Формулы (математический анализ)
шпаргалка
Формулы дифференцирования Таблица основных интегралов
Правила интегрирования
Основные правила дифференцирования
Пусть С—постоянная, u=u(x), v=v(x) – функции, имеющие
производные.
7)
Интегрирование по частям
Основные свойства определённого интеграла
Интегрирование простейших дробей
Замена переменной в неопределенном интеграле
Площадь плоской фигуры
Площадь криволинейной трапеции, ограниченной кривой , прямыми и отрезком(a, b) оси Ox, вычисляется по формуле
Площадь фигуры, ограниченной кривыми и прямыми , находится по формуле
Если кривая задана параметрическими уравнениями , то площадь криволинейной трапеции, ограниченной этой кривой, прямыми и отрезком(a, b) оси Ox, выражается формулой
где определяются из уравнений
Площадь криволинейного сектора, ограниченного кривой, заданной в полярных координатах уравнением и двумя полярными радиусами находится по формуле
Длина дуги плоской кривой
Если кривая y=f(x) на отрезке (a, b) – гладкая (т.е. производная непрерывна), то длина соответствующей дуги этой кривой находится по формуле
При параметрическом задании кривой x=x(t), y=y(t) (x(t) и y(t) – непрерывно дифференцируемые функции) длина дуги кривой, соответствующая монотонному изменению параметра , вычисляется по формуле
Если гладкая кривая задана в полярных координатах уравнением , то длина дуги равна
Вычисление объема тела
Вычисление объема тела по известным площадям поперечных сечений.
Если площадь сечения тела плоскостью, перпендикулярной оси Ox, может быть выражена как функция от x, т.е. в виде , то объем части тела, заключенной между перпендикулярными оси Ox плоскостями x=a и x=b, находится по формуле
Вычисление объема тела вращения. Если криволинейная трапеция, ограниченная кривой и прямыми вращается вокруг оси Ox, то объем тела вращения вычисляется по формуле
Если фигура, ограниченная кривыми и прямыми x=a, x=b, вращается вокруг оси Ox, то объем тела вращения
Вычисление площади поверхности вращения
Если дуга гладкой кривой вращается вокруг оси Ox, то площадь поверхности вращения вычисляется по формуле
Если кривая задана параметрическими уравнениями , то
Список литературы
Для подготовки данной работы были использованы материалы с сайта http://www.shpori4all. narod.ru/
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Все формулы по математике в школе
Формулы сокр. умножения и разложения на множители :(a±b)?=a?±2ab+b?(a±b)?=a?±3a?b+3ab?±b?a?-b?=(a+b)(a-b)a?±b?=(a±b)(a?∓ab+b?),(a+b)?=a?+b?+3ab(a+b)(a-b)?=a?-b?-3ab(a-b)xn-an=(x-a)(xn-1+axn-2+a?x
- Принципы квантовой механики
Соотношение неопределенности Гейзенберга. Логическим развитием идеи о корпускулярных свойствах света (“волны могут вести себя подоб
- Основные тригонометрические формулы
1.Основы.sin2a+cos2a=1seca=1/cosacsca=1/sinasec2a-tg2a=1csc2a-ctg2a=12.Сумма углов.cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbsin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-cosasinbtg(a+b)=tga+tgb/1-tgatgb==ctga+ctgb/ctgactgb-1t
- Мир глазами Нильса Бора: волны и их восприятие
Волны и частицы в классическом естествознании. Вещество в классической теории обычно рассматривается как совокупность дискретных не
- Ошибка Эйнштейна
В центре всего рассмотрения стоит вопрос: существует ли в природе физически выделенные (привилегированные) состояния движения?А.Эйншт
- Уравнение Дирака
Спин. Спин является важнейшей характеристикой микрообъектов, которая не имеет сколько-нибудь близкого аналога в макроскопическом мир
- Движение. Пространство и время
Что делает мир единым? Пытались найти основу всего сущего. Основа всего сущего–субстанция(категория философии).Понятие субстанции сфо