Скачать

Устройства генерирования и канализации субмиллиметровых волн

Проблема генерирования колебаний в субмиллиметровом диапазоне радиоволн является одной из наиболее трудных проблем современной радиотехники.

В последние годы успешно разрабатываются маломощные генераторы миллиметрового и субмиллиметрового диапазонов. Но задача генерирования мощных высокостабильных колебаний в диапазоне 300—3000 ГГц практически пока не решена. Большинство методов генерирования колебаний большой мощности в указанном диапазоне исследовано лишь теоретически, а их экспериментальная проверка проводилась на миллиметровых волнах, что затрудняет в ряде случаев окончательную оценку их перспективности.

Следует особо подчеркнуть, что существующие генераторы субмиллиметровых волн, например ЛОВ, квантовые генераторы (лазеры) и другие, являются принципиально источниками монохроматических колебаний.

Под воздействием различных факторов спектральная линия современных генераторов субмиллиметровых волн уширяется, однако ширина этой спектральной линии значительно уже, чем спектр некогерентных источников. С помощью специальных мер ширина спектральной линии когерентных источников может быть значительно сужена. В этом случае говорят о стабилизации частоты когерентных генераторов. Таким образом, с проблемой генерации тесно связана проблема стабилизации частоты. Очевидно, в первую очередь представляют интерес исследования, направленные на повышение стабильности частоты существующих генераторов. Поэтому ниже рассматриваются вопросы стабилизации частоты генераторов типа ламп обратной волны и лазеров.

В настоящей работе на основе литературных источников дано общее представление о методике и способах проникновения в область субмиллиметровых волн, кратко освещены направления изысканий принципиально возможных способов генерирования субмиллиметровых волн. Теория рассматриваемых генераторов не приводится. Излагаются лишь основные принципы работы, а так же рассмотрены наиболее перспективные области применения и распространение радиотехнических систем миллиметрового и субмиллиметрового диапазонов волн.


1. Ламповые и полупроводниковые генераторные приборы субмиллиметрового диапазона

Задача создания генераторов субмиллиметровых волн решалась путем моделирования электровакуумных приборов СВЧ диапазона. Успехи, достигнутые при моделировании СВЧ приборов, в значительной степени определялись улучшением технологии изготовления электронных пушек и замедляющих структур (ЗС).

Естественно, по мере увеличения частоты возникают специфические трудности, ограничивающие генерируемые мощности и типы моделируемых приборов. В настоящее время из широко распространенных приборов СВЧ субмиллиметровые волны генерируют только лампы обратной волны типа О и клистроны.

Определенный интерес представляет возможность вместо обычной замедляющей структуры использовать плазменный волновод и на этой основе разработать плазменные усилители и генераторы.

1.1 Лампы обратной волны (ЛОВ)

Разработка ЛОВ для субмиллиметровых волн основывалась на методе масштабного копирования. Однако полное масштабное копирование невозможно, так как в субмиллиметровом диапазоне этому препятствуют трудность создания чрезвычайно больших плотностей тока в электронном пучке, сложность изготовления замедляющих систем, обеспечивающих высокие электрические характеристики и хороший отвод тепла.

С повышением частоты необходимо увеличивать плотность мощности пучка, что связано как с возрастанием омических потерь, так и с сокращением эффективно взаимодействующей с электромагнитным полем площади поперечного сечения пучка. При пропорциональном моделировании, как известно, площадь поперечного сечения электронного пучка уменьшается пропорционально квадрату длины волны.

Большое сжатие пучка обеспечивает его малый диаметр и большую плотность без перегрузки катода.

Однако для фокусировки сильно сжатого пучка требуется большая величина магнитного поля. Магнитное поле возрастает приблизительно пропорционально частоте. Весьма критичной становится точность центровки электродов и сопряжения пушки с ЗС. Угловая точность в субмиллиметровом диапазоне должна быть выше 1˚.

Задача создания электронных пушек для ЛОВ субмиллиметрового диапазона является весьма сложной. В опытах с одной из пушек самый малый диаметр пучка составлял 0,06 мм при 85%-ной фокусировке. Плотность тока превышала 1000 А/см2 при напряженности магнитного поля 8000 э.

Параметры электронных пушек в значительной мере определяют частотный предел ламп. По мере их совершенствования будут повышаться генерируемые частоты и энергетические характеристики ламп.

Замедляющие системы, таким образом, должны иметь по возможности большие геометрические размеры периодической структуры, обладать хорошим теплоотводом и быть простыми в изготовлении, т. е. для рассматриваемого диапазона перспективными являются замедляющие системы простой формы с наибольшим шагом периодической структуры. Этим требованиям наилучшим образом удовлетворяют различные варианты периодической структуры типа гребенки. Основные достоинства таких замедляющих систем: простота изготовления, малые омические потери, так как пучок обычно взаимодействует с первой пространственной гармоникой. Сопротивление связи мало (порядка Ома). Благодаря тому, что основание такой системы массивное, допускаются большие мощности рассеивания.

В связи с большими рассеиваемыми мощностями в современных субмиллиметровых ЛОВ, как правило, применяют водяное охлаждение.

М.Б. Голант и А.А.Негирев нашли оптимальные формы теплорассеивающих поверхностей в субмиллиметровых ЛОВ, что позволило разрешить проблему теплоотвода при разработке отечественных приборов.

Замедляющие структуры для ламп субмиллиметрового диапазона изготовляются методом фрезерования, штамповки, фототравления, фотоосаждения, резания ультразвуком и электронным лучом. Качество технологии в большой степени определяет параметры приборов.

Для нормальной работы прибора необходимо, чтобы период между двумя пролетами электронов был примерно кратен периоду генерируемых колебаний. Номера использующихся пространственных гармоник здесь очень высоки. В таких приборах можно снизить пусковые токи по сравнению с обычными ЛОВ, имеющими такую же длину замедляющей системы, и при этом получить к. п. д. примерно такой же, как у обычных ЛОВ малой мощности с малыми потерями в замедляющей системе.

Таким образом, сочетание резонанса в замедляющей системе и резонанса электронного пучка может способствовать использованию ЛОВ на более коротких волнах субмиллиметрового диапазона.

Приборы характеризуются многоэлектродной конструкцией, сравнительно высокими напряжениями питания и большими магнитными полями. До длин волн = 0,6 мм используются фокусирующие системы с постоянными магнитами, а в более коротковолновых лампах применены электромагниты. Отдельные экземпляры этих приборов на волнах 0,9 мм генерировали колебания мощностью около 100 мВт, а на волнах 0,9—0,6 мм – мощностью несколько десятков милливатт. Разрабатываются ЛОВ для генерирования волн длиной до 0,345 мм.

Описание: Scan0011

Рис. 1.1 Зависимость выходной мощности ЛОВ-1 и длины генерируемой волны от напряжения коллектора

Советскими учеными под руководством М. Б. Голанта разработаны генераторы типа ЛОВ, предназначенные для работы на волнах вплоть до 0,296 мм.

Описание: Scan0010

Рис. 1.2 Внешний вид приборов ЛОВ-1 и ЛОВ-0,5

1 – фланец; 2 – штуцер водяного охлаждения; 3, 4 – выводы накала и катода; 5 – геттер.

На графике рис. 1. показана зависимость выходной мощности и длины генерируемой волны от напряжения на замедляющей системе для одного из экземпляров прибора ЛОВ-1.

Электровакуумные приборы субмиллиметровых волн требуют для своей работы сильных магнитных полей, поэтому они выпускаются непакетированными. Для уменьшения потерь вывод энергии осуществляется через волновод с увеличенным сечением. Для генерирования колебаний в диапазоне 0,5 мм разработаны также резонансные ЛОВ, работающие в ряде дискретных областей.

Крутизна перестройки резонансных ЛОВ в 5 - 6 раз меньше, вследствие чего стабильность частоты подобных ЛОВ несколько выше; зоны плавной перестройки лежат в пределах сотен мегагерц.

Все существующие приборы требуют водяного охлаждения. Отечественные приборы обладают достаточно высокой надежностью и удобны в эксплуатации.

По принципу действия к ЛОВ близок предложенный Ф.С. Русиным и Г.Д. Богомоловым прибор типа О, названный ими оротроном, который, как показали исследования, может генерировать субмиллиметровые волны.

В оротроне эффективность взаимодействия электронов с СВЧ полем повышена благодаря использованию резонансной системы.

Под руководством А.Я. Усикова его сотрудниками М.Д. Трутнем и Т.Я. Левиным разработаны импульсные генераторы и генераторы непрерывного действия типов О и М с повышенной средней мощностью, работающие в милли- метровом и в значительной части субмиллиметрового диапазона. Рост мощности достигнут вследствие значительного увеличения объема области взаимодействий.

1.2 Плазменные приборы

Ряд исследователей высказывал предположение, что для генерирования и усиления субмиллиметровых волн вместо обычной замедляющей системы ЛОВ может быть применен плазменный волновод.

В изучение приборов, использующих электронно-ионную плазму, большой вклад внесли советские ученые В.Л. Гинзбург, Л.Д. Ландау, Г.А. Бернашевский, З.С. Чернов и др.

Расчеты показывают, что мощность колебаний плазменных субмиллиметровых генераторов и усилителей может достигать десятков ватт. В электроннолучевом плазменном приборе в отличие от ЛОВ высокочастотное поле не ослабевает по мере приближения к центру пучка. Участие всего пучка в процессе взаимодействия с полем плазменных колебаний обеспечивает более высокий к. п. д. и позволяет повысить выходную мощность за счет увеличения диаметра пучка. Однако при реализации таких устройств встречается ряд весьма серьезных затруднений, Из-за столкновения электронного пучка с ионами и нейтральными атомами энергия пучка рассеивается в плазме, появляются шумы. Этот эффект ограничивает рабочую частоту и требует увеличения степени ионизации плазмы.

Для увеличения рабочей частоты необходимо преодолеть две серьезные трудности:

1) получить плазму чрезвычайно высокой плотности (1014 — 1016 ион/см3) при ионизации больше 50%; чем плотнее плазма, тем выше должен быть процент ионизации;

2) найти эффективный способ ввода и вывода энергии.

Возможно, последнюю трудность удастся преодолеть путем использования таких явлений, как распространение поверхностных волн вдоль плазменного столба и волн в плазме, помещенной в магнитное поле.

1.3 Полупроводниковые генераторы

Трудности, возникающие при разработке полупроводниковых СВЧ генераторов и электровакуумных, одни и те же: мелкоструктурность элементов, сложность отвода тепла. Создание полупроводниковых приборов осложняется еще худшей теплопроводностью и меньшей допустимой рабочей температурой полупроводниковых материалов.

Несмотря на это, разработаны приборы на туннельных и лавинно-пролетных диодах, которые генерируют колебания небольшой мощности в миллиметровом диапазоне длин волн. Указанные ограничения делают невозможной работу классических полупроводниковых генераторов в субмиллиметровом диапазоне. В этом диапазоне могут использоваться умножители на полупроводниковых диодах и, очевидно, импульсные генераторы на лавинно-пролетных диодах (ЛПД). Были получены колебания на частоте  = 340 ГГц с помощью генератора на ЛПД, работающего в импульсном режиме при больших импульсных токах. Можно предположить, что для работы в субмиллиметровом диапазоне могут быть созданы генераторы на туннельно-пролетных диодах.

Исследования последних лет указывают на большую перспективность использования объемных эффектов для генерации СВЧ колебаний. Первым таким эффектом, позволившим создать генераторы близкого к миллиметровому диапазона, явился эффект Ганна.

Применение так называемого режима ограничения накопления пространственного заряда (ОНПЗ) в диодах из арсенида галлия, предложенного Дж. Коуплендом, позволяет надеяться на создание высокоэффективных генераторов субмиллиметрового диапазона мощностью в несколько ватт.

Природа возникновения отрицательного дифференциального сопротивления в диоде из арсенида галлия, работающего в режиме ОНПЗ, та же, что и для режима, открытого Ганном.

В диоде Ганна отрицательная проводимость существует только в узкой области (домене) арсенида галлия с повышенной напряженностью поля, который дрейфует от отрицательного к положительному электроду. Область сильного поля разрушает большую часть отрицательной проводимости, и энергию в нагрузку отдает только часть электронов объема полупроводника. Частота в генераторе Ганна определяется длиной образца.

Режим ОНПЗ не связан с эффектом времени пролета, и частота генератора зависит в первую очередь от частоты настройки внешнего резонатора. Имеется возможность увеличить размеры прибора. При этом почти весь объем материала диода будет обладать отрицательной проводимостью. Вследствие этого мощность генераторов на диодах в режиме ОНПЗ увеличится на 4 - 6 порядков. Способ ограничения накопления пространственного заряда (режим ОНПЗ) основан на следующих явлениях.

Нарастание и спад (рассасывание) пространственного заряда происходят за конечное время, которое обратно пропорционально степени легирования материала полупроводника или концентрации носителей. Время нарастания пространственного заряда при величине поля, превышающей критический уровень возникновения отрицательной проводимости 3000 В/см, значительно больше, чем время спада (рассасывания), которое происходит, когда напряженность поля становится ниже критической. Таким образом, изменяя напряженность поля в диоде до уровня ниже критического на время, составляющее малую часть периода колебаний, можно осуществить рассасывание пространственного заряда, накопленного во время работы при напряженности, обеспечивающей появление отрицательного сопротивления.

Арсенидогаллиевый диод работает в режиме ОНПЗ, если выполняется условие

2*10142*1015 шс/см3 (1.1)

Следовательно, необходимо обеспечить весьма узкий интервал допустимых уровней концентрации примесей в материале диода.

Вторым условием установления режима ОНПЗ является высокий импеданс внешних по отношению к диоду резонансных цепей, обеспечивающих получение больших амплитуд колебаний на диоде. При этом необходимо, чтобы напряженность поля, приложенного к диоду, в 3 - 4 раза превышала значение напряженности поля, которому соответствует эффект Ганна. Достаточно высокие значения добротности могут быть получены установлением слабой связи резонатора с нагрузкой в момент возникновения колебаний; после этого нагрузку резонатора, выходную мощность и к. п. д. можно заметно увеличить. Отрезок линии передачи между резонатором и нагрузкой может обеспечить задержку момента нагружения резонатора.

Поскольку рабочая частота генератора в режиме ОНПЗ не зависит от толщины образца, можно увеличить длину и объем образца в несколько раз. При этом возрастает и приложенное напряжение. Так как мощность пропорциональна квадрату приложенного напряжения, то появляется возможность значительного повышения выходной мощности. Диод, работающий в режиме ОНПЗ, может быть сконструирован для работы при любом напряжении от 25 до 500 В.

Увеличению выходной мощности диодов с ОНПЗ препятствуют в основном трудности обеспечения хорошего теплоотвода и поддержания постоянной напряженности электрического поля по всей длине диода.

Кроме задач, связанных с разработкой самих диодов, стоят также задачи создания специальных конструкций генераторов, в особенности для субмиллиметровых волн, где найдут применение открытые резонаторы.

Примером тому может послужить генератор субмиллиметрового диапазона, в котором используются объемные эффекты в арсениде галлия. Основой генератора служит пластина арсенида галлия длиной 3 мм, шириной 1 мм и толщиной 0,5 мм с концентрацией носителей 1,2*1016 см-3. На концах пластины создаются оловянные омические контакты. На одной стороне пластины в середине ее вырезана канавка шириной 1 мм и глубиной 0,15 мм. На дне канавки нанесена пленка титаната бария, на которую напылен слой проводника. С другой стороны пластины нанесены пленки из титаната бария, на которых напылен слой проводящего материала. Емкостный электрод в канавке соединен с одним из омических контактов.

К крайним выходным электродам на другой стороне пластины подсоединен отрезок замкнутого накоротко коаксиального кабеля. При подаче на контакты импульсов длительностью 60 нсек с амплитудой 80—100 В возникали колебания, частота которых зависела от длины отрезка кабеля и изменялась в больших пределах. В частности, наблюдались колебания с частотой 380 Ггц. По мнению разработчиков, этот эффект не связан с режимом ОНПЗ. Предполагается, что колебания вызывает слой нейтрализуемого объемного заряда. В момент приложения напряжения к омическим контактам начинает образовываться и распространяться объемный заряд. Однако развитию этого процесса препятствует сильное поле, создаваемое управляющим электродом, что обеспечивает отрицательное сопротивление всего объема материала.


2. Резонансные системы субмиллиметрового диапазона

Резонаторы являются важнейшими элементами целого ряда генераторных и измерительных устройств миллиметрового и субмиллиметрового диапазонов. В длинноволновой части миллиметрового диапазона в качестве резонансных систем еще используются обычные объемные резонаторы. Однако по мере укорочения рабочей длины волны размеры объемных резонаторов, в которых может существовать один вид колебаний, существенно уменьшаются. Это вызывает снижение добротности вследствие возрастания отношения площади поверхности стенок резонатора к его объему. Кроме того, малые линейные размеры налагают очень жесткие требования на точность изготовления резонатора, которая практически не может быть достигнута.

Особенности резонансных систем субмиллиметрового диапазона

Повышение добротности резонатора путем увеличения объема приводит к сгущению спектра резонансных частот, резонансные кривые отдельных видов колебаний перекрываются и резонатор теряет селективные свойства.

В устройствах миллиметрового и субмиллиметрового диапазонов и в оптических квантовых генераторах (ОКГ) был применен оптический резонатор, являющийся аналогом известного в оптике интерферометра Фабри-Перо (ИФП). Это наряду с дальнейшим развитием теории таких резонаторов позволило преодолеть затруднения, возникшие при разработке приборов субмиллиметрового диапазона.

Первоначально в миллиметровом диапазоне был создан открытый резонатор с плоскими полупрозрачными зеркалами для работы с отраженным сигналом, несколько позднее Колшоу разработал открытый резонатор проходного типа, обладающий значительно лучшими характеристиками. Последний прибор представлял собой систему из двух многослойных зеркал, расположенных параллельно друг другу, расстояние между которыми изменялось в широких пределах. Было показано, что с помощью подобного устройства можно определять малые потери в диэлектриках и производить точные измерения длины волны. Добротность оптического резонатора превышала 50 000, что близко к значению добротности лучших образцов объемных резонаторов. Улучшение качества зеркал позволило применить проходной оптический резонатор для таких точных измерений, как, например, измерение скорости распространения электромагнитных волн в вакууме.

Успешное использование А.М. Прохоровым, А. Шавловым и Ч. Таунсом открытых резонаторов для удлинения времени взаимодействия электромагнитной волны с рабочим веществом в квантовом генераторе заинтересовала многих исследователей, которые занялись разработкой теории ИФП с учетом явлений дифракции, существенно влияющей на работу прибора даже в оптической области спектра. В начале 60-х годов появились работы Фокса и Ли, в которых задача определения распределения полей, спектра резонансных частот и радиационных потерь, обусловливающих совместно с джоулевыми потерями ненагруженную добротность резонатора, сводилась к решению однородного интегрального уравнения Фредгольма второго рода. Резонаторы типа ИФП стали называть открытыми вследствие того, что поверхность их зеркал значительно меньше поверхности, ограничивающей резонансный объем между зеркалами. Благодаря сильной связи большинства собственных видов колебаний с открытым пространством происходит разрежение спектра резонансных частот. Резкую границу между оптическим резонатором и открытым резонатором провести невозможно. Систему называют открытым резонатором, если при ее возбуждении элементарным диполем или малым отверстием в центре одного из зеркал наблюдаются резонансы. Если же резонансы наблюдаются только при возбуждении плоской волной и резонансные кривые отдельных видов колебаний перекрываются, то система работает как интерферометр.

В простейшем случае открытый резонатор состоит из двух плоских бесконечно тонких дисков, расположенных параллельно друг к другу так, что их оси симметрии совпадают.

Экспериментально установлено, что такие резонаторы имеют дискретный спектр резонансных частот и соответствующие им собственные колебания с малыми потерями на излучение в свободное пространство.

Следовательно, если задать начальное распределение поля на одном из зеркал и представить его в виде суммы собственных колебаний такой системы, и считать, что эти колебания имеют различную связь со свободным пространством, то через некоторый промежуток времени, затухая по экспоненциальному закону, колебания будут иметь тем меньшую амплитуду, чем больше аргумент экспоненциальной функции. В конце концов в резонаторе будет существовать с заметной амплитудой только один вид колебаний с распределением поля, которое обеспечивает минимальные радиационные потери. Это в некотором приближении соответствует задаче Коши, но в данном случае различная связь со свободным пространством полей различных видов колебаний дает возможность найти характеристики нормального вида колебания, при котором потери минимальны. Очевидно, эту задачу разрешить тем легче, чем ближе исходное распределение поля к искомому.

Если отвлечься от явлений дифракции на ребрах зеркал, что справедливо для резонаторов с размерами зеркал, значительно превышающими длину волны, то можно смоделировать описанный выше процесс фильтрации, заменив отражения волны от зеркал последовательным прохождением ее сквозь абсолютно черные диафрагмы с апертурой отверстия, равной апертуре зеркала. Процесс распространения волны от диафрагмы к диафрагме можно описать с помощью линейного интегрального оператора, который позволяет найти поле в любой точке по заданному распределению на какой-либо поверхности. Очевидно, что если в такой системе останется волна, которая соответствует одному из собственных видов колебаний открытого резонатора, то при последовательном прохождении диафрагм нормированное поперечное распределение поля не будет изменяться. Связь с открытым пространством вызовет лишь уменьшение общей энергии, переносимой волной. Эти соображения позволяют свести задачу о нахождении собственных видов колебаний открытого резонатора к однородному интегральному уравнению Фредгольма второго рода типа

, (2.1)

где v - поперечное распределение скалярного поля вблизи зеркала;

 - константа, определяющая резонансные частоты и потери резонатора; интегрирование проводится по поверхности одного из зеркал.

В квазиоптическом приближении, когда

 (2.2)

ядро интегрального уравнения упрощается, становится симметричным, но не эрмитовым:

 (2.3)

где

 (2.4)

d - максимальное расстояние между зеркалами;

R - расстояние между точкой (х1 у1, z1) на одном из зеркал и точкой (х2, у2,z2) на другом.

Уравнения с такими ядрами в настоящее время детально не исследованы, хотя работы в этом направлении ведутся. Следует отметить, что это интегральное уравнение можно вывести более строгим путем, исходя из уравнений Максвелла.


3. Канализация энергии в субмиллиметровом диапазоне

3.1 Металлические волноводы

3.1.1 Одноволновые металлические волноводы

Металлические одноволновые волноводы являются наиболее распространенными в сантиметровом диапазоне и длинноволновом участке миллиметрового диапазона.

При переходе в коротковолновую часть диапазона субмиллиметровых волн свойства одноволновых волноводов значительно ухудшаются. В первую очередь следует отметить быстрое увеличение погонных потерь по мере укорочения длины волны.

Стенки реальных волноводов имеют неровности, соизмеримые с глубиной проникновения тока вследствие поверхностного эффекта и часто превышающие ее. Это приводит к удлинению пути тока и, следовательно, к дополнительному увеличению затухания по отношению к расчетному. Поэтому уже на волне 2 мм результаты экспериментов почти в полтора раза превосходят расчетные данные.

При использовании одноволновых металлических волноводов неизбежными являются потери в местах сочленения секций линии передачи.

Таким образом, большие потери и чрезвычайно жесткие требования на изготовление и сочленения делают одноволновые волноводы непригодными для передачи энергии в субмиллиметровом диапазоне даже на малые расстояния. Однако в длинноволновом участке диапазона ( = 1 - 0,5 мм) часто используют короткие, длиной от нескольких миллиметров до сантиметра, отрезки таких волноводов в детекторах, смесителях, возбудителях и других устройствах, моделирующих соответствующие устройства техники сантиметровых волн.

Одноволновые волноводы чаще всего изготовляют методами гальванопластики. Для этого предварительно из нержавеющей стали изготовляют оправку с размерами, равными размерам будущего волновода. Оправку полируют, обезжиривают и помещают в гальваническую ванну, где на ней наращивают слой меди требуемой толщины. Процесс изготовления волновода заканчивается извлечением оправки.

Для устранения потерь в сочленениях зачастую делают сложные составные оправки. Таким способом могут быть изготовлены скрещенные волноводы для смесителей, переходы от одноволновых волноводов к волноводам увеличенных сечений и т. п.

3.1.2 Металлические волноводы увеличенных сечений

Увеличение внутренних размеров волновода позволяет уменьшить затухание и повысить допустимую мощность. Так, одноволновый волновод на волну = 0,2 мм имеет затухание 120 Дб/м и допустимую мощность всего 0,02 кВт. На этой же волне волновод с сечением 10x23 мм характеризуется затуханием 0,8 Дб/м и допустимой мощностью 275 кВт. Однако, несмотря на малое затухание, использование таких волноводов ограничивается тем, что в них может существовать большое число колебаний высших видов.

Если поперечное сечение волновода значительно больше 2, то число возможных волн в волноводе n можно приближенно найти по формуле:

. (3.1)

Из этого соотношения следует, что число волн в волноводе пропорционально площади сечения волновода и обратно пропорционально квадрату длины волны. Так, на волне 0,2 мм в волноводе сечением 10*23 мм может существовать свыше 30000 типов волн.


3.2 Диэлектрические волноводы

Для передачи энергии в миллиметровом диапазоне радиоволн было предложено много разновидностей линий поверхностной волны.

Самым общим свойством линий поверхностной волны является то, что фазовая скорость волны в таких линиях меньше скорости света. Отсюда другое их название - линии замедленной волны. Именно замедлением фазовой скорости объясняется другое свойство линий поверхностной волны: электромагнитное поле «прижато» к некоторым направляющим структурам, хотя ничто не ограничивает его со стороны внешнего пространства. Поэтому линии поверхностной волны могут быть отнесены к открытым линиям.

Между замедлением фазовой скорости и протяженностью поля в поперечном направлении существует обратная зависимость - с уменьшением замедления концентрация энергии вблизи направляющей структуры ослабевает, а занятое электромагнитным полем пространство (в поперечном направлении) увеличивается. При этом напряженность поля у поверхности направляющей структуры понижается, что приводит к уменьшению тепловых потерь в конструктивных элементах линии. Снижение напряженности поля позволяет также передать по линии большие мощности без опасности электрического или теплового пробоя.

С другой стороны, если волна очень слабо замедлена и занимает большое сечение, то она оказывается слабо связанной с направляющей структурой. Распространение такой волны будет сопровождаться даже на слегка искривленных участках линии сильным излучением. Кроме того, слабо замедленные волны с трудом возбуждаются, т. е. при их возбуждении в линии значительная часть энергии источника может бесполезно излучаться.

С укорочением длины волны применение таких линий ограничивается как возрастанием погонного затухания, так и технологическими трудностями.

Для работы в диапазоне субмиллиметровых волн наиболее подходящим является, пожалуй, обычный диэлектрический волновод, представляющий собой стержень круглого или овального сечения, выполненный из высококачественного диэлектрика. Для передачи энергии целесообразно использовать основную, так называемую дипольную волну, которая в волноводе круглого сечения обозначается как НЕ11. Диаметр стержня выбирается так, чтобы получить требуемую степень концентрации энергии вблизи стержня. При уменьшении степени концентрации энергии структура поля дипольной волны становится близкой к структуре поля плоской поперечной волны ТЕМ.

Затухание в диэлектрическом волноводе при постоянной фазовой скорости растет пропорционально частоте, тогда как в стандартных металлических волноводах затухание пропорционально частоте в степени три вторых. Отсюда следует, что с укорочением длины волны относительные преимущества диэлектрического волновода возрастают.

Потери в направляющем стержне в сильной степени зависят от замедления фазовой скорости. Это понятно, так как в слабо замедляющем волноводе основная доля энергии переносится вне стержня, а в сильно замедляющем - внутри его.

Факт уменьшения потерь при уменьшении диаметра ряд авторов рассматривает как потенциальную возможность получения очень малых затуханий. Однако при этом не следует забывать, что диэлектрический волновод является открытой линией передачи, в которой любая неоднородность вызывает появление волн излучения. Волны излучения уносят энергию, которая является энергией потерь и увеличивает затухание в волноводе. Этот фактор все усиливается по мере уменьшения замедления фазовой скорости и ставит предел получению очень малых линейных затуханий.

При работе в субмиллиметровом диапазоне всегда следует считаться с потерями в среде, окружающей волновод. При весьма малых замедлениях эти потери будут близки к потерям волны, распространяющейся в свободном пространстве. Если потери в среде значительны, то могут оказаться более выгодными волноводы с сильнозамедленной волной в высококачественном диэлектрике.

Потери в местах размещения опор диэлектрического волновода могут быть существенными при использовании слабозамедленных волн. В качестве опор могут служить пластины пенополистирола или весьма тонкие диэлектрические нити. Диэлектрические нити более предпочтительны для линий с слабозамедленной волной.

Потери на опорах происходят из-за отражения, излучения и поглощения. Расчет потерь на опорах затруднителен, однако ясно, что потери будут снижаться по мере уменьшения тангенса угла потерь и диэлектрической проницаемости материала опоры и ее толщины. Согласно экспериментальным данным потери на одну опору, представляющую собой пенополистироловую пластинку, составляют 0,05 Дб.

Потери на возбуждение возникают в месте стыковки двух различных волноводных систем (например, диэлектрического волновода с металлическим волноводом генератора). В возбуждающих устройствах часть энергии теряется (отражается, излучается, уходит с нежелательными типами волн), и только определенная доля энергии распространяется в виде рабочей волны.

Общий принцип построения высокоэффективных возбудителей заключается в следующем: нужно плавно изменять форму и размеры первичного волновода с тем, чтобы в некотором сечении иметь амплитудное и фазовое распределение компонентов поля, близкое к распределению поля поверхностной волны. Если в этом сечении первичный волновод оборвать и продолжить дальше волновод диэлектрический, то потери на возбуждение будут минимальными.

Хорошие показатели могут быть достигнуты при возбуждении дипольной волны в круглом диэлектрическом волноводе колебаниями вида Н11 круглого металлического волновода, плавно переходящего в круглый рупор. Схематически разновидности рупорных возбудителей показаны на рис. 3.1. Рупор с линзой, корректирующей фазу, радиус раскрыва которого выбирается из соотношения может обеспечить возбуждение линии с потерями, не превышающими 30%.

Описание: Scan0003

Рис. 3.1 Различные виды эффективных возбудителей диэлектрического волновода.

 (3.2)

Некоторым недостатком диэлектрического волновода круглого сечения является неустойчивость поляризации волны.

Для устранения поляризационной неустойчивости могут быть использованы волноводы эллиптического или овального сечения. Овальный волновод получают прокаткой круглого волновода. Экспериментально установлено, что оптимальным является такое сечение волновода, когда b/a = 2. Под Ь и а понимают максимальный и минимальный размеры сечения. При таких соотношениях достигается максимальный разнос фазовых скоростей волн (и соответственно затухания) с поляризацией вдоль большего и меньшего размера сечения волновода.

Диэлектрические волноводы очень удобны для работы в коротковолновом участке миллиметрового диапазона.

В субмиллиметровом диапазоне волн применение диэлектрических волноводов ограничивается рядом причин, среди которых в первую очередь следует назвать отсутствие диэлектриков с малыми потерями. Серьезные затруднения возникают при использовании волноводов со слабозамедленной волной из-за весьма малых поперечных размеров диэлектрического стержня, недостаточной его прочности и т. п.

3.3 Квазиоптическая линия, образованная передающей и приемной апертурами

Идеальной была бы система канализации, формирующая электромагнитное поле в нерасходящийся волновой пучок, который распространяется в свободном пространстве. К сожалению, идее формирования нерасходящихся волновых пучков противоречит волновая природа электромагнитного поля. Тем не менее системы с раскрывами излучающего отверстия, значитачьно большими длины волны, позволяют формировать пучки с весьма малой расходимостью. Наглядным примером может служить излучение квантового генератора, само по себе остронаправленное. Если такой генератор поместить в фокус телескопа, то необходимость в дополнительной линии передачи вообще отпадает при переда