.

2.Термодинамическая энтропия

Энтропия как физическая величина впервые была введена в термодинамику Р. Клаузиусом в 1865г. Он определил изменение энтропии термодинамической системы при обратимом процессе как отношение изменения общего количества тепла ΔQ к величине абсолютной температуры T:

\Delta S = \frac{\Delta Q}{T}.

Энтропия в термодинамике – мера необратимого рассеивания энергии, является функцией состояния термодинамической системы (8).

Существование энтропии обуславливается Вторым началом термодинамики. Так как любая реальная система, которая претерпевает цикл операций и возвращается в свое начальное состояние, функционирует, только увеличивая энтропию внешней среды, с которой данная система находится в контакте. Это также означает, что ни на какой ступени цикла сумма изменений энтропии системы и внешней среды не может быть отрицательной. Таким образом, второе начало термодинамики допускает следующую формулировку:

Сумма изменений энтропии системы и внешней среды не может убывать.

Соответственно этому, Вселенная как единое целое не может вернуться в начальное состояние.

Рудольфом Клаузиусом же первое и второе начала термодинамики были резюмированы так:

Энергия Вселенной постоянна.

Энтропия Вселенной стремится к максимуму.

(7, С.93).

Из-за необратимых процессов энтропия изолированной системы продолжает возрастать до тех пор, пока не достигает максимально возможного значения. Достигнутое при этом состояние есть состояние равновесия. (7, С. 130) Из этой формулировки Второго начала следует, что в конце эволюционного процесса Вселенная должна прийти в состояние термодинамического равновесия (в состояние тепловой смерти), которому соответствует полная дезорганизация системы. Представление о тепловой смерти Вселенной, вытекающее из формулировки второго начала, предложенной Клаузиусом, – пример неправомерного перенесения законов термодинамики в область, где она уже не работает. Законы термодинамики применимы, как известно, только к термодинамическим системам, Вселенная же таковой не является (6).

3.Энтропия Вселенной

Как уже говорилось, законы термодинамики нельзя применить ко Вселенной в целом, так как она не является термодинамической системой, однако во Вселенной можно выделить подсистемы, к которым применимо термодинамическое описание. Такими подсистемами являются, например, все компактные объекты (звезды, планеты и др.) или реликтовое излучение (тепловое излучение с температурой 2,73 К). Реликтовое излучение возникло в момент Большого взрыва, приведшего к образованию Вселенной, и имело температуру около 4000 К. В наше время, то есть спустя 10–20 млрд лет после Большого взрыва, это первичное (реликтовое) излучение, прожившее все эти годы в расширяющейся Вселенной, охладилось до указанной температуры. Расчеты показывают, что полная энтропия всех наблюдаемых компактных объектов ничтожно мала по сравнению с энтропией реликтового излучения. Причина этого, прежде всего в том, что число реликтовых фотонов очень велико: на каждый атом во Вселенной приходится примерно 109 фотонов (6). Энтропийное рассмотрение компонент Вселенной позволяет сделать еще один вывод. По современным оценкам, полная энтропия той части Вселенной, которая доступна наблюдению, более чем в 1030 раз меньше, чем энтропия вещества этой же части Вселенной, сконденсированной в черную дыру. Это показывает, насколько далека окружающая нас часть Вселенной от максимально неупорядоченного состояния.

4 Энтропия и информация

Уже упомянутому Рудольф Клаузиусу также принадлежит другая формулировка Второго начала термодинамики: «Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему».

Проведем мысленный эксперимент, предложенный Джеймсом Максвеллом в 1867 году: предположим, сосуд с газом разделён непроницаемой перегородкой на две части: правую и левую. В перегородке отверстие с устройством (так называемый демон Максвелла), которое позволяет пролетать быстрым (горячим) молекулам газа только из левой части сосуда в правую, а медленным (холодным) молекулам — только из правой части сосуда в левую. Тогда, через большой промежуток времени, горячие молекулы окажутся в правом сосуде, а холодные — в левом (4).

Таким образом, газ в левой части резервуара будет нагреваться, а в правой - остывать. Таким образом, в изолированной системе тепло будет переходить от холодного тела к горячему с понижением энтропии системы в противоречии со вторым законом термодинамики. Л. Сциллард, рассмотрев один из упрощенных вариантов парадокса Максвелла, обратил внимание на необходимость получения информации о молекулах и открыл связь между информацией и термодинамическими характеристиками. В дальнейшем решение парадокса Максвелла было предложено многими авторами. Смысл всех решений заключается в следующем: информацию нельзя получать бесплатно. За нее приходится платить энергией, в результате чего энтропия системы повышается на величину, по крайней мере, равную ее понижению за счет полученной информации (1). В теории информации энтропия – это мера внутренней неупорядоченности информационной системы. Энтропия увеличивается при хаотическом распределении информационных ресурсов и уменьшается при их упорядочении (2). Рассмотрим основные положения теории информации в той форме, которую ей придал К. Шеннон. Информация, которую содержит событие (предмет, состояние) y о событии (предмете, состоянии) x равна (будем использовать логарифм по основанию 2):

I(x, y) = log(p(x/y) / p(x)),

где p(x) – вероятность события x до наступления события y (безусловная вероятность); p(x/y) – вероятность события x при условии наступления события y (условная вероятность).

Под событиями x и y обычно понимают стимул и реакцию, вход и выход, значение двух различных переменных, характеризующих состояние системы, событие, сообщение о нем. Величину I(x) называют собственной информацией, содержащейся в событии x.

Рассмотрим пример: нам сообщили (y), что ферзь стоит на шахматной доске в позиции x = a4. Если до сообщения вероятности пребывания ферзя во всех позициях были одинаковы и равны p(x) = 1/64, то полученная информация равно

I(x) = log(1/(1/64)) = log(64) = 6 бит. (3, С.12)

В качестве единицы информации I принимают количество информации в достоверном сообщении о событии, априорная вероятность которого равна 1/2. Эта единица получила название "бит" (от английского binary digits). (1)

Предположим теперь, что полученное сообщение было не вполне точным, например, нам сообщили, что ферзь стоит то ли в позиции a3, то ли в позиции a4. Тогда условная вероятность его пребывания в позиции x = a4 равна уже не единице, а p(x/y) = ½. Полученная информация будет равна

I(x, y) = log((1/2) / (1/64)) = 5 бит,

то есть уменьшится на 1 бит по сравнению с предыдущим случаем. Таким образом, взаимная информация тем больше, чем выше точность сообщения, и в пределе приближается к собственной информации. Энтропию можно определить как меру неопределенности или как меру разнообразия возможных состояний системы. Если система может находиться в одном из m равновероятных состояний, то энтропия H равна

H = log(m).


Например, число различных возможных положений ферзя на пустой шахматной доске равно m = 64. Следовательно, энтропия возможных состояний равна

H = log64 = 8 бит.

Если часть шахматной доски занята фигурами и недоступна для ферзя, то разнообразие его возможных состояний и энтропия уменьшаются.

Можно сказать, что энтропия служит мерой свободы системы: чем больше у системы степеней свобод, чем меньше на нее наложено ограничений, тем больше, как правило, и энтропия системы (3, С.13-15). При этом нулевой энтропии соответствует полная информация (степень незнания равна нулю), а максимальной энтропии – полное незнание микросостояний (степень незнания максимальна) (6).

5 Негэнтропия

Явление снижения энтропии за счет получения информации отражается принципом, сформулированным в 1953 г. американским физиком Леоном Брюллиэн, исследовавшим взаимопревращение видов энергии. Формулировка принципа следующая: «Информация представляет собой отрицательный вклад в энтропию». Принцип носит название негэнтропийного принципа информации (5). Понятие негэнтропия (то же, что и отрицательная энтропия или синропия) также применимо к живым системам, оно означает энропию, которую живая система экспортирует, чтобы снизить уровень собственной энтропии.


6. Энтропия и жизнь. Биологическая упорядоченность

Вопрос об отношении жизни ко второму началу термодинамики – это вопрос о том, является ли жизнь островком сопротивления второму началу. Действительно, эволюция жизни на Земле идет от простого к сложному, а второе начало термодинамики предсказывает обратный путь эволюции – от сложного к простому. Указанное противоречие объясняется в рамках термодинамики необратимых процессов. Живой организм как открытая термодинамическая система потребляет энтропии меньше, чем выбрасывает ее в окружающую среду. Величина энтропии в пищевых продуктах меньше, чем в продуктах выделения. Иными словами, живой организм существует за счет того, что имеет возможность выбросить энтропию, вырабатываемую в нем вследствие необратимых процессов, в окружающую среду (6).

Так, ярким примером является упорядоченность биологической организации человеческого тела. Понижение энтропии при возникновении такой биологической организации с легкостью компенсируется тривиальными физическими и химическими процессами, в частности, например, испарением 170 г воды (1).

Научный потенциал энтропии далеко не исчерпан уже существующими приложениями. В перспективе проникновение энтропии в новую область науки – синергетику, которая занимается изучением закономерностей образования и распада пространственно-временных структур в системах различной природы: физических, химических, биологических, экономических, социальных и так далее.


Список использованных источников

1 Блюменфельд Л.А. Информация, динамика и конструкция биологических систем. Режим доступа: http://www.pereplet.ru/obrazovanie/stsoros/136.html.

2 Глоссарий. Режим доступа: http://www.glossary.ru/cgi-bin/gl_sch2.cgi?RIt(uwsg.o9.

3 Голицын Г. А. Информация. Поведение, язык, творчество.М: ЛКИ, 2007г.

4 Демон Максвелла – Википедия. Режим доступа: http://ru.wikipedia.org/wiki/Демон_Максвелла.

5 Негэнтропия – Наука. Режим доступа: http://ru.science.wikia.com/wiki/Негэнтропия.

6 Осипов А. И., Уваров А. В. Энтропия и ее роль в науке. – МГУ им. М. В. Ломоносова, 2004.

7 Пригожин Современная термодинамика, М.: Мир, 2002.

8 Термодинамическая энтропия – Википедия. Режим доступа: http://ru.wikipedia.org/wiki/Термодинамическая_энтропия.