Скачать

Фотосинтез - проще простого

Содержание

1. Ведение................................................................................................. 3

2. Ошибка Ван-Гельмонта................................................................... 3

3. Самое интересное из веществ во всем органическом мире........... 6

4. Красный цвет — символ созидания................................................. 7

5. О чем поведали меченые атомы!...................................................... 9

6. Зеленая электростанция.................................................................. 10

7. Фотосинтез и урожай....................................................................... 13

8. «Чародейкою зимою околдован, лес стоит...».............................. 16

9. Леса — легкие планеты!.................................................................. 17

10. «Лес, точно терем расписной, лиловый, золотой, багряный...» 20

11. Радуга флоры............................................................................... 23

12. Зеленые животные — реальность или фантазия!.................... 26

13. Заключение................................................................................... 30

14. Список использованных источников........................................ 30

1. Ведение

Когда-то, где-то на Землю упал луч солнца, но он упал не на бесплодную почву, он упал на зеленую былинку пшеничного ростка, или, лучше сказать, на хлорофилловое зерно. Ударя­ясь об него, он потух, перестал быть светом, но не исчез... В той или другой форме он вошел в состав хлеба, который послужил нам пищей. Он преобразился в наши мускулы, в наши нер­вы... Этот луч солнца согревает нас. Он приво­дит нас в движение. Быть может, в эту минуту он играет в нашем мозгу.

Растение из воздуха образует органическое вещество, из солнечного луча — запас силы. Оно представляет нам именно ту машину, которую обещают в будущем Мушо и Эриксон, — машину, действующую даровою силою солнца. Этим объяс­няется прибыльность труда земледельца: затратив сравнительно небольшое количество вещества, удобрений, он получает большие массы органичес­кого вещества; затратив немного силы, он получает громадный запас силы в виде топлива и пищи. Сельский хозяин сжигает лес, стравливает луг, продает хлеб, и они снова возвращаются к нему в виде воздуха, который при действии солнечного луча вновь принимает форму леса, луга, хлеба. При содействии растения он превращает не имею­щие цены воздух и свет в ценности. Он торгует воздухом и светом.

2. Ошибка Ван-Гельмонта

В старые времена врач обя­зан был знать ботанику, ведь многие лекарственные средст­ва готовились из растений. Неудивительно, что лекари не­редко выращивали растения, проводили с ними различные опыты.

Так, голландец Ян Баптист Ван-Гельмонт (1579—1644) не только занимался врачебной практикой, но и эксперименти­ровал с растениями. Он решил узнать, благодаря чему растет растение. С животными и че­ловеком вроде бы все ясно: поедая корм или пищу, они получают вещества, благода­ря которым увеличиваются в размерах. Но за счет чего крошечное семя, лишенное рта, превращается в огром­ное дерево?

Чтобы ответить на этот вопрос, Ван-Гельмонт проде­лал следующее. Взял кадку, в которую насыпал 91 килограмм высушенной в печи почвы, смочил ее дождевой водой и посадил ивовый побег массой 2,25 килограмма. Каждый день в течение пяти лет он поливал растение чистой дож­девой водой. По прошествии этого времени Ван-Гельмонт извлек деревце, тщательно очистил корни от прилипших частиц почвы и взвесил содер­жимое кадки и растение. Оказалось, что масса почвы уменьшилась всего на 57 грам­мов, а вот масса ивы возросла почти на 75 килограммов. Результат эксперимента ис­следователь объяснил исклю­чительно поглощением воды. Так возникла водная теория питания растений.

Джозеф Пристли (1733— 1804) — известный англий­ский ученый-химик. Он открыл кислород, получил хлористый водород, аммиак, фтористый кремний, сернистый газ, ок­сид углерода. Привезенный французом Шарлем Кондамином из Южной Америки кау­чук Пристли в 1770 году предложил использовать для стирания написанного, назвав его гуммиэластиком. Как хи­мика Пристли заинтересовал вопрос: почему воздух полей и лесов чище городского? Уче­ный предположил, что расте­ния очищают его от веществ, выделяемых людьми при ды­хании, а также дымящимися трубами заводов и фабрик. С целью проверки своего предположения он посадил под стеклянный колпак мышь. Довольно быстро животное погибло. Тогда эксперимен­татор поместил под такой же колпак другую мышь, но уже вместе с веткой мяты. «Это было сделано в начале авгус­та 1771 года. Через восемь-девять дней я нашел, что мышь прекрасно могла жить в той части воздуха, в которой росла ветка мяты. Побег мя­ты вырос почти на три дюйма...»(1).

Опыт заинтересовал ученых, многие повторили его в своих лабораториях, однако резуль­таты получались неодинако­вые: в одних случаях расте­ния действительно очищали воздух и делали его пригод­ным для дыхания мыши, в других — этого не наблю­далось. Надо сказать, что сам Пристли при повторении опы­тов получил противоречивые результаты. Установить исти­ну ученый уже не смог, так как консервативно настроен­ные англичане разгромили его прекрасно оборудованную ла­бораторию и богатую библио­теку за сочувствие их вла­дельца идеям французской ре­волюции. Пристли оставил научную работу и эмигриро­вал в США.

В другой своей работе «Слово о слоях земных» он высказался о воздушном пи­тании растений еще более определенно: «Откуда же но­вый сок сосны собирается и умножает их возраст, о том не будет спрашивать, кто знает, что многочисленные иглы нечувствительными сква­жинами почерпают в себя с воздуха жирную влагу, ко­торая тончайшими жилками по всему растению расходится и разделяется, обращаясь в его пищу и тело». «Нечувст­вительные скважины» — это не что иное, как устьица, хоро­шо известные каждому из школьного учебника ботаники.

К сожалению, мысли, вы­сказанные великим Ломоносо­вым, остались неизвестными научным кругам. А вот идею Пристли об очищении возду­ха поддержали не только уче­ные, она стала популярна да­же в народе. Результатом яви­лось массовое разведение цве­тов в помещениях, где нахо­дились больные. При этом двери обычно держали плотно закрытыми, дабы «вредный» наружный воздух не мог про­никнуть в комнату.

Голландский врач Ингенгауз (1730—1799) усомнился в правильности такого исполь­зования растении и провел ряд экспериментов с целью проверки действенности этого приема. В результате своих опытов он сделал открытие, что только зеленые части растений могут улуч­шать воздух, да и то лишь в том случае, когда они на­ходятся на свету. Все осталь­ное — цветки, корни, а также зеленые листья, лишенные света, — воздуха не исправ­ляет.

Проделаем такой опыт. Возьмем две банки с водой. В одну нальем воду из-под крана, а в другую — кипяче­ную и охлажденную. При ки­пячении, как известно, уда­ляются газы, растворенные в воде. Затем в каждую банку поместим веточки водного растения элодеи, накроем их воронками, на отростки кото­рых наденем пробирки, напол­ненные водой. Обе банки выставим на свет.

Через некоторое время мы заметим, что в банке с не кипяченой водой веточки элодеи начинают выделять какой-то газ. Когда он заполнит про­бирку, можно установить, что это кислород: внесенная в пробирку тлеющая лучинка ярко вспыхивает. В банке с кипяченой водой, где нет угле­кислого газа, веточки элодеи кислорода не выделяют.

Попробуем доказать, что все дело именно в углекис­лом, а не в каком-то ином газе, удаленном при кипяче­нии. Для этого пропустим че­рез кипяченую воду углекис­лый газ, и вскоре веточки элодеи станут выделять кис­лород.

Швейцарский естествоиспы­татель Жан Сенебье (1742— 1809) первым установил необ­ходимость углекислого газа как источника углерода для зеленых растений. Он же пред­ложил термин «физиология ра­стений» и в 1880 году написал первый учебник по этой дис­циплине.

Его соотечественник естест­воиспытатель Никола Теодор Соссюр (1767—1845) работал в области физики, химии и геологии. Однако мировую из­вестность приобрел благодаря трудам в области физиологии растений. С помощью точных методов количественного хи­мического анализа он убеди­тельно доказал, что растения на свету усваивают углерод из углекислого газа, выде­ляя при этом кислород. Уче­ный также установил, что рас­тения, как и животные, ды­шат, поглощая кислород и выделяя углекислый газ.

Так постепенно складыва­лись представления о фото­синтезе как о процессе, в ходе которого из углекислого газа и воды зеленые растения на свету образуют органические вещества и выделяют кис­лород:

бСО2 + 6Н2О ® С6Н12О6 + 6О2­

Термин «фотосинтез» был предложен в 1877 году изве­стным немецким физиологом растений Вильгельмом Пфеффером (1845—1920). В ходе этого процесса солнечная энергия преобразуется в энер­гию химических связей орга­нических соединений.

3. Самое интересное из веществ во всем органическом мире

Так назвал хлорофилл вели­кий Чарльз Дарвин, когда наш соотечественник Климент Аркадьевич Тимирязев рас­сказал ему о своих опытах с этим веществом. В то время, когда химическая природа процесса фотосинтеза пред­ставлялась весьма туманной, подобное утверждение было весьма ценным, поскольку привлекало внимание ученых к новой очень перспективной проблеме. А сам термин «хло­рофилл» был предложен в 1818 году французскими хими­ками П. Пельтье и Ж. Каванту. Он образован из гречес­ких слов «хлорос» — зеленый и «филлон» — лист.

Выделить хлорофилл из листа несложно. Для этого измельчим листья любого рас­тения ножницами, поместим в ступку, прильем немного спир­та, разотрем и отфильтруем в чистую сухую пробирку. Если у вас нет под рукой ступки, кусочки листьев поме­стите в небольшую колбочку, влейте спирт и осторожно нагрейте на спиртовке. Очень быстро спирт окрасится в изумрудно-зеленый цвет из-за присутствия хлорофилла.

А теперь познакомимся с некоторыми свойствами этого пигмента. Поместите за про­биркой черную бумагу или ка­кой-то темный предмет и на­правьте на нее яркий свет. Раствор хлорофилла отражает свет с измененной длиной волны, поэтому хлорофилл приобретает вишнево-красную окраску. Это явление носит название флуоресценции.

В чем причина флуоресцен­ции хлорофилла? Кванты све­та падают на его молекулы, находящиеся в растворе, и вызывают их возбуждение. При этом электрон молекулы пигмента переходит на более высокий энергетический уро­вень. В растворе, в отличие от зеленого листа, энергия возбужденного электрона не расходуется на синтез органи­ческих веществ, поэтому этот электрон возвращается на прежний энергетический уро­вень, а избыток энергии испускается в виде квантов красного света. Видимый свет, как известно, состоит из раз­ных лучей: фиолетовых, синих, голубых, зеленых, желтых, оранжевых, красных. Их окраска зависит от длины вол­ны, которая увеличивается по направлению от синих к крас­ным лучам солнечного спект­ра. А вот величина квантов и их энергетический потен­циал изменяются при этом в противоположном направле­нии: кванты синих лучей зна­чительно богаче энергией, чем кванты красных. Когда свет падает на молекулы хлоро­филла, часть энергии кван­тов рассеивается в виде теп­ла, поэтому отраженные кван­ты несут меньший запас энер­гии, а длина волны света увеличивается, смещаясь в сторону длины волны красных лучей. Вот почему мы видим красное свечение при осве­щении хлорофилла белым светом, то есть совокупностью разных лучей солнечного спектра.

Любопытно в связи с этим отметить, что на прекрасных фресках гениального Андрея Рублева мы часто видим со­четание зеленого с красным: в складках зеленой одежды как бы скрываются красные от­светы.

Если вы имеете спектро­скоп — несложный школьный прибор, в котором при помо­щи призмы видимый свет раз­лагается на составные компо­ненты, — то можно изучить спектр поглощения хлорофил­ла. Приложите пробирку с раствором хлорофилла к щели спектроскопа и загляните в окуляр, вы увидите мощную темную полосу поглощения в красной части спектра и ме­нее выраженную в синей. Итак, хлорофилл поглощает красные и синие лучи спектра. А вот зеленые, беспрепятст­венно проходя через его раст­вор, сообщают ему свою окраску.

Отчего зависит зеленая окраска пигмента? Добавим в пробирку с вытяжкой хлоро­филла несколько капель сла­бой соляной кислоты. Тотчас же окраска изменится на оливково-бурую. Что при этом произошло с хлорофиллом?

Уже давно установлено, что его молекула содержит атом магния. При взаимодействии с соляной кислотой он вытес­няется из нее атомами водо­рода соляной кислоты. Можно предположить, что наличие атома магния и определяет зеленую окраску пигмента.

Теперь в ту же пробирку добавим небольшое количест­во ацетата меди или ацета­та цинка и подогреем содер­жимое пробирки на спир­товке. Едва жидкость заки­пит, окраска раствора резко изменится — вместо оливково-бурой она вновь станет изум­рудно-зеленой. Что же при этом произошло? В молекуле хлорофилла на место атома магния при взаимодействии с соляной кислотой встал водород. В свою очередь, атомы водорода при добав­лении ацетата меди или аце­тата цинка и нагревании вы­тесняются атомами меди или цинка. Происходит восстанов­ление металлоорганической связи. Следовательно, зеленая окраска хлорофилла опреде­ляется наличием в нем ато­ма металла вне зависимости от того, будет ли это маг­ний, медь или цинк.

4. Красный цвет — символ созидания

Если солнечный спектр, кото­рый мы наблюдаем в спект­роскопе, спроектировать на экран, то можно изучать ско­рость фотосинтеза в разных лучах — синих, желтых, зеле­ных, красных.

Впервые интенсивность фо­тосинтеза в различных лучах спектра исследовал физик В. Добени. В 1836 году он сделал очень важное откры­тие: зеленый лист может осу­ществлять фотосинтез в от­дельных лучах спектра, причем в зависимости от харак­тера лучей он идет с неоди­наковой скоростью. Но вот на вопрос, в каких именно лучах спектра фотосинтез протекает наиболее интенсив­но, В. Добени ответил не­правильно. И виной тому ме­тодические погрешности при проведении эксперимента. Во-первых, ученый получал те или иные лучи, пропуская солнечный свет через цвет­ные стекла или окрашенные растворы. Во-вторых, он при­менял очень примитивный ме­тод учета интенсивности фото­синтеза. Ученый поместил отрезок побега водного расте­ния элодеи в пробирку с во­дой срезом вверх и считал, сколько пузырьков кислорода отрывается с поверхности сре­за за единицу времени. Добени пришел к выводу, что интен­сивность фотосинтеза пропор­циональна яркости света, а наиболее яркими лучами в то время считались желтые. Этой же точки зрения при­держивались Джон Дрепер (1811—1882) и физиологи рас­тений Ю. Сакс и В. Пфеффер. В 1846 году Дрепер изучал интенсивность фото­синтеза в различных лучах спектра, испускаемых спектро­скопом, и пришел к тому же заключению, что и Добени.

Между тем утверждение противоречило закону сохра­нения энергии. Ведь желтые лучи, как мы уже знаем, незначительно поглощаются хлорофиллом. Могут ли они быть главной движущей силой процесса фотосинтеза?

Такова была обстановка в области изучения фотосинте­за, когда к исследованиям в этой области приступил К. А. Тимирязев. Будучи пос­ледовательным материалис­том, он утверждал, что яркость лучей зависит от субъектив­ного восприятия света глазом (синие лучи кажутся нам неяркими, а желтые наоборот) и потому не может опреде­лять интенсивность усвоения углекислого газа зелеными растениями. Наиболее дея­тельными в процессе фото­синтеза могут быть только те лучи, которые поглощаются хлорофиллом. Главной причи­ной ошибки Дрепера он счи­тал недостаточную чистоту отдельных участков спектра, возникшую из-за широко открытой щели спектроскопа. Увеличивать же щель спект­роскопа приходилось для уси­ления интенсивности светово­го потока, иначе фотосинтез с помощью примитивных ме­тодов не обнаруживался. Для того чтобы иметь возможность работать с узкой щелью спектроскопа, необходимо бы­ло создать принципиально новые, значительно более чувствительные методы учета скорости этого процесса. Сконструированные К. А. Ти­мирязевым приборы позволя­ли резко повысить точность исследований. В восьмидесятых годах прошлого столетия химик Пьер Эжен Марсель Вертело говорил К. А. Тими­рязеву, что каждый раз он привозит в Париж новый ме­тод анализа газов, в тысячу раз более усовершенствован­ный. С помощью этой аппара­туры К. А. Тимирязев убеди­тельно показал, что наиболее активно фотосинтез идет в красных лучах спектра, кото­рые, как уже отмечалось, ин­тенсивнее других поглощаются хлорофиллом. По направле­нию к зеленой части спектра интенсивность фотосинтеза ос­лабевает. В зеленых лучах она минимальная. И это вполне понятно: ведь они хлорофил­лом почти не поглощаются. В сине-фиолетовой части наблюдается новый подъем интенсивности фотосинтеза. Таким образом, Тимирязев установил, что максимум усвоения листом углекислого газа совпадает с максимумом поглощения света хлорофил­лом. Иными словами, он впер­вые экспериментально дока­зал, что закон сохранения энергии справедлив и по отно­шению к фотосинтезу. Зеле­ный цвет растений отнюдь не случаен. В процессе эволюции они приспособились к погло­щению именно тех лучей сол­нечного спектра, энергия кото­рых наиболее полно использу­ется в ходе фотосинтеза.

Современная наука под­твердила правильность взгля­дов К. А. Тимирязева относи­тельно исключительной важ­ности для фотосинтеза именно красных лучей солнечного спектра. Оказалось, что коэф­фициент использования крас­ного света в ходе фотосинтеза выше, чем синих лучей, которые также поглощаются хлорофиллом.

Красные лучи, по представ­лениям К. А. Тимирязева, играют основополагающую роль в процессе мироздания и созидания жизни. В статье-притче «Красное знамя», написанной им в июне 1917 года, читаем: «Если красный цвет является факти­ческим признаком, выраже­нием работоспособности света в творческом процессе созида­ния жизни, то не следует ли признать его самой подходя­щей эмблемой, выражением работоспособности света зна­ния, света науки?». Интересно в связи с этим отметить, что в государстве древних инков Тауантинсуйю красный цвет почитался свя­щенным.

5. О чем поведали меченые атомы!

Американский ученый Мэлвин Кальвин для изучения темно­вых реакций фотосинтеза, связанных с фиксацией и превращением углекислого га­за, широко использовал метод меченых атомов.

Вещества, имеющие ра­диоактивную метку, по хими­ческим свойствам практически не отличаются от обычных. Однако наличие радиоактив­ного атома позволяет про­следить за судьбой молекулы, ее превращениями в другие соединения, ведь излучение, испускаемое меткой в ходе распада, может быть легко измерено с помощью при­боров. М. Кальвин при изучении реакций фотосинтеза исполь­зовал также метод хроматографического разделения сме­си соединений. Если каплю раствора, содержащего смесь разных молекул, нанести на хроматографическую бумагу, а конец ее поместить в соот­ветствующий растворитель, то вещества придут в движение и каждое займет особую зо­ну на хроматограмме. С по­мощью приборов легко можно найти места расположения радиоактивных соединений, перевести их в раствор и определить химическую при­роду. С помощью этого метода удалось выяснить, какие ве­щества и в какой последо­вательности образуются в зе­леном листе на свету после введения меченого углекисло­го газа.

М. Кальвин избрал в каче­стве объекта исследования зе­леную водоросль хлореллу. После кратковременного осве­щения в присутствии радио­активного углекислого газа ее быстро убивали (фиксирова­ли) горячим спиртом, чтобы приостановить протекающие в ней реакции. Затем спиртовую вытяжку концентрировали, разделяли на хроматограмме и проводили анализ на содер­жание различных радиоактив­ных соединений.

Достаточно пяти секунд пре­бывания в атмосфере углекис­лого газа, чтобы меченый углерод этого соединения ока­зывался в трехуглеродном ор­ганическом веществе под на­званием фосфоглицериновая кислота. Как оно образова­лось? Кальвин предположил, что углекислый газ присоеди­няется к некоему пятиуглерод­ному соединению. В результа­те возникает шестиуглеродное соединение, которое по причи­не своей нестойкости на хроматограммах не обнаружи­вается. Оно, едва возникнув, тотчас же распадается на две молекулы фосфоглицериновой кислоты.

Предположение М. Кальви­на подтвердилось — углекис­лый газ действительно присоединяется к пятиуглеродному веществу под названием рибулезодифосфат.

Работы М Кальвина по выяснению сущности темпо­вых реакций фотосинтеза — крупнейшее достижение со­временной физиологии расте­ний. В 1961 году он был удостоен Нобелевской премии.

6. Зеленая электростанция

Существует еще один путь использования человеком сол­нечной энергии, усвоенной растениями, — непосредствен­ная трансформация световой энергии в электрическую.

Выше мы проследили путь возбужденного квантом света электрона в ходе фотосинте­за. В настоящее время он изучен довольно детально. Именно способность хлоро­филла под действием света отдавать и присоединять электроны лежит в основе работы генераторов, содержа­щих хлорофилл.

М. Кальвин, работы которо­го мы уже неоднократно упо­минали, в 1972 году выдвинул идею создания фотоэлемента, в котором в качестве источ­ника электрического тока служил бы хлорофилл, способный при освещении отнимать элек­троны от каких-то определен­ных веществ и передавать их другим. Кальвин использовал в качестве проводника, контак­тирующего с хлорофиллом, оксид цинка. При освещении этой системы в ней возникал электрический ток плотностью 0,1 микроампера на квадрат­ный сантиметр. Этот фото­элемент функционировал срав­нительно недолго, поскольку хлорофилл быстро терял спо­собность отдавать электроны.

Для продления времени действия фотоэлемента был использован дополнительный источник электронов — гидро­хинон. В новой системе зеле­ный пигмент отдавал не толь­ко свои, но и электроны гид­рохинона. Расчеты показы­вают, что такой фотоэлемент площадью 10 квадратных мет­ров может обладать мощ­ностью около киловатта.

Японский профессор Фудзио Такахаси для получения электроэнергии использовал хлорофилл, извлеченный из листьев шпината. Транзистор­ный приемник, к которому бы­ла присоединена солнечная ба­тарейка, успешно работал. Кроме того, в Японии прово­дятся исследования по пре­образованию солнечной энер­гии в электрическую с по­мощью цианобактерий, выра­щенных в питательной среде. Тонким слоем их наносят на прозрачный электрод из окси­да цинка и вместе с противоэлектродом погружают в буферный раствор. Если те­перь бактерии осветить, то в цепи возникнет электрический ток.

В 1973 году американцы У. Стокениус и Д. Остерхельт описали необычный белок из мембран фиолетовых бактерий, обитающих в соленых озерах Калифорнийских пустынь. Его назвали бактериородопсином. Это вещество представляет собой белок, соединенный с каротиноидом (о каротиноидах мы поговорим ниже) ретиналем, состоящим из 20 уг­леродных атомов. Он похож на родопсин — пигмент сет­чатки глаза позвоночных жи­вотных, что и определило его название. Белковая часть ро­допсина представлена полипептидной цепью умеренной длины, состоящей из 248 ами­нокислотных остатков, после­довательность расположения которых в молекуле выяснена учеными. Большой вклад в исследование структуры бактериородопсина внесли совет­ские ученые, работавшие под руководством академика Ю. А. Овчинникова.

В конце 1973 года в АН СССР был разработан проект сравнительного изучения жи­вотного и бактериального пиг­ментов, получивший название «Родопсин». В 1978 году жур­нал «Биоорганическая химия» опубликовал статью, в кото­рой излагалась последова­тельность расположения ами­нокислот в молекуле бактериородопсина. Лишь через год подобная работа была завер­шена в США под руковод­ством известного биохимика Г. Кораны.

Любопытно отметить, что бактериородопсин появляется в мембранах галобактерий при недостатке кислорода. Де­фицит же кислорода в водое­мах возникает в случае ин­тенсивного развития галобак­терий. С помощью бактериородопсина бактерии усваи­вают энергию Солнца, ком­пенсируя тем самым возник­ший в результате прекраще­ния дыхания дефицит энергии.

Бактериородопсин можно вы­делить из галобактерий, помес­тив эти соелюбивые созда­ния, прекрасно чувствующие себя в насыщенном растворе поваренной соли, в воду. Тотчас же они переполняются водой и лопаются, при этом их содержимое смешивается с окружающей средой. И толь­ко мембраны, содержащие бак­териородопсин, не разрушают­ся из-за прочной «упаковки» молекул пигмента, которые образуют белковые кристаллы (еще не зная структуры, уче­ные назвали их фиолетовыми бляшками). В них молекулы бактериородопсина объедине­ны в триады, а триады — в правильные шестиугольники.

Поскольку бляшки значи­тельно крупнее всех других компонентов галобактерий, их нетрудно выделить путем цен­трифугирования. После про­мывки центрифугата получа­ется пастообразная масса фи­олетового цвета. На 75 % она состоит из бакте­риородопсина и на 25 — из фосфолипидов, заполняющих промежутки между белковыми молекулами. Фосфолипиды — это молекулы жиров в соеди­нении с остатками фосфорной кислоты. Другие вещества в центрифугате отсутствуют, что создает благоприятные условия для экспериментиро­вания с бактериородопсином. К тому же это сложное соеди­нение очень устойчиво к фак­торам внешней среды. Оно не утрачивает активности при нагревании до 100 °С и может храниться в холодильнике го­дами. Бактериородопсин ус­тойчив к кислотам и различ­ным окислителям. Причина его высокой устойчивости обусловлена тем, что эти гало-бактерии обитают в чрезвы­чайно суровых условиях — в насыщенных солевых раство­рах, какими, по существу, являются воды некоторых озер в зоне выжженных тро­пическим зноем пустынь. В та­кой чрезвычайно соленой, да к тому же еще и перегретой, среде организмы, обладающие обычными мембранами, су­ществовать не могут. Это обстоятельство представляет большой интерес в связи с возможностью использования бактериородопсина в качестве трансформатора световой эне­ргии в электрическую.

Если выпавший в осадок под воздействием ионов каль­ция бактериородопсин осве­тить, то с помощью вольт­метра можно обнаружить наличие электрического потен­циала на мембранах. Если выключить свет, он исчезает. Таким образом, ученые дока­зали, что бактериородопсин может функционировать как генератор электрического то­ка.

В лаборатории известного советского ученого, специа­листа в области биоэнергети­ки В. П. Скулачева тщательно исследовались процесс встра­ивания бактериородопсина в плоскую мембрану и условия функционирования его в ка­честве светозависимого гене­ратора электрического тока.

Позднее в этой же лабора­тории были созданы электри­ческие элементы, в которых использовались белковые ге­нераторы электрического тока. В этих элементах имелись мембранные фильтры, пропи­танные фосфолипидами с бак­териородопсином и хлорофил­лом. Ученые полагают, что подобные фильтры с белками-генераторами, соединенные последовательно, могут слу­жить в качестве электричес­кой батареи.

Исследования по приклад­ному использованию белков-генераторов, выполненные в лаборатории члена-корреспон­дента АН СССР В. П. Скула­чева. привлекли к себе прис­тальное внимание ученых. В Калифорнийском универси­тете создали такую же бата­рею, которая при однократном использовании в течение полутора часов заставляла све­титься электрическую лампоч­ку. Результаты экспериментов вселяют надежду, что фото­элементы на основе бактерио­родопсина и хлорофилла най­дут применение в качестве генераторов электрической энергии. Проведенные опы­ты — первый этап в создании новых видов фотоэлектричес­ких и топливных элементов, способных трансформировать световую энергию с большой эффективностью.

7. Фотосинтез и урожай

Жизнь современного человека немыслима без выращивания различных культурных расте­ний. Органические вещества, образуемые ими в ходе фото­синтеза, служат основой пита­ния человека, производства лекарств, они нужны для из­готовления бумаги, мебели, строительных материалов и т. п.

Культурные растения спо­собны быстро размножаться, покрывать зеленым экраном своей листвы громадные пло­щади, улавливать колоссаль­ное количество солнечной энергии и образовывать вели­кое множество разнообразных органических веществ. В ре­зультате фотосинтеза создает­ся 95 % сухого ве­щества растений. Поэтому мы с полным правом можем ут­верждать, что управление этим процессом один из наиболее эффективных путей воздействия на продуктив­ность растении, на их урожай. Физиологи растений совер­шенно правильно считают, что основная задача работ в области фотосинтеза — сохра­нение и поддержание на более высоком уровне фотосинтети­ческой деятельности естест­венной растительности Земли, максимальное повышение фо­тосинтетической продуктив­ности культурных растений.

Каковы же пути управления человеком фотосинтетической деятельностью растений?

Часто сдерживающим фак­тором фотосинтеза является недостаток углекислого газа. Обычно в воздухе присутству­ет около 0,03 % СО2. Однако над интенсивно фотосинтезирующим полем его со­держание уменьшается иногда в три-четыре раза по сравне­нию с приведенной цифрой. Вполне естественно, что из-за этого фотосинтез тормозится. Между тем для получения среднего урожая сахарной свеклы один гектар ее посевов должен усваивать за сутки около 300—400 килограммов углекислого газа. Такое коли­чество содержится в колос­сальном объеме воздуха.

Опыты известного отечест­венного физиолога растений В. Н. Любименко показали. что увеличение количества углекислого газа в атмосфере до 1,5 % приводит к прямо пропорциональному возрастанию интенсивности фото­синтеза. Таким образом, один из путей повышения продук­тивности фотосинтеза — уве­личение концентрации углекис­лого газа в воздухе.

Современный уровень тех­нологии, в целом, позволяет решить эту задачу в глобаль­ных масштабах. Однако весь­ма сомнительно, чтобы чело­век решился на практике осу­ществить этот проект. Дело в том, что более высокий уровень содержания углекис­лого газа в воздухе приведет к изменению теплового балан­са планеты, к ее перегреву вследствие так называемого «парникового эффекта». «Пар­никовый эффект» обусловлен тем, что при наличии большого количества углекислого газа атмосфера начинает сильнее задерживать испускаемые по­верхностью Земли тепловые лучи.

Перегрев планеты может привести к таянию льдов в полярных областях и в высо­когорьях, к поднятию уровня Мирового океана, к сокраще­нию площади суши, в том числе занятой культурной рас­тительностью. Если учесть, что население Земли увеличи­вается еженедельно на 1 мил­лион 400 тысяч человек, то понятна крайняя нежелатель­ность таких изменений.

Человечество весьма обе­спокоено естественным ростом концентрации углекислого га­за в атмосфере, наблюдаемым в последние годы в результате интенсивного развития про­мышленности, автомобильно­го, железнодорожного и авиа­ционного транспорта. Поэтому оно едва ли решится когда-либо сознательно стимулиро­вать этот процесс в глобаль­ных масштабах.

В теплицах и на поле уве­личение содержания углекис­лого газа имеет важное зна­чение для повышения урожай­ности культурных растений. С этой целью в теплицах сжи­гают опилки, раскладывают сухой лед на стеллажах, вы­пускают углекислый газ из баллонов. Основной способ повышения концентрации СО2 над полем — активизация жизнедеятельности почвенных микроорганизмов путем внесе­ния в почву органических и минеральных удобрений. В процессе дыхания микробы выделяют большое количество углекислого газа. В последние годы для обогащения почвы и припочвенного воздуха СО2 поля стали поливать водой, насыщенной углекислым га­зом.

Другой путь преодоления отрицательного влияния низ­кой концентрации углекислого газа в атмосфере на урожай — распространение таких форм растений, которые очень интен­сивно фотосинтезируют даже при ничтожно малом его содер­жании. Это — С4 — растения. У них рекордные показате­ли интенсивности фотосинтеза.

Распространение таких расте­ний, дальнейшее изучение осо­бенностей их фотосинтеза представляется весьма нуж­ным и перспективным.

Растительность земного ша­ра довольно неэффективно ис­пользует солнечную энергию. Коэффициент полезного дей­ствия у большинства дикорас­тущих растений составляет всего 0,2 %, у культур­ных он равен в среднем одно­му %. При оптималь­ном снабжении культурных растений водой, минеральны­ми солями коэффициент по­лезного использования света повышается до четырех — шести %. Теоретичес­ки же возможен КПД, равный восьми—десяти %. Сопоставление приведенных цифр говорит о больших воз­можностях в увеличении фо­тосинтетической продуктив­ности растений. Однако прак­тическая их реализация встре­чает большие трудности.

Повысить эффективность использования солнечной энер­гии в ходе фотосинтеза можно, расположив растения на опти­мальном расстоянии друг от друга. В изреженных посевах значительная часть света про­падет зря, а вот в загущен­ных растения затеняют друг друга, их стебли становятся длинными и ломкими, легко полегающими от дождя и вет­ра. В том и другом случае происходит снижение урожая. Вот почему очень важно выбрать для каждой культуры наиболее оптимальное рас­стояние. При этом следует учи­тывать, что оптимальная плот­ность посевов может быть раз­личной в зависимости от обес­печенности растений водой, элементами минерального пи­тания и от их особенностей. К сожалению, многие агроно­мы не принимают во внима­ние названные факторы, по­этому так медленно растет продуктивность наших полей. Наиболее часто растения не­эффективно фотосинтезируют из-за недостатка воды и эле­ментов минерального питания. Если улучшить условия водо­снабжения и питания, то раз­меры листовой поверхности увеличатся, а между ними и величиной урожая обычно су­ществует прямая зависимость. Однако существует некото­рый предел роста эффектив­ности фотосинтеза, когда дальнейшее улучшение водо­снабжения и минерального питания не дает результатов. Дело в том, что при определенном размере листовой по­верхности (обычно, когда на 1 квадратный метр посевов приходится четыре-пять квад­ратных метров листьев) рас­тения поглощают практически всю энергию света. Если же на единицу площади поля при­ходится еще большая поверх­ность листьев, то в результате затенения их друг другом растения вытянутся, интенсив­ность фотосинтеза уменьшится. Вот почему дальнейшее улучшение снабжения расте­ний водой и элементами мине­рального питания неэффек­тивно.

В чем же выход из создав­шегося положения? Ученые по­лагают, что в выведении но­вых сортов культурных расте­ний, отличающихся выгодным строением тела. В частности, они должны иметь компактную низкорослую крону, с верти­кально ориентированными листьями, обладать крупными запасающими (луковицы, клуб­ни, корни, корневища) и репро­дуктивными (семена, плоды) органами.

На повышение плодородия почвы и улучшение водоснаб­жения эти сорта будут реаги­ровать усилением интенсив­ности фотосинтеза, умеренным потреблением продуктов фо­тосинтеза (ассимилятов), на рост листьев и других вегета­тивных органов, а также активным использованием ас­симилятов на формирование репродуктивных и запасающих органов.

Вот какие жесткие требо­вания предъявляются теперь к науке, занимающейся выведе­нием новых сортов культурных растений, — селекции. Из ска­занного ясно, что без тесного сотрудничества селекционеров с физиологами растений созда­ние перспективных сортов ста­новится практически невоз­можным.

Селекционеры вывели сор­та, отвечающие современным требованиям. Среди них — низкорослый рис, созданный в Международном институте ри­са в Маниле, хлопчатник Дуплекс, с вертикально ориен­тированными листьями, не за­теняющими друг друга, карли­ковая пшеница мексиканской селекции. Эти сорта на фонах высокого плодородия дают в полтора раза более высокие урожаи, чем их предшествен­ники. Однако это лишь один из путей увеличения фотосин­тетической продуктивности растен