Технологія утилізації нікелю та марганцю у виробництві синтетичних алмазів
Міністерство освіти і науки України
НТУ „ХПІ”
Факультет Кафедра
Спеціальність _
(код, найменування)
ДИПЛОМНИЙ ПРОЕКТ
освітньо-кваліфікаційного рівня бакалавра
Тема проекту:
Технологія утилізації нікелю та марганцю у виробництвісинтетичних алмазів
Керівник ДП ________________________________________
(посада, прізвище, ім’я, по батькові)
Виконавець ____________________________________________
(прізвище, ім’я, по батькові)
2010
РЕФЕРАТ
Звіт про ДП: 71 стор., 25 табл., 34 джерел, 1 рисун.
Ключові слова: СИНТЕТИЧНИЙ АЛМАЗ, ВИЛУГОВУВАННЯ, КИСЛОТА, З’ЄДНАННЯ, НІКЕЛЬ, МАРГАНЕЦЬ.
У бакалаврській роботі розглянута технологія очищення синтетичних алмазів.
Розглядалася технологія утилізації нікелю та марганцю у виробництві синтетичних алмазів, розрахований матеріальний і тепловий баланс, розрахунок основного апарату, розрахована собівартість продукції. Розглянуті питання з охорони праці.
РЕФЕРАТ
Отчет о ДП: 71 стр., 25 табл., 34 источника, 1 рисун.
Ключевые слова: ИСКУССТВЕННЫЙ АЛМАЗ, ВЫЩЕЛАЧИВАНИЕ, КИСЛОТА, СОЕДИНЕНИЯ, НИКЕЛЬ, МАРГАНЕЦ.
В бакалаврской работе рассмотрена технология очистки синтетических алмазов.
Рассмотренная технология выделения никеля и марганца в производстве искусственных алмазов. В работе описана технологическая схема утилизации соединений никеля и марганца, рассчитан материальный и тепловой баланс, расчет основного аппарата, рассчитана себестоимость продукции. Рассмотрены вопросы по охране труда.
ЗМІСТ
Вступ
1. Літературний огляд
1.1 Загальні відомості про синтез алмазів
1.2 Фізико-хімічні основи процесу синтезу алмазів
1.3 Основні методи утилізації відходів
2. Загальна характеристика сировини і готової продукції
3. Опис технологічної схеми
4. Енергозбереження та екологія
5. Розрахунок матеріального балансу
6. Розрахунок теплового балансу
6.1 Розрахунок приходу тепла
6.2 Витрати тепла
7. Розрахунок основного апарату
8. Охорона праці
8.1 Загальна характеристика умов здійснення технологічного процессу
8.2 Промислова санітарія
8.3 Пожежна безпека
9. Техніко-економічне обгрунтування
9.1. Розрахунок виробничої потужності проектованого цеху
9.2. Розрахунок вартості і потреби сировини і матеріалів
9.3 Визначення витрат по вартості енергоресурсів
9.4 Розрахунок амортизаційних відрахувань
9.5 Розрахунок затрат на оплату праці
9.6 Розрахунок річного фонду оплати праці керівників та спеціалістів
9.7 Розрахунок витрат по утриманню й експлуатації обладнання
9.8 Розрахунок загальновиробничих витрат
9.9 Калькуляція собівартості продукту
Висновки
Список джерел інформації
ВСТУП
Виробництво надтвердих матеріалів є однією з важливих галузей хімічної промисловості, основна частка якої на сьогоднішній день належить синтезу синтетичних алмазів. Завдяки їх особливим властивостям, останнім часом спостерігається деяка тенденція підвищення попиту на синтетичні алмази і алмазний інструмент, тоді як в промисловому виробництві України, загалом, відбувається спад. Розвиток виробництва синтетичних алмазів привело до того, що вони зайняли домінуюче місце у виготовленні алмаз – абразивного інструмента.
В даний час синтетичні алмази зайняли міцне місце в промисловості усього світу, і їхня роль тут безупинно зростає. На жаль, синтезувати великі монокристали алмазів – задача дуже складна. Найбільший розмір випуску серійно технічних монокристалів алмаза складає 1,2 мм, а для багатьох промислових процесів вимагаються більш великі алмази.
В той же час екологічна обстановка як і раніше залишається дуже складною на підприємствах алмазного виробництва.
В даній науковій роботі велика увага була приділена не тільки утилізації шкідливих з’єднань металів–каталізаторів, але й також рух роботи був спрямований на визначання основних оптимальних параметрів очищення синтетичних алмазів, таких як, розмір гранул, тип кислоти та концентрація, час вилуговування.
Тому метою даної дипломної роботи є розробка технологій, яка зменшила б екологічне навантаження на навколишнє середовище, а саме створення технологічної схеми, яка б дозволяла ефективно утилізувати з’єднання нікелю та марганцю. Для цього необхідно вивчити особливості вилуговування цих металів із продукту синтезу різними кислотами та визначити оптимальні умови для тієї кислоти, яка буде найбільш екологічно безпечною.
1. ЛІТЕРАТУРНИЙ ОГЛЯД
1.1 Загальні відомості про синтез алмазів
Синтез синтетичних алмазів був вперше здійснений у 1953 р. у Швеції та Америці, та у 1959 р. в СССР. Однак, отримані на той час кристали алмазу могли бути використані лише у якості абразивного матеріалу, тому як розміри окремих кристалів не перевищували 0,8 мм та мали низьку механічну стійкість. Синтез великих монокристалів, який був реалізований набагато пізніше, був пов’язаний зі складностями технічного та економічного характеру. В цьому відношенні найбільш перспективною для технічного застосування була шаровидна (діаметром 6–7 мм) променево-радіальна форма алмаза або балас, яка володіла стійкістю навіть більш вищою, ніж монокристали алмазу та більш проста у виготовленні.
Одразу ж після успішного синтезу алмазів типа балас почалось їх застосування у промисловість на Московському комбінаті твердих сплавів, Українському інституті надтвердих матеріалів та Полтавському заводі синтетичних алмазів. Дослідження синтетичних баласів у бурильній техніці показало їх високу ефективність при проходженні скважин в різних по характеру ґрунтах, та особливо широко синтетичний балас застосовується зараз при виготовленні волок при виробництві проволоки.
Поряд з роботою над методами синтезу алмазів проводилися дослідження фізико-хімічних властивостей отриманих речовин та вивчення механізму їх синтезу. Останнє питання являє собою науковий інтерес та в повному об’ємі залишається не розібраним і по сьогоднішній день.
Усі відомі способи виготовлення алмазів можна віднести до трьох великих груп.
Перша група об’єднує різні варіанти, які є найбільш розповсюдженими у технології синтезу алмазів при високих статичних тисках. Він утворюється стисненням на нагріванням механічної суміші порошку вуглеграфітового матеріалу у присутності частинок метала-каталізатора в області термодинамічної стійкості алмаза в камері високого тиску. Зазвичай при синтезі алмазів в якості каталізатора застосовують декілька металів або їх сплави (1).
До другої групи відносяться синтез алмазу при високих динамічних тисках, в детонаційних та ударних хвилях із різноманітних вуглецьвмістних матеріалів. Цей метод синтезу у зрівнянні зі статичним дає можливість на декілька порядків скоротити тривалість циклу та застосувати тиски до 104 МПа, у діапазоні температур 2000–4000 К. При цьому на відміну від синтезу при високих статичних тисках, елементи контейнерів із реакційними матеріалами виготовляють зі сталі або інших матеріалів, до яких не входить вольфрам. Вибуховий метод характеризується виготовленням мікрочастинок алмазу у вигляді кристалів із невеликою кількістю дефектів поверхні. Алмази отримують з відносно невеликим виходом по відношенню до всієї маси початкового продукту (2).
Прямий перехід графіту до алмазу при ударному нагруженні Алдером та Християном у 1961 р. У 1975 році був розроблений метод отримання вибухових алмазів у системі метал–вуглець методом ударно–хвильового нагруження. Такі алмази виготовляють у вигляді мікропорошків підвищеної абразивної здатності з розміром 1-80, а іноді й до 200 мкм. Детонаційні алмази отримані шляхом осадження із газової фази, що містить вуглець та плазми при їх високотемпературному детонаційному сжиманні (3). Такі алмази представляють собою ультра дисперсний порошок із розміром зерен до 20 нм.
Третя група включає до себе засоби синтезу алмазів при низьких тисках із газової середи, що включає в себе вуглець, з плазми та потоків атомів та іонів вуглецю (в області термічної мета стійкості алмазу).
Відомі засоби осадження алмазних плівок із застосуванням високо енергетичних атомних та іонних пучків шляхом лазерного та плазмохімічного осадження. В багатьох випадках отримують не алмазні, а алмазоподібні плівки, тобто такі, в яких атоми вуглецю пов’язані між собою хімічним зв’язком, яка характерна для алмаза, але не утворює достатньо великих областей когерентного розсіювання, як у алмаза (2).
Нарощування затравочних частинок алмазу відбувається у газовій середі, що містить вуглець, та при тисках нижчих за атмосферний та температурах близько 1273 К. Тому як більш стійка в цих умовах фаза вуглецю – графіт блокує поверхню затравочних кристалів, тому й товщина наростаючого слою рідко коли перевищує 1–3 мкм. Тому частіш за все утворюються алмазографітові зони, що по черзі змінюються (2).
Алмазні кристали можуть утворюватися у графітових блоках при дії на них лазерним променем. У цьому випадку атоми вуглецю переходять у збуджений стан до енергії в 1 еВ, а їх конденсат представляє собою вміст вуглецевих фаз із густиною близько 2,48 г/см3. Міцність імпульсу при випромінюванні досягає 109 Вт. Посилаючи такий промінь на графітовий блок, можна досягнути утворення в ньому алмазних мікрочастинок (1).
Таким чином, синтез алмазів із матеріалів, що містять вуглець у присутності металів–каталізаторів при статичному тиску є найбільш ефективним та найбільш розповсюдженим.
1.2 Фізико-хімічні основи процесу синтезу алмазів
Існуючу технологію синтезу алмазів умовно можна розділити на дві стадії: синтез в апарат високого тиску і збагачення одержаного продукту синтезу з виділенням очищеного товарного алмазного продукту. Розглянемо окремо кожну з цих стадій.
1.2.1 Синтез в апаратах високого тиску
В даний час відомо два методи синтезу алмазу в області його термодинамічної стабільності: дія на матеріал, що містить вуглець, високим статичним тиском і температурою у присутності розчинника вуглецю; дія високим статичним тиском і температурою без застосування розчинників (прямий перехід графіту в алмаз). Теорія синтезу алмазу по першому методу вперше була розроблена О.И. Лейпунськім (4).
Алмаз в системах метал–вуглець одержують в апаратах при тиску близько 4000 МПа і температурах понад 1400 К, використовуючи як джерело вуглецю графіт. Розчинники обираються з ряду перехідних металів, в який входять: Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Cr, Ta, Mn і ін. (1, 4). Експериментально встановлено, що для кожного розчинника є своя область утворення алмазу, якою відповідають мінімальна температура та тиск. Якщо розташувати метали-розчинники вуглецю в ряд по зростанню температури плавлення, а саме: Mn, Ni, Co, Fe, Pt, Cr, Nb, Ta, то кореляція між мінімальними параметрами процесу синтезу не спостерігається (4). Якщо розглянути ці метали залежно від температури плавлення їх евтектичних розчинів, включаючи і карбідні евтектики від величини розчинності вуглецю в них, то мінімальні значення температури плавлення мають в першу чергу такі метали: Fe, Co, Ni, Mn. Мінімальна температура синтезу алмазів декілька відрізняється від мінімальних температур плавлення метал-вуглець, оскільки при високому тиску температура плавлення системи метал-вуглець декілька підвищується. Проте пряма залежність параметрів процесу синтезу від температури плавлення розчинів вуглецю в металах очевидна.
Застосування при синтезі висококапілярноактивних (по відношенню до графіту) металевих розплавів перехідних металів, здатних добре змочувати графіт, позитивно впливає на ступінь перетворення графіту в алмаз. Такі розплави добре обволікають графіт, в результаті збільшується швидкість його розчинення.
Відомі рекомендації по збільшенню ступеня перетворення графіту в алмаз за рахунок заміни чистого нікелю його сплавом з марганцем.
Досягнутий ефект пояснюється зниженням температури плавлення сплавів, крім того слід враховувати зміну капілярних і адгезійних властивостей металевих розплавів по відношенню до графіту і алмазу (1, 2).
Одним з параметрів, що впливають на синтез алмазів є властивості початкового вуглеграфітового матеріалу. В даний час тільки графіт є єдиною сировиною для отримання штучних алмазів в промислових умовах і саме структуру графіту визначає не тільки початковий вуглецевий матеріал, але в значній мірі вид його переробки.
1.2.2 Збагачення продукту синтезу алмазів
Розвиток процесів синтезу алмазів з використанням різних металів-розчинників, таких як: Ni, Mn, Fe, Co і графіту різних родовищ привело до появи продуктів синтезу різних по складу і дисперсності (5). Відомо, що синтетичні алмази, що виготовляються різними способами витягують з реакційних сумішей, що є агломератами, що містять міцно зчеплені один з одним графіт, алмаз, каталізатор, продукти взаємодії графіту з каталізатором (карбіди).
Різноманітність методів синтезу вимагає застосування різних методів для витягання алмазів. Процес витягання алмазів умовно можна розділити на три основні етапи: розчинення металевої складової з отриманням алмазо-графітової суміші, утилізація неперекристалізованого графіту, контрольне очищення алмазної сировини (2).
Для підвищення ефективності розкриття продукту синтезу на вільні складові перед стадією видалення металів-каталізаторів одержану тверду масу піддають дробленню. Існуюча практика збагачення показала, що оптимальним великим дроблення, що забезпечує збереження великих кристалів алмазів, є дроблення до 2–4 мм.
Результати досліджень і практика збагачення продукту синтезу показали, що тільки механічні або тільки фізичні методи не володіють достатньою селективністю при руйнуванні зростків графіт–алмаз, графіт–метал (2). Для руйнування зростків застосовується так само короткочасна обробка кислотами. При такій обробці відбувається набухання і відшарування графіту від алмазу і металу.
Перший етап витягання алмазів полягає в розчиненні каталізатора кислотами або їх сумішами. Розплави лугів, як правило, руйнують кристали алмазів, тому на Україні і в зарубіжній практиці для розчинення металів при витяганні алмазів використовують частіше різні мінеральні кислоти або їх суміші. Найчастіше для видалення металів, спечи піддають обробці при невеликому нагріванні.
Використання методів флотацій в збагаченні алмазів найефективніше при витяганні дрібних алмазів з проміжних алмазографітових сумішей розміром менше 0,5 мм, а так само при остаточному витяганні алмазів з шламів. Тому цей метод зазвичай використовують у поєднанні з іншими методами, що дозволяє витягувати алмази з алмазографітової суміші з розміром алмазу більше 0,5 мм.
Слід зазначити, що вибір того або іншого методу збагачення алмазів на практиці диктується в основному структурними особливостями, якісним і гранулометричним складом продукту, зернистістю збагачення. Найбільший ефект дають комбіновані схеми збагачення.
Подальше збагачення алмазного концентрату полягає у виборчому доокисленні графіту різними окислювачами. Серед способів окислення графіту слід виділити такі групи: окислення різними газофазними окислювачами, окислення в рідині, окислення з використанням суспензій, окислення розплавами, окислення твердими матеріалами.
На третьому етапі обробки продукту синтезу алмазів віддаляються нерозчинні у воді, кислотах (за винятком HF) і водних розчинах лугів з'єднання, якщо останні присутні у великій кількості (більше 1 %). Зазвичай після видалення графіту в алмазах містяться компоненти літографського каменя. Як правило, для їх видалення використовують сплав алмазів з лугом. Звільнені від домішок кристали алмазів промивають водою і висушують, а рідку фазу, змішують з кислотним потоком і направляють на подальшу нейтралізацію (6).
Таким чином, не дивлячись на використання різних методів збагачення продуктів синтезу алмазів одержаних в системі Mn–Ni–С одним з основних видів відходів є кислі стоки, що містять в своєму складі з'єднання марганцю і нікелю.
1.2.3 Фізико-хімічні характеристики відходів
До складу стічних вод, що утворюються в технологічному циклі синтезу алмазів, входять: з'єднання марганцю, нікелю, шести– і тривалентного хрому, HCl, H2SO4 і силікати. Розділення цієї суміші представляє дуже складне технологічне завдання, при цьому одержані шлами у вигляді складних з'єднань в які входять MnO2, NiO, Cr2O3 не є ліквідними на хімічному ринку і достатньо складні в переробці.
Одним з ефективних методів зниження утворення токсичних відходів може бути розділення потоку з'єднання нікелю і марганцю і потоку з'єднання хрому, що містить, що містить, з подальшою утилізацією цих металів. Їх роздільна утилізація дозволяє організувати замкнутий цикл з практично повною відсутністю токсичних відходів. На практиці це можливо при відділенні двох рідких потоків один від одного: потоку що утворюється на стадії витягання металів-каталізаторів і потоку графіту, що утворюється на стадії окислення. Розчини, що одержуються після витягання металів-каталізаторів, містять велику кількість іонів цих металів. В основному це розчини HCl різної концентрації з підвищеним вмістом з'єднань марганцю і нікелю (7).
Слід зазначити, що в розчинах одержуваних в результаті обробки продуктів синтезу алмазів HCl можливі значні коливання концентрацій розчинених компонентів. Причиною цих коливань є з одного боку екзотермічність процесу розчинення металів, а звідси як наслідок неконтрольованість температури проведення процесу, а з іншого боку той факт, що процес витягання металів проводять кілька разів з кінцевою промивкою твердої фази водою. Цей факт слід врахувати при подальшому виборі методу утилізації відходів.
1.3 Основні методи утилізації відходів
Існують багато засобів утилізації нікелю, марганцю та їх суміші, коли неможливо утилізувати окремо.
Серед основних методів утилізації з’єднань нікелю можна виділити наступні: фізичні методи; сорбційні методи; електро-хімічні методи; з використанням цементації; осадження фосфатами; осадження реагентами, що містять сірку; осадження карбонатами; осадження гідроксидами.
Серед методів по утилізації з’єднань марганцю слід зазначити такі: фізичні методи; сорбційні методи; осадження сульфідами; осадження гідроксидами, осадження фосфатами та використання окисників.
Про методи утилізації нікелю та марганцю при їх одночасній присутності описано детальніше.
1.3.1 Фізичні методи
Відомий спосіб виділення хлоридів марганцю і нікелю з розчинів насиченням їх газоподібним хлороводнем. Для цього використовують газ, одержаний при відновленні хлоридів цих металів до металу за допомогою водню. Однак фізичні методи володіють рядом недоліків: використання токсичних і вибухонебезпечних реагентів, високі енергетичні витрати на проведення методу, висока тривалість процесу.
1.3.2 Електрохімічні методи
Застосування гальванокоагуляції для очищення стічних вод від з'єднань нікелю і марганцю. Пропонований метод заснований на використанні ефекту короткозамкнутого гальванічного елементу, поміщеного в оброблюваний розчин. Іде витягання металів як гальванічних пар: Fe–Cu, Fе–C, Mg–C і т.д. При очищенні стічних вод із здійсненням інтенсивної аерації повітрям, концентрація цих металів в очищеній воді досягає по 0,1 мг/л.
З розчинів після стадії витягання металів HCl при збагаченні надтвердих матеріалів запропоновано витягувати нікель, шляхом електрохімічної екстракції на нерозчинних анодах. Оптимальною концентрацією виділення нікелю з розчинів є 10–40 г/л.
Хоча, вживані електрохімічні методи володіють поряд недоліків: проведення процесу при температурі 340–345 К, висока чутливість до концентрацій компонентів розчину, велика тривалість процесу, неможливість досягнення норм гранично допустимі викиди по забруднюваних компонентах за одну стадію і високі енергетичні витрати.
1.3.3 Сорбційні методи
Відомий спосіб очищення стоків металургійних підприємств від марганцю, нікелю і заліза. Спосіб полягає у фільтруванні стічних вод через шар адсорбенту фракцією 0,6–1,25 мм із швидкістю фільтрування 0,6–8 м/ч. Як адсорбенти використовують мінерали кальцію силікатів складу 2CaO·SiO2 і 3CaO·SiO2. При початковій концентрації марганцю, заліза і нікелю в стоках 1,3 і 1 мг/л відповідно спосіб дозволяє одержувати в результаті очищення стічні води з концентрацією цих металів 0,045; 0,04; 0,03 мг/л. У разі присутності в стоках тільки одного з трьох металів, кінцева концентрація його знаходиться на тому ж рівні.
Таким чином, використовуваний метод має недоліки: застосування тільки для очищення розбавлених розчинів, велика тривалість процесу.
1.3.4 Використання цементації
Розглядається можливість очищення розчину, що містить 25 г/л марганцю, 0,2 г/л нікелю і 0,02 г/л кобальту з використанням цементації. Очищення від домішок нікелю і кобальту здійснювалося введенням марганцевого пилу або невеликих шматочків. Вивчення проводили для розчинів MnSO4, що містили, при рН=5–7. В результаті проведених досліджень було одержано, що тільки при тридцятикратному надлишку марганцю, що вводиться, при температурі 298 K концентрація нікелю знизилася до 40 мг/л. При використанні підвищеної температури і як відновник SO2, зниження концентрації нікелю в розчині не спостерігалося.
Одним з недоліків використання цементації є велика витрата металевого марганцю. Крім того, даний метод не дозволяє досягати гранично допустимих викидів по нікелю.
1.3.5 Осадження сірковмісними реагентами
Існує процес очищення розчинів, що містять 25 г/л марганцю, 150 г/л (NH4)2SO4, 0,25 г/л нікелю. Як сульфіди використовували сульфіди марганцю, амонію і натрію. При очищенні з використанням MnS були отримані результати, згідно яким, для повного очищення (відсутність) оптимальними умовами проведення процесу є рН=5–7, температура 293 К і перемішування протягом 1 ч, відстоювання до 18 ч. Підвищення температури до 365–375 К значно прискорює очищення і зменшує кількість MnS, що вводиться. Вміст сульфідної сірки в розчині після очищення – близько 0,015–0,017 г/л. Одержуваний осад NіS практично не містить в своєму складі з'єднань марганцю.
Існує спосіб очищення хромвмісних розчинів від важких металів, зокрема від марганцю і нікелю з використанням Na2S. Він полягає в обробці розчинів, що містять важкі метали натрію сульфідом в декілька стадій при рН=6,5–9,0 і пониженні до рН=2–4 після кожної стадії. При вмісті марганцю і нікелю в початковому розчині 1,2 і 1,65 г/л спосіб забезпечує очищення до 0,06 і 0,05 мг/л відповідно.
Таким чином, використання сульфідів для осадження не дозволяє розділяти марганець і нікель, при цьому воно приводить до утворення опадів, що містять сульфіди нікелю і марганцю, які складні в подальшому розділенні. Крім того, використання цього методу обмежене із-за здатності сульфідів піддаватися гідролізу і виділяти токсичний сірководень.
1.3.6 Осадження гідроксидами
Був досліджений процес очищення марганцевого електроліту, що містить 24–26,5 г/л MnSO4, CoSO4 0,02 і 0,2 г/л NiSO4, і електроліту, до складу якого окрім перерахованих з'єднань входив 150–180 г/л (NH4)2SO4 від нікелю і кобальту з використанням NаOH. Було одержано, що при рН=8,7 кінцевий розчин містить 2–2,5 мг/л нікелю і спостерігається повна відсутність кобальту.
Відмітною особливістю процесу осадження марганцю у вигляді Mn(OH)2 від осадження гідроксидів деяких інших металів є схильність його до співосадженню з цими гідроксидами. Наприклад, при осадженні з розчинів, що містять іони марганцю і цинку, причиною співосадження є утворення малорозчинного ZnMnO3.
Були вивчені термічні перетворення системи гідроксидів при співвідношенні Ni(OH)2:Mn(OH)2=2:1. При нагріванні суміші цих гідроксидів до 473–525 К спостерігається утворення суміші переважно шаруватих аморфних оксидів. Далі при нагріванні до 673 К спостерігається утворення суміші оксидів Mn(III,IV) і NіO. При 573 К спостерігається початок кристалізації з'єднання складу. Далі при нагріванні до 773 К спостерігається існування окрім Ni6MnO8, ще і NiMnO3. При подальшому нагріванні до 1073 К Ni6MnO8 і NiMnO3 перетворюються на NiMn2O4 і NіO.
Таким чином, найбільш прийнятним методом утилізації металів – каталізаторів синтезу алмазу, який вміщує Ni та Mn є вилуговування його мінеральною кислотою з подальшим осадженням у вигляді гідроксидів. До теперішнього часу найбільш не вивченою є стадія вилуговування мінеральними кислотами та вибір кислоти є одним із важливіших питань, які визначають подальші умови отримання товарних продуктів солей нікелю та марганцю.
2. ХАРАКТЕРИСТИКА СИРОВИНИ І ГОТОВОЇ ПРОДУКЦІЇ
Сірчана кислота – H2SO4 – сильна двоосновна кислота. Її маса складає 98. Прозора, масляниста рідина, що немає запаху. Змішується з Н2О та SO3 у будь-яких відносинах.
Температура кипіння водних розчинів H2SO4 збільшується зі збільшенням концентрації. Вона досягає максимуму при вмісті кислоти 98,3%.
H2SO4 – сильний окислювач, особливо при нагріванні, при цьому вона відновлюється до SO2 (8).
Окислювальні властивості для розбавленої кислоти не характерні. Розбавлена кислота взаємодіє з усіма металами, що знаходиться у ряду електричної напруги металів до водню з його виділенням.
На технічну сірчану кислоту існує стандарт по ГОСТ 2184–77*. За фізико-хімічним показникам сірчана кислота повинна відповідати нормам, які вказані у таблиці 2.1 (8).
Таблиця 2.1 – Фізико-хімічні характеристики сірчаної кислоти
Найменування показника | Контактна | Олеум | |||
Покращена | Технічна | покращений | технічний | ||
1-й сорт | 2-й сорт | ||||
1 | 2 | 3 | 4 | 5 | 6 |
Масова частка моно–гідрата (H2SO4), % | 92,5–94,0 | Не менш 92,5 | Не нормується | ||
Масова частка віль–ного ангідрида (SO3), % | – | – | – | ||
Масова частка заліза (Fe), % | 0,006 | 0,02 | 0,1 | 0,006 | Не нор–мується |
Масова частка залиш–ку після прокалки, % | 0,02 | 0,05 | Не нор–мується | 0,02 | 0,02 |
Масова частка свинця (Pb), % | 0,001 | Не нормується | 0,0001 | Не нор–мується | |
Прозорість | Прозора | Не нормується |
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Тонкослойная хроматография и ее роль в контроле качества пищевых продуктов
КУРСОВАЯ РАБОТАтонкослойная хроматографияи ее роль в контроле качества пищевых продуктовСодержаниеВведениеГлава 1. Физико-химическ
- Роль химии в естествознании
Формирование современного естествознания – это процесс очень сложный и многоплановый, включающий рассмотрение систем наук о природе,
- Углерод и его основные неорганические соединения
Углерод (лат. Carboneum) С – химический элемент IV группы периодической системы Менделеева: атомный номер 6, атомная масса 12,011(1). Рассмотрим с
- Сборник задач и расчетно-графических работ по технологии переработки полимеров
Сборник задач и расчетно-графических работ по технологии переработки полимеровСодержание1. Формование изделий (1,2,3,4,5,6,7)2. Характеристи
- Усовершенствование технологии установки висбрекинга
Нефть и газ– это основные источники энергии в современном мире. На топливах, полученных из них, работают двигатели сухопутного, воздуш
- Свойства азота
Азот – элемент с седьмым порядковым номером, относящийся к V главной подгруппе второго периода системы. По распространенности в земной
- Свойства алюминия и области применения в промышленности и быту
Федеральное агентство по образованию РФГосударственный технологический университет"Московский институт стали и сплавов"Российская о
Copyright © https://referat-web.com/. All Rights Reserved