Трех- и четырехволновое рассеяние света на поляритонах в кристаллах ниобата лития с примесями
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
им. М.В.ЛОМОНОСОВА
ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ
ТРЕХ- И ЧЕТЫРЕХВОЛНОВОЕ РАССЕЯНИЕ СВЕТА
НА ПОЛЯРИТОНАХ В КРИСТАЛЛАХ
НИОБАТА ЛИТИЯ С ПРИМЕСЯМИ.
реферат выпускника физического
факультета Лосевского П.С.
Научный руководитель
кандидат физ.-мат. наук,
ст. н. с. Китаева Г. Х.
МОСКВА - 1997
Содержание.
Введение. | 3 |
Глава 1. Рассеяние света на равновесных поляритонах. § 1 Рассеяние света в однородных кристаллах. 1.1 Дисперсионная кривая кристалла. 1.2. Интенсивность СПР и симметрия кристалла LiNbO3. § 2. Рассеяние света на поляритонах в условиях нелинейной дифракции. § 3. Экспериментальная установка для наблюдения СПР. | 5 5 5 7 9 11 |
Глава 2. Исследование характеристик однородных и слоистых кристаллов ниобата лития с различным содержанием примесей методом спектроскопии СПР. § 1. Образцы кристаллов LiNbO3. § 2 Показатели преломления кристаллов в видимом и инфракрасном диапазоне спектра излучения. 2.1 Дисперсия в видимой и ближней ИК области спектра. 2.2 Дисперсия в поляритонной области спектра. § 3. СПР в моно- и полидоменных кристаллах. § 4. Толщина слоя в полидоменном LiNbO3. | 12 12 13 13 19 21 24 |
Глава 3. Четырёхфотонное рассеяние света на поляритонах. § 1. Обзор эффектов в нецентросимметричных средах. § 2. Прямое четырёхфотонное взаимодействие. § 3. Каскадные трехволновые процессы. § 4. Экспериментальная установка для наблюдения четырехфотонного рассеяния света на поляритонах. | 26 26 27 29 31 |
Глава 4. Исследование характеристик кристаллов методом активной спектроскопии. | 34 |
Заключение. | 44 |
Литература. | 45 |
Введение.
Задачей данной работы является исследование рассеяния света на равновесных и возбуждаемых поляритонных состояниях в кристаллах. К таким типам рассеяния относятся спонтанное параметрическое рассеяние (СПР) и некоторые разновидности четырехфотонного рассеяния. Конечной целью является разработка методики определения оптических характеристик кристаллов с различной структурой методом активной спектроскопии. Образцами для исследования служат кристаллы ниобата лития. В свою очередь, среди них выделяются три группы: пространственно-однородные кристаллы, но с различным содержанием примеси (используются кристаллы с примесью магния и неодима), пространственно-неоднородные монодоменные среды и пространственно-неоднородные полидоменные среды с регулярными слоями роста, которые могут использоваться для квазисинхронного преобразования лазерного излучения.
Для изучения этих трех групп кристаллов используется спонтанное параметрическое рассеяние (СПР) и рассеяние света на поляритонах (РСП) (1). C помощью этого метода можно обнаружить явления, не проявляющиеся в спектрах комбинационного рассеяния света на фононах. Это происходит в тех достаточно распространенных случаях, когда частоты фононов остаются практически неизменными, а меняются только силы осцилляторов или константы затухания фононов. При этом существенным образом изменяется и закон дисперсии поляритонных состояний. В данной работе получены спектры спонтанного рассеяния однородных кристаллов ниобата лития с различной концентрацией примеси магния, измерены показатели преломления в видимой и инфракрасной области спектра. Затем были исследованы кристаллы со слоями роста, некоторые из которых имеют регулярную доменную структуру. В полидоменных кристаллах параметрическое рассеяние при наличии нелинейной дифракции несет в себе информацию не только о дисперсионных характеристиках среды (зависимости средних значений показателей преломления и поглощения, квадратичной восприимчивости как от частот так и от поляризации накачки, сигнальной и поляритонной волн); но и о характеристиках периодической доменной структуры (пространственного распределения оптических свойств).
Также рассматриваются два процесса активной спектроскопии: прямые четырехфотонные процессы и каскадные трехфотонные процессы, связанные с нелинейными восприимчивостями c (3) и c (2) соответственно. Первые работы в данной области были начаты еще в конце 60-х годов (2). Эта часть исследования представляет наибольший интерес, так как спектроскопия неравновесных состояний способна дать значительно больше информации в отличие от других методов, которые имеют гораздо меньшую величину полезного сигнала на выходе из исследуемого объекта. Исследованы особенности четырехволновых процессов рассеяния света на поляритонах для создания оптимальной спектроскопической схемы, позволяющей проводить измерения дисперсии поляритонов. Далее результаты четырехволновой методики сравниваются с дисперсией поляритонных состояний, полученной по спектрам трехволнового рассеяния света на поляритонах.
Глава 1. Рассеяние света на равновесных поляритонах.
§ 1 Рассеяние света в однородных кристаллах.
Параметрическое рассеяние света представляет собой процесс спонтанного распада фотонов накачки (w L, kL) в кристалле с отличной от нуля квадратичной восприимчивостью на сигнальный (w S, kS) и холостой фотоны (w P, kP), либо фотон и поляритон. Волновые векторы и частоты при стоксовом рассеянии удовлетворяют следующим условиям :
, (1)
которые являются законами сохранения импульса и энергии. Частоты собственных механических колебаний кристаллической решётки имеют тот же порядок колебаний, что и частоты инфракрасных электромагнитных волн: от 1011 до 1013 Гц (10-3000 см-1 ). При определенных условиях возможно прямое взаимодействие оптических колебаний решетки с инфракрасными электромагнитными волнами, т.е. существование поляритонных волн.
1.1 Дисперсионная кривая кристалла.
Основные черты частотно-углового спектра СПР определяются дисперсионной кривой w (k) кристалла. Дисперсионное соотношение кубического (неанизотропного) кристалла в гармоническом приближении в однорезонансном случае имеет вид:
, (2)
где e - диэлектрическая проницаемость среды на частотах много больших фундаментальных частот кристаллической решётки, но много меньших частот электронных переходов, f=e 0-e - сила осциллятора, w 0 - фундаментальная частота оптического колебания решетки. На рис.1 приведена дисперсионная кривая соответствующая уравнению (2). Если бы поперечные механические колебания и электромагнитные волны были независимы, то первые описывались
Рис.1 Дисперсия кубического кристалла.
Рис.2 Дисперсия анизотропного кристалла.
бы прямыми .w (k)=w TO и w (k)=w LO, а вторые - прямой w =. Запаздывающее взаимодействие между этими колебаниями в кристалле приводит к поляритонным возбуждениям, имеющим смешанную электромеханическую природу. На частотах, больших w LO находиться верхняя поляритонная ветвь. На частотах между w TO и w LO находится запрещенная зона, где среда не прозрачна для объемных волн.
В анизотропных одноосных кристаллах частотам поперечных и продольных колебаний w Т и w L соответствуют частоты колебаний, смещения которых параллельны (w еТ; w еL) и перпендикулярны (w оТ; w оL) оптической оси. На рис.2 изображены дисперсионные кривые, соответствующие случаю, когда вектор перпендикулярен главной оптической оси кристалла.
1.2. Интенсивность СПР и симметрия кристалла LiNbO3.
Впервые вопрос об интенсивности СПР рассматривался в работе (3). Когда поляритонная частота w p далека от частоты фонона, достаточно рассматривать квадратичную нелинейную восприимчивость c (2). Будем рассматривать накачку, как плоскую монохроматическую волну с интенсивностью SL и предположим, что углы рассеяния q p,s на частотах w p, w s малы, так что , где А - сечение рассеивающего объёма V, l - длина кристалла. Тогда мощность, рассеиваемая на частоте w s в направлении в единичный спектральный и угловой интервалы, равна(4):
(3)
где - свертка тензора c (2) и ортов поляризации соответствующих волн, ns,p,L - показатели преломления на соответствующих частотах, а - форм-фактор, описывающий частотно-угловую структуру СПР, когда среда прозрачна на всех трёх частотах. В последнем выражении введено обозначение ,.где - отстройка волнового вектора поляритона от точного синхронизма.
Тензор квадратичной восприимчивости c (2) однородных кристаллов ниобата лития, использовавшихся в данной работе, имеет вид (5):
, (4)
причём c xxy=-2c yyy, c yxx=-c yyy, c yyz=c xxz, c zyy=c zxx. Кристаллофизические оси ориентированы относительно элементов симметрии следующим образом: ось Z совпадает с оптической осью кристалла, осью симметрии третьего порядка, ось X перпендикулярна плоскости зеркальной симметрии m, а ось Y лежит в этой плоскости. Геометрии рассеяния, которая была реализована в эксперименте, соответствует схематическая запись X(Z,Y)X+D Z. Здесь последовательность индексов задаёт направления векторов соответственно. Последнее выражение X+D Z определяет плоскость рассеяния, которая, в свою очередь, задается ориентацией входной щели спектрографа (в данном случае плоскость XZ). В соответствии с видом тензора нелинейной поляризуемости (4) константа нелинейного взаимодействия равна:
(5)
Это означает, что регистрировалось излучение, рассеянное на обыкновенных поляритонах.
§ 2. Рассеяние света на поляритонах в условиях нелинейной дифракции.
Изменение нелинейной восприимчивости в пространстве оказывает воздействие на протекание параметрического процесса в кристалле. Периодическая модуляция нелинейной восприимчивости влияет на условия пространственного синхронизма(6):
, (6)
где - вектор обратной решётки, связанный со слоями-доменами, d - толщина слоя, - единичный вектор, перпендикулярный слоям, m - целое число. Условия временного синхронизма при этом не меняются. Эффективная нелинейная восприимчивость (5) может быть разложена в виде(c eff(2)º c ):
(7)
Амплитуды пространственных гармоник квадратичной восприимчивости имеют вид:
(8)
Тогда поляризация на частоте рассеянного излучения выглядит следующим образом:
(9)
Отсюда видно, что интенсивность рассеянного излучения в направлении, соответствующем m-ому порядку дифракции, пропорциональна Фурье-амплитуде c m.
Нелинейная дифракция позволяет получить новое уравнение пространственного синхронизма при генерации второй гармоники. В работе (7) исследовали генерацию второй гармоники (ВГ) в слоисто-неоднородном кристалле ниобата бария-натрия. Была прослежена температурная зависимость интенсивности ВГ при нелинейной дифракции света в окрестности сегнетоэлектрического фазового перехода. Выше температуры этого перехода доменов нет, поэтому интенсивность ВГ резко падает, не опускаясь до нуля, так как существует остаточная поляризованность слоёв.
В работе (6) получены спектры нелинейной дифракции в полидоменном кристалле ниобата бария-натрия при параметрическом рассеянии света. При этом вектор нормали слоёв был перпендикулярен вектору накачки . Наблюдалось рассеяние в первом и втором порядке дифракции, смещённого по углу относительно нулевого порядка дифракции. По полученным спектрам определены отклонение направления роста слоёв от оптической оси кристалла и период регулярной доменной структуры .
В работе (8) получены одновременно в одном кристалле вторая и третья гармоники излучения 1,064 мкм. При генерации второй гармоники в уравнение волновых векторов входил волновой вектор нелинейной дифракции первого порядка (m=1), а при генерации третьей гармоники - третьего порядка (m=3). Кристалл состоял из участков с периодическими доменами различной толщины. В каждом процессе участвовала область с доменами, толщина которых удовлетворяла уравнению пространственного синхронизма.
§ 3. Экспериментальная установка для наблюдения СПР.
Основными элементами экспериментальной установки (рис.3) для получения спектров спонтанного параметрического рассеяния на поляритонах (ПР-спектрограф) являются: аргоновый лазер (1) с длиной волны l L=488 нм, нелинейный кристалл (6), две призмы Глана (поляризатор (5) и анализатор (6)), трёхлинзовая оптическая система (8) для получения углового спектра и спектрограф (10) для получения частотного спектра.
Излучение лазера после направляющих зеркал (2) проходит через диафрагмы (3); служащие для контроля положения накачки. Далее поляризатор (5) выделяет поляризацию накачки, параллельную щели спектрографа. Анализатор (6) пропускает сигнальную волну с поляризацией, перпендикулярной выделенной поляризации накачки. Интерференционный фильтр (9) задерживает оставшееся излучение накачки.
Рис.3. Оптическая схема для наблюдения параметрического рассеяния.
1. Ar+лазер ; 2. Зеркало ; 3. Диафрагма ; 4. Длиннофокусная линза ; 5. Призма Глана (поляризатор) ; 6. Образец (кристалл) ; 7. Призма Глана (анализатор) ; 8. Трехлинзовая система ; 9 Интерференционный фильтр ; 10. Спектрограф.
Глава 2. Исследование характеристик однородных и слоистых кристаллов ниобата лития с различным содержанием примесей методом спектроскопии СПР.
§ 1. Образцы кристаллов LiNbO3.
Исследовались кристаллы ниобата лития с различной концентрацией примесей (Табл.1). Кристалл ниобата лития - одноосный отрицательный в видимой области спектра, имеющий большое двулучепреломление D n=ne-no~ -0.1. Концентрация примесей (Nd и Mg) была измерена с помощью рентгеновского микроанализа. Однородные кристаллы No.4,5,6 выращены вдоль оптической оси Z.
Слоистые кристаллы No.2,3 имели форму параллелепипеда. Примесь неодима практически не влияет на значения показателей преломления. Слои параллельны грани . Оптическая ось расположена в плоскости ZY под углом 57о к нормали слоев. Кристаллы ниобата лития с вращательными слоями роста и закрепленными на них доменами выращивают путём вытягивания из расплава. В образцах ниобата лития с периодической доменной структурой варьировалась концентрация магния от слоя к слою, соответственно от слоя к слою менялся показатель преломления на малую величину, D n~ 10-4 (10). Для выращивания монодоменных кристаллов, которые имеют слои с однонаправленным вектором спонтанной поляризации, прикладывают небольшое напряжение к образцу.
ТАБЛИЦА 1.
Кристалл LiNbO3 No. | Концентрация магния. NMg ,масс.% | Концентрация неодима. NNd ,масс.% |
1 | 0 | 0 |
2 | 0.33 | 0.31 |
3 | 0.41 | 0.32 |
4 | 0.68 | 0 |
5 | 0.79 | 0 |
6 | 1.04 | 0 |
§ 2 Показатели преломления кристаллов в видимом и инфракрасном
диапазоне спектра излучения.
2.1 Дисперсия в видимой и ближней ИК области спектра.
Были измерены дисперсионные характеристики кристаллов Nd:Mg:LiNbO3 (No.2,3) в видимом и ближнем ИК диапазоне методом наименьшего отклонения луча, используя гониометр-спектрометр ГС-5. Для этого из части кристалла вырезалась призма. На частоте 1.06 мкм для визуализации излучения использовался прибор ночного видения. Абсолютная ошибка измерения составляла в среднем 0.0002. Значения no и ne являются средними по области кристалла, значительно превышающей период модуляции линейной и нелинейной восприимчивостей. Результаты измерения показателей преломления кристаллов No.5,6 представлены в работе (10). Значения обыкновенного и необыкновенного показателей преломления в кристалле ниобата лития без примесей No.1 получены в статье (11). Сравнение полученных данных и результатов работ (10,11) позволяет судить о влиянии примеси на дисперсионные характеристики. На Рис.4,5 приведены зависимости изменения no и ne от концентрации примеси магния на длине волны 546 нм и 1064 нм. Видно, что зависимости имеют одинаковый характер в различных областях спектра, причем наличие примеси неодима в кристаллах No.2,3 не влияет заметно на ход этих кривых.
Дисперсионные характеристики no(l ) и ne(l ) рассматриваемых кристаллов могут быть описаны формулой Селмейера:
, (10)
где A,B,C,D - коэффициенты Селмейера. Значения коэффициентов Селмейера для кристаллов No 1,2,3,5,6 даны в таблице 2, при этом длина волны используется в нанометрах. С использованием этих коэффициентов были построены дисперсионные кривые, а затем посчитано D no(l ) и D ne(l ) - отличие дисперсий кристаллов с примесями от дисперсий беспримесного кристалла (рис.6,7), также на графики нанесены экспериментальные точки. Можно заметить, что поведение дисперсии необыкновенного показателя преломления полидоменного кристалла No.2 сильно отличается от хода D ne(l ) монодоменных кристаллов. Особенности в спектральном поведении показателя преломления полидоменного кристалла могут быть объяснены влиянием зарядов, находящихся на стенках доменов.
Таблица 2.
Коэффициенты Селмейера кристаллов ниобата лития
с различной концентрацией примеси магния.
Кристалл No. | Поляризация | A | 10-4B | 10-4C | 108D |
1 | o e | 4.9025 4.5808 | 11.8522 9.9699 | 4.6746 4.3743 | 2.5609 2.1225 |
2 | o e | 4.911 4.5999 | 11.3803 8.3609 | 5.0317 6.2881 | 3.0712 4.69 |
3 | o e | 4.9001 4.5581 | 11.5737 9.7078 | 4.8182 4.4267 | 3.0052 2.3873 |
5 | o e | 4.9007 4.5574 | 11.2695 9.2166 | 4.9275 4.7665 | 3.9162 3.1645 |
6 | o e | 4.8853 4.5667 | 11.0338 8.7097 | 5.0611 5.3125 | 3.7467 3.7893 |
Рис.4. Зависимость изменения показателей преломления в кристаллах ниобата лития от
концентрации примеси магния на длине волны 546 нм.
Рис.5. Зависимость изменения показателей преломления в кристаллах ниобата лития от
концентрации примеси магния на длине волны 1064 нм.
Рис.6. Кривые отличия дисперсий необыкновенного показателя преломления кристаллов с примесью магния от дисперсий беспримесного кристалла и экспериментальные точки для кристаллов No 2....n ,
No 3....l ,
No 5....s ,
No 6....t .
Рис.7. Кривые отличия дисперсий обыкновенного показателя преломления кристаллов с примесью магния от дисперсий беспримесного кристалла и экспериментальные точки для кристаллов No 2....n ,
No 3....l ,
No 5....s ,
No 6....t .
2.2 Дисперсия в поляритонной области спектра.
Дисперсионные характеристики кристаллов в среднем ИК диапазоне мы получили используя спонтанное параметрическое рассеяние. Этот метод позволяет измерить мнимую и действительную часть диэлектрической проницаемости в области спектра, где поглощение кристалла велико: на частотах фононного поляритона и на верхней поляритонной ветви. В отличие от прямого измерения мы получаем информацию об ИК спектре используя дисперсионные характеристики в видимой области спектра. При процессе СПР частоты и волновые вектора взаимодействующих волн должны удовлетворять условиям частотного и пространственного синхронизма (1). Если мы знаем дисперсию кристалла на частотах накачки и сигнальной волны, то мы можем получить дисперсию на поляритонных частотах, используя уравнения (1). На установке, изображенной на рис.3, получены двумерные частотно-угловые распределения интенсивности рассеянного излучения кристаллов No.2,3,4,5. По этим спектрам определена дисперсия обыкновенного показателя преломления кристаллов на частотах 1.7-10 мкм и 17,5-20,8 мкм. На нижней поляритонной ветви указана ошибка, которая появляется при измерении частоты и угла рассеяния сигнальной волны. На верхней поляритонной ветви ошибка не превышает размера символа, обозначающего экспериментальную точку. Таким образом погрешность измерения показателей преломления спектра методом СПР не позволяет нам заметить влияние примеси на дисперсию кристаллов в ИК области. Следует заметить, что только в кристалле No.5 использовалась геометрия рассеяния, в которой "эллипс" рассеяния на верхней поляритонной ветви достигал длиноволной области видимой части спектра. Возможно, если рассмотреть все кристаллы в той геометрии рассеяния, в которой можно получить дисперсию верхней поляритонной ветви на частотах поляритона больших 3000 см-1, то мы сможем обнаружить отличие в дисперсионных характеристиках кристаллов на соответствующих частотах. Но вблизи фононной частоты методом СПР это сделать невозможно, так как дисперсия здесь имеет большую крутизну.
Рис.8. Поляритонная дисперсия кристаллов: No.2........n ,
No.3........s ,
No.4........l ,
No.5........ .
§ 3. СПР в моно- и полидоменных кристаллах.
В слоистых кристаллах может наблюдаться линейная дифракция света. Линейная дифракция может происходить на вариациях диэлектрической проницаемости, то есть изменении показателя преломления кристалла. Волновой вектор дифрагированного луча должен лежать на той же поверхности Френеля, что и падающий луч, так как линейная дифракция происходит без изменения частоты излучения. При параметрическом рассеянии дифрагировать может любая из волн участвующих во взаимодействии (накачка, рассеянная, поляритон), если её волновой вектор в кристалле удовлетворяет предыдущему условию. На рис.9,10 даны два спектра для монодоменного No.3 и полидоменного No.2 кристаллов соответственно с одинаковой толщиной слоев и в одинаковой геометрии (вне кристалла угол между накачкой и нормалью к слоям 9,6о). Особенностью рассеяния в области частот от 4000 см-1 до 900 см-1 является падение интенсивности до нуля в окрестности 1700 см-1. Это явление объясняется интерференцией электронной и решёточной частей восприимчивости (12).
В случае монодоменного кристалла наблюдается несколько дополнительных "эллипсов" в красной области спектра. Это явление нельзя объяснить, как линейную дифракцию, так как происходит изменение частоты по сравнению с основным "эллипсом". А внутри кристалла вектор , нормальный слоям, почти параллелен накачке, поэтому он не может перевести волновой вектор на ту же поверхность Френеля. Аналогичная ситуация для сигнальной волны, так как она рассеивается на небольшой угол. Возникновение дополнительных "эллипсов" на спектре (рис.9) можно объяснить неоднородностью кристалла или отклонением его состава от состава, соответствующего химической формуле. В ниобате лития отличие, как правило, заключается в несоответствии числа атомов лития в элементарной ячейке числу, определяемому химической формулой. Этот эффект можно тоже отнести к пространственной неоднородности кристалла. Судя по спектру, можно сказать, что в кристалле существует четыре области с различным собственным составом. Согласно (13) в видимом диапазоне спектра обыкновенный показатель преломления не зависит от стехиометрии кристалла. Однако в инфракрасном диапазоне эта зависимость достаточно сильная. Можно определить показатель преломления поляритона по перестроечным кривым для областей кристалла различного состава. Например, на частоте 2700 см-1 он имеет значения np=2.133; 2.143; 2.154; 2.167. Это соответствует максимальному разбросу коэффициента стехиометрии на 0.01.
В полидоменных кристаллах дополнительно к вариациям показателя преломления варьируется нелинейная восприимчивость второго порядка. Но она может изменятся гораздо сильнее линейной характеристики, в нашем образце c (2) меняется от - | c (2) | до + | c (2) | от слоя к слою. Нелинейная дифракция происходит на вариациях этой нелинейной восприимчивости. Соседние домены имеют антипараллельную поляризацию, причём вектора поляризации ориентированы вдоль оптической оси кристалла. На рис.10 изображен спектр полидоменного кристалла ниобата лития No.2. Кроме основного "эллипса" верхней поляритонной ветви, видна часть "эллипса" рассеяния в первый порядок нелинейной дифракции. Рассеяние в другие дифракционные максимумы не наблюдается, так как для них не выполняется условие пространственного синхронизма. Также на спектре, кроме поляритонного рассеяния на фононе 580 см-1 , видна часть поляритонного рассеяния в первый дифракционный максимум. На рис.11 изображен спектр этого же кристалла No.2 в другой геометрии рассеяния (угол между накачкой и нормалью к слоям -9,2о вне кристалла). "Эллипс" рассеяния на верхней поляритонной ветви увеличился и касается кривой рассеяния в первый дифракционный максимум. Теперь мы имеем рассеяние в нулевой и первый порядки дифракции на одинаковых частотах, это позволяет определить период доменной структуры.
Рис.9. Спектр параметрического рассеяния в монодоменном Nd:Mg:LiNbO3.
=47.4o вне кристалла.
Рис.10. Спектр параметрического рассеяния в полидоменном Nd:Mg:LiNbO3 .
=47.4o вне кристалла.
Рис.11. Спектр параметрического рассеяния в полидоменном Nd:Mg:LiNbO3 .
=66.2o вне кристалла.
§ 4. Толщина слоя в полидоменном LiNbO3.
На рис.13. изображена дисперсия обыкновенного показателя преломления полидоменного кристалла ниобата лития No.2 на верхней поляритонной ветви, которая получена по перестроечным кривым рис.10,11. Эта дисперсия используется при вычислении волнового вектора обратной решётки, соответствующей доменной структуре кристалла. Так как при нелинейной дифракции в условие пространственного синхронизма входят четыре волновых вектора, то для этого явления доступна более обширная частотная и угловая область при параметрическом рассеянии, чем для линейной дифракции. Векторная диаграмма этого взаимодействия изображена на рис.12. Волновой вектор обратной решётки можно получить из уравнений:
(11)
Вектор по порядку величины такой же, как и волновой вектор поляритона, поэтому не выполняется условие пространственного синхронизма для нелинейной дифракции во второй и последующие максимумы. Толщина слоя была получена из уравнений (11) при рассеянии на поляритонах с различными частотами в трёх геометриях =47.4o, 57о, 66.2o. Ее значение составило d=5.6± 0.1 мкм.
Рис.12. Векторная диаграмма взаимодействия параметрического
рассеяния и нелинейной дифракции.
Рис.13. Дисперсия обыкновенного показателя преломления полидоменного кристалла ниобата лития, полученная в различных геометриях:
l =47.4o вне кристалла.
¦ =66.2o вне кристалла.
Глава 3. Четырёхфотонное рассеяние света на поляритонах.
§ 1. Обзор эффектов в нецентросимметричных средах.
Случай нецентросимметричной среды является наиболее общим при рассмотрении процессов активной спектроскопии. В кристаллах без центра симметрии в интенсивность сигнала активной спектроскопии комбинационного рассеяния (АСКР) дают вклад как прямые четырёхфотонные процессы, так и каскадные трёхволновые процессы, идущие через промежуточные возбуждённые состояния. Эти процессы идут на различных нелинейных восприимчивостях: на кубической и квадратичной соответственно. Вследствие когерентности рассеяния различные вклады не суммируются, а интерферируют. Поэтому они могут приводить к значительным изменениям спектров АСКР: деформации формы линии и появлению дублетной структуры(14). Детально проанализировано явление интерференции трех- и четырехволнового механизма образования рассеянных волн в работе (15).
В работе (2) получено возбуждение поляритонной волны методом четырехфотонной спектроскопии в кристалле GaP. Был определен показатель преломления и коэффициент затухания для трех частот поляритонной волны. Однако при расчете коэффициента затухания не учитывались расходимости лучей, немонохроматичность возбуждающих накачек, а также влияние длины взаимодействия на ширину линии рассеяния. Также проводились эксперименты с возбуждением поверхностных поляритонов в кристалле GaP (16).
При каскадном процессе, состоящем из двух трехволновых взаимодействий, сначала возбуждается поляритонное состояние с волновым вектором равным эффективному возбуждающему, которое может распространяться за пределы области возбуждения. Затем на нём рассеивается пробная волна. В связи с этим генерация сигнала может иметь гораздо большую нелокальность. В работе (17) исследовались пикосекундные поляритонные возбуждения в хлориде аммония. Сначала возбуждался поляритон двумя накачками, а затем пускался пробный луч со сдвигом в пространстве в направлении распространения поляритона и с задержкой во времени. При этом наблюдалось рассеяние на поляритоне вне области его возбуждения. Это позволило измерить групповую скорость поляритона прямым методом, а не через производную . Также было измерено время жизни возбужденного поляритонного состояния.
§ 2. Прямое четырёхфотонное взаимодействие.
Рассмотрим стоксову компоненту рассеянного излучения (рис.14). Соотношение между частотами для данного случая выполняется в виде:
(12)
где w L-частота пробного излучения, подаваемого на образец, w s - частота рассеянного на поляритоне излучения. При этом для наблюдения эффективного прямого процесса должно выполняться условие пространственного си
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Оптическая обработка информации
Вступление Современная практика и научные исследования требуют измерений высоких и сверхвысоких напряжений — до 10 МВ и больших токов
- Оборотная сторона фундаментальной физической константы - скорости света
Хурмат СамандаровКак известно, скорость света считается фундаментальной физической константой. При распространении света в пространс
- Оптическая спектроскопия кристаллов галита с природной синей окраской
Многие основные представления, касающиеся природы окраски минералов, явления люминесценции, оптического поглощения в ультрафиолетово
- Системы персонального вызова
ВВЕДЕНИЕ Совpеменное пpоизводство pазвивается в условиях научно-технической pеволюции, главное содеpжание котоpой составляет освобожде
- Рабочие жидкости
1 . ТРЕБОВАНИЯ К РАБОЧИМ ЖИДКОСТЯМ . Нормальная эксплуатация гидропривода возможна при использовании таких рабочих жидкостей ,которые о
- Устройство дублирования звонков
телефонного аппарата. Введение 1991-1993 годы знаменуются рождением информационного рынка в России. Свидетельством тому является : Во-первы
- Структурная надежность систем
РАСЧЕТЫ СТРУКТУРНОЙ НАДЕЖНОСТИ СИСТЕМ ВВЕДЕНИЕ Надежностью называют свойство объекта сохранять во времени в установленных пределах з