Свежие овощи и ягоды. Крупы
1. История развития нанотехнологии
2. Основные особенности наноматериалов и технологии их получения
3. Крупнейшие научные центры, занимающиеся разработками нанотехнологий
4. Области применения нанотехнологий
4.1 Наноэлектроника
4.2 Нанотехнологии в строительстве
4.3 Нанотехнологии в медицине
4.4 Основные направления использования нанотехнологий в АПК
5. Проблемы и перспективы развития нанонауки в России
5.1 Перспективы использования нанотехнологий
5.2 Ключевые проблемы развития нанотехнологий в России
Заключение
Список использованной литературы:
Введение
Человечество во все времена стремилось улучшить условия своего существования. Для этого в первобытном обществе люди использовали различные орудия труда, несколько позже они приручили диких животных, которые стали приносить пользу человеческому сообществу. Шли годы, менялся мир, менялись люди и их потребности. Теперь большинство из нас уже не может представить себе жизнь без современных благ цивилизации, достижений науки, техники, медицины. Следующим шагом в этом развитии станет освоение нанотехнологий, в частности, систем очень малого размера, способных выполнять команды людей.
Технический прогресс направлен в сторону разработки более мощных, быстрых, компактных и изящных машин. Пределом такого развития можно считать машины, размером с молекулу. Машина, построенная из ковалентно связанных атомов, чрезвычайно прочна, быстра и мала. Разработкой, созданием и управлением такими машинами занимается молекулярная нанотехнология. Эта отрасль открывает невиданные ранее, фантастические перспективы взаимодействия человека с миром.
Цель данной курсовой работы состоит в раскрытии особенности физических процессов в области нанотехнологий, их влияния на людей и применения в недалёком будущем.
Нанотехнология - совокупность процессов, позволяющих создавать материалы, устройства и технические системы, функционирование которых определяется наноструктурой, т.е. её упорядоченными фрагментами размером от 1 до 100 нм (10-9м; атомы, молекулы) (рис. 1). Греческое слово "нанос" примерно означает "гном". При уменьшении размера частиц до 100-10 nm и менее, свойства материалов (механические, каталитические и т.д.) существенно изменяются.
Термин нанонаука используется в настоящее время для обозначения исследований явлений на атомном и молекулярном уровне и научного обоснования процессов нанотехнологии, конечной целью которой является получение нанопродуктов. Нанонаука, таким образом, может рассматриваться как начальная стадия нанотехнологии, когда до продукции еще достаточно далеко.
1. История развития нанотехнологии
Область науки и техники, именуемая нанотехнологией, соответствующая терминология, появились сравнительно недавно.
1905 год. Швейцарский физик Альберт Эйнштейн опубликовал работу, в которой доказывал, что размер молекулы сахара составляет примерно 1 нанометр. 1931 год. Немецкие физики Макс Кнолл и Эрнст Руска создали электронный микроскоп, который впервые позволил исследовать нанообъекты. 1959 год. Американский физик Ричард Фейнман впервые прочел лекцию на годичном собрании Американского физического общества, которая называлась "Полно игрушек на полу комнаты". Он обратил внимание на проблемы миниатюризации, которая в то время была актуальна и в физической электронике, и в машиностроении, и в информатике. Эта работа считается некоторыми основополагающей в нанотехнологии, но некоторые пункты этой лекции противоречат физическим законам.
1968 год. Альфред Чо и Джон Артур, сотрудники научного подразделения американской компании Bell, разработали теоретические основы нанотехнологии при обработке поверхностей.
1974 год. Японский физик Норио Танигучи на международной конференции по промышленному производству в Токио ввел в научный оборот слово "нанотехнологии". Танигучи использовал это слово для описания сверхтонкой обработки материалов с нанометровой точностью, предложил называть ним механизмы, размером менее одного микрона. При этом были рассмотрены не только механическая, но и ультразвуковая обработка, а также пучки различного рода (электронные, ионные и т.п.).
1982 год. Германские физики Герд Бинниг и Генрих Рорер создали специальный микроскоп для изучения объектов наномира. Ему дали обозначение СЗМ (Сканирующий зондовый микроскоп). Это открытие имело огромное значение для развития нанотехнологий, так как это был первый микроскоп, способный показывать отдельные атомы (СЗМ).
1985 год. Американский физики Роберт Керл, Хэрольд Крото и Ричард Смэйли создали технологию, позволяющую точно измерять предметы, диаметром в один нанометр.
1986 год. Нанотехнология стала известна широкой публике. Американский футуролог Эрк Дрекслер, пионер молекулярной нанотехнологии, опубликовал книгу "Двигатели созидания", в которой предсказывал, что нанотехнология в скором времени начнет активно развиваться, постулировал возможность использовать наноразмерные молекулы для синтеза больших молекул, но при этом глубоко отразил все технические проблемы, стоящие сейчас перед нанотехнологией. Чтение этой работы необходимо для ясного понимания того, что могут делать наномашины, как они будут работать и как их построить. (1)
1989 год. Дональд Эйглер, сотрудник компании IBM, выложил название своей фирмы атомами ксенона.
1998 год. Голландский физик Сеез Деккер создал транзистор на основе нанотехнологий.
1999 год. Американские физики Джеймс Тур и Марк Рид определили, что отдельная молекула способна вести себя так же, как молекулярные цепочки.
2000 год. Администрация США поддержала создание Национальной Инициативы в Области Нанотехнологии. Нанотехнологические исследования получили государственное финансирование. Тогда из федерального бюджета было выделено $500 млн.
2001 год. Марк Ратнер считает, что нанотехнологии стали частью жизни человечества именно в 2001 году. Тогда произошли два знаковых события: влиятельный научный журнал Science назвал нанотехнологии - "прорывом года", а влиятельный бизнес-журнал Forbes - "новой многообещающей идеей". Ныне по отношению к нанотехнологиям периодически употребляют выражение "новая промышленная революция".
2. Основные особенности наноматериалов и технологии их получения
"Обычная" промышленность работает с тоннами и кубометрами, к чему все привыкли. Наноматериалы - продукт нанотехнологий - это нечто особое, что гораздо сложнее атомов и молекул, но как продукт высоких технологий не требует многотоннажного производства, поскольку даже один грамм такого вещества способен решить множество проблем. Это пример современной "гомеопатии", которая поставлена на вполне научную основу и глубоко продумана.
Наноматериалы - не один "универсальный" материал, это обширный класс множества различных материалов, объединяющий их различные семейства с практически интересными свойствами.
Заблуждением является и то, что наноматериалы - это просто очень мелкие, "нано"частицы. На самом деле, многие наноматериалы являются не отдельными частицами, они могут представлять собой сложные микро и макро объекты, которые наноструктурированы на поверхности или в объеме. Такие наноструктуры можно рассматривать в качестве особого состояния вещества, так как свойства материалов, образованных с участием структурных элементов с наноразмерами, не идентичны свойствам обычного вещества.
Изменения основных характеристик веществ и материалов обусловлены не только малостью размеров, но и проявлением квантовомеханических эффектов при доминирующей роли поверхностей раздела. Эти эффекты наступают при таком критическом размере, который соизмерим с так называемым корреляционным радиусом того или иного физического явления (например, с длиной свободного пробега электронов, размерами магнитного домена или зародыша твердой фазы и др.).
Важной особенностью металлических наноматериалов, играющей ключевую роль при их использовании медицине, косметике, пищевой промышленности, АПК, является низкая токсичность этих наноматериалов, обнаруженная российскими учеными. Так, оказалось что токсичность наночастиц металлов во много раз меньше токсичности ионов металлов: медь в 7 раз, цинк в 30 раз, а железо в целых 40 раз. Это проверено на многочисленных экспериментах с соблюдениями всех норм.
Рис. 1. Токсичность наночастиц металлов
В настоящее время существуют десятки способов получения металлических наноматериалов, которые условно можно разделить на две группы: химические способы и физическиеспособы.
Металлические наноматериалы, полученные с помощью химических способов, практически всегда несут в себе не лучшую "наследственность" исходных химических соединений, что делает проблемным их использование в отраслях с жесткими требованиями к чистоте используемых материалов, в том числе и в агропромышленном комплексе.
Наиболее приемлемыми для таких отраслей являются металлические наноматериалы, полученные с помощью нанотехнологий, основанных на использовании физических явлений.
Физическими способами получения металлических наноматериалов владеет лишь незначительная часть компаний-производителей наноматериалов, расположенных, в основном, в США, Великобритании, Германии, России, Украине. При этом, как Россия, так и Украина занимают ведущее место в этом направлении получения наноматериалов. Более того, Украина, благодаря разработке целой группы нанотехнологий - эрозионно-взрывных нанотехнологий получения наноматериаллов, имеет возможности выйти в мировую группу ведущих производителей наноматериалов в целом. В частности, с помощью эрозионно-взрывных нанотехнологий получены такие новые наноматериалы:
— неионные коллоидные растворы наночастиц металлов;
— анионоподобные высококоординационные аквахелаты нанометаллов;
— гидратированные наночастицы биогенных металлов;
— гидратированные и карботированные наночастицы биогенных металлов;
— электрически заряженные коллоидные наночастицы металлов;
— электрически нейтральные и электрически заряженные металлические наночастицы в аморфном состоянии;
— структурированные агломераты наночастиц;
— наногальванические элементы;
— энергоаккумулирующие металлические наноматериалы.
К настоящему времени применительно к большой группе наноматериалов на основе металлов Au, Ag, Cu, Co, Mn, Mg, Zn, Mo, Fe, получены технические условия (ТУ У 24.6-35291116-001:2007) и налажено их производство отечественным производителем.
3. Крупнейшие научные центры, занимающиеся разработками нанотехнологий
В Германии Creavis — исследовательское подразделение корпорации Degussa.
В США центры развития нанотехнологий, финансируемые Национальным научным фондом (NSF):
Национальная сеть нанотехнологической инфраструктуры (National Nanotechnology Infrastructure Network, NNIN), включающая 13 организаций, занимающихся нанотехнологиями. Ведущей организацией является Корнелльский университет.
Центр иерархического производства (Center for Hierarchical Manufacturing, CHM) при Университете Массачусетса — Амхерст.
Центр наномасштабных химических, электрических и механических производственных систем(Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems, Nano-CEMMS) при университете Иллинойса.
Центр скоростного нанопроизводства (Center for High Rate Nanomanufacturing, CHN), базирующийся в Северо-Восточном университете.
Центр масштабируемого и интегрированного нанопроизводства (The Center for Scalable and Integrated Nanomanufacturing, SINAM) при Калифорнийском университете в Беркли.
В России: ГК "Роснанотех"Государственная корпорация Российская корпорация нанотехнологий создана в Российской Федерации в соответствии с Федеральным законом "О Российской корпорации нанотехнологий" № 139-ФЗ от 19 июля 2007. Корпорация содействует реализации государственной политики в сфере нанотехнологий, финансируя инвестиционные проекты по производству нанотехнологической продукции, содействует развитию инфраструктуры в сфере нанотехнологий и поддерживает программы подготовки и переподготовки кадров.
ЗАО "Нанотехнология МДТ" — российская компания, созданная в Зеленограде в 1989 году. Занимается производством сканирующих зондовых микроскопов для образования, научных исследований и мелкосерийного производства. В настоящее время компания производит 4 модельных ряда, а также широкий ассортимент аксессуаров и расходных материалов: кантилеверы, калибровочные решетки, тестовые образцы.
ООО "АИСТ-НТ" — российская компания, созданная в Зеленограде в 2007 году. Занимается производством сканирующих зондовых микроскопов для образования, научных исследований и мелкосерийного производства.(9) В настоящее время компания производит 2 уникальных прибора, а также широкий ассортимент аксессуаров и расходных материалов.
ООО "Нано Скан Технология" — компания, основанная в Долгопрудном в 2007 году. Специализируется на разработке и производстве сканирующих зондовых микроскопов и комплексов на их основе для научных исследований и образования.(10) В настоящее время компания разработала и производит 2 модели сканирующих зондовых микроскопов и 3 научно-исследовательских комплекса на основе СЗМ.
4. Области применения нанотехнологий
4.1 Наноэлектроника
— разработка физических основ работы активных приборов с нанометровыми размерами, в первую очередь квантовых;
— разработка физических основ технологических процессов;
— разработка самих приборов и технологий их изготовления;
— разработка интегральных схем с нанометровыми технологическими размерами и изделий электроники на основе наноэлектронной элементной базы.
Большинство из нас регулярно пользуются теми или иными достижениями нанотехнологий, даже не подозревая об этом. Например, современная микроэлектроника уже не микро-, а давно нано, т.к. производимые сегодня транзисторы - основа всех электронных схем имеют размеры порядка 100 нм. Только сделав их размеры такими малыми, можно разместить в процессоре компьютера около 100 млн транзисторов (см. рис. 2).
Рис. 2 Внутреннее устройство современной электронной схемы.
Увеличено в 50 000 раз. Размер по горизонтали равен 4 мкм. Транзисторы образованы кристаллами кремния (голубыми столбиками). Зелёный слой – окись кремния.
Однако сейчас уже ведутся работы, чтобы размеры транзисторов сделать ещё на порядок меньше,заменяя их наноструктурами.
Рис. 3. Гипотетическая схема цепочки из нанотранзисторов, состоящая из параллельных полосок проводников толщиной в несколько атомарных слоёв
На рисунке 3 схематически показаны параллельные плоские полоски нанопроводников, состоящие из нескольких атомарных слоёв. Эти полоски пересекает под прямым углом, не касаясь, ряд параллельных нанопроводников, имеющих форму мостов. При этом с верхних проводников на нижние спускаются молекулярные цепочки, сформированные из полупроводникового материала. Построенные по этой технологии схемы уже продемонстрировали способность хранить информацию и выполнять логические операции, то есть - заменять транзисторы.
Очень широки возможности применения в наноэлектронике нанотрубок.
Благодаря уникальным физическим свойствам и структурным особенностям углеродные нанотрубки – идеальные претенденты на роль элементов для электронных схем.
Основной потенциал использования нанотрубок в наноэлектронике заключается в возможности создания субмикронных элементов для электронных схем – нанотранзисторов, нанодиодов, нанокатодов.
Углеродные нанотрубки с "нанопочками" обладают большей площадью поверхности и большим количеством точек – источников эмиссии электронов. Поэтому на их основе могут быть созданы новые типы экранов. Зерно изображения при этом получается крайне малым, что обеспечивает непревзойденную четкость изображения.
Прозрачные проводящие поверхности из нанотрубок так же пригодятся для создания антенн, волноводов и замедляющих структур. Замедление волн поверхностью применяется в электронике для достижения взаимодействия с электронным потоком.
Наиболее реально ожидаемое и самое эффективное практическое применение нанотехнологии должны получить в области нанозаписи и хранения информации, поскольку компьютерная память основана на том, что бит (единица информации) задается состояниями среды (магнитной, электрической, оптической), в которой записывается информация. Как известно, элемент памяти показывает наличие или отсутствие показателя. Исходя из этого, можно реализовать такую ситуацию на поверхности, когда 1 бит будет записан в виде скопления, например, 100 или даже 10 атомов. Как отмечается рядом авторов, если такая память будет создана, все содержание библиотеки Конгресса США уместится на одном диске диаметром 25 см вместо 250 тыс. лазерных компакт-дисков.
Другое направление работ в области создания электронной наноразмерной компонентной базы — исследования, проводимые в международном томографическом центре Новосибирского отделения РАН. Российскими учеными созданы необычные ферромагнетики, которые содержат атомы углерода, азота и водорода (то есть те компоненты, которые присущи живой природе), а также атомы меди и классические "магнитные элементы" — железо, кобальт и никель. Эти ферромагнетики не требуют изоляции, очень легки и, что самое главное, прозрачны, то есть могут быть использованы для голографическои записи информации на всей глубине кристалла, тогда как обыкновенные компакт-диски накапливают информацию только на поверхности. Применение подобных ферромагнетиков может значительно повысить объем хранимой информации в единице объема носителя.
Американская компания Nantero представила новый тип памяти для компьютера, в котором также используются нанотехнологий. Эту разновидность компания назвала "памятью с произвольным доступом, основанную на нанотрубках не требующую постоянного питания" ( NRAM - Nanotube- based/ Nonvolatile RAM).
Новые чипы будут не только более емкими по сравнению со ставшей традиционной флэш-памятью, но и более быстрыми и намного более долговечными. Для организации массового производства новых чипов Nantero сотрудничает с американской компанией LSI Logic, известным производителем микросхем и полупроводниковых устройств.
В настоящее время рассматриваются несколько потенциальных технологий создания наноэлектрических приборов: лазерная 193-нм литография с возможностью преодолеть дифракционный предел, экстремальная ультрафиолетовая литография (ЭУФЛ) с длиной волны 13 нм, а также печатная (наноимпринтинг) литография.
4.2 Нанотехнологии в строительстве
Одна из отраслей промышленности, где нанотехнологии развиваются достаточно интенсивно, — это строительство, что понятно. Например, высокие темпы экономического роста Испании в 2007 году, не говоря уже о Москве, во многом обусловлены бурным расцветом строительной индустрии.
Естественно, что и основные разработки в этой области должны быть направлены на создание новых, более прочных, легких и дешевых строительных материалов, а также улучшение уже имеющихся материалов: металлоконструкций и бетона, за счет их легирования нанопорошками.
Определенные успехи в этой области уже достигнуты. Как сообщает Nano News Net, российские ученые из Санкт-Петербурга, Москвы и Новочеркасска создали нанобетон. Специальные добавки — так называемые наноинициаторы — значительно улучшают его механические свойства. Предел прочности нанобетона в 1,5 раза выше прочности обычного, морозостойкость выше на 50%, а вероятность появления трещин — в три раза ниже. При этом вес бетонных конструкций, изготовленных с применением наноматериалов, снижается в шесть раз. Разработчики утверждают, что применение подобного бетона удешевляет конечную стоимость конструкций в 2—3 раза.
Также отмечается и ряд восстанавливающих свойств бетона. При нанесении на железобетонную конструкцию нанобетон заполняет все микропоры и микротрещины и полиме-ризуется, восстанавливая ее прочность. Если же проржавела арматура, новое вещество вступает в реакцию с коррозийным слоем, замещает его и восстанавливает сцепление бетона с арматурой.
Другой аналогичный пример приводит "Росбалт" от 16.01.08 в публикации "ГЖД (Горьковская железная дорога) испытывает новинки наноиндустрии", где указывается следующее: "Одной из интересных разработок, которые предлагает железнодорожникам Нижегородский региональный центр наноиндустрии, является керамический наноцемент, или фосфатная керамика, — это порошкообразная смесь фосфата и оксида металла, при соединении с водой образующая пастообразный цементный раствор. Такой материал обладает высокой прочностью и огнестойкостью, устойчивым сопротивлением химическому разложению и замерзанию. В отличие от традиционного бетона, он отвердевает даже под водой. По своим свойствам фосфатная керамика превосходит привычный цемент".
Как показывает анализ различного рода публикаций по данной тематике, применение наноматериалов, в частности даже обыкновенной сажи, в количестве всего 0,001—0,1% способствует значительному повышению эксплуатационных свойств пенобетона (снижение усадки, однородная ровная поверхность, более полное заполнение пустот) при минимальной плотности пенобетона (марки D 250—300). Также обеспечивается повышение прочности и трещиностоикости пенобетона и других бетонных изделий в 1,6—2 раза при улучшении теплоизоляционных свойств в 1,2 раза.
Дополнительным преимуществом разработки является уменьшение содержания собственно цемента в пенобетоне при неизменной прочности.
Новый бетон уже начали применять в строительстве. Он Используется в строительстве моста через Волгу в г. Кимры.
В настоящее время находят достаточно широкое применение технологии, основанные на практическом реализации "лотос-эффекта", особенно в строительной индустрии.
Другое направление практического применения нанотехнологии в строительстве — различного рода отделочные и защитные покрытия, основанные на реализации эффекта лотоса и биоцидные материалы.
Так, в 1999 году немецкая компания Nanogate Technologies GmbH из г. Саарбрюккен победила в конкурсе на разработку самоочищающегося покрытия для керамики WunderGlass, объявленном концерном DuravitAG.
На выставке CEVISAMA-2000 в Испании был показан еще один продукт — покрытие для плитки Sekcid, разработанное в результате стратегического партнерства с испанским концерном Torrecid S. A. — одним из мировых лидеров в сфере производства фритты (керамических сплавов) и глазурей для керамической промышленности. В настоящее время идет работа над продуктом СкаНесдля душевых кабин фирмы Duscholux GmbH.
В ассортименте окрасочных материалов немецкой фирмы Alligator появился инновационный материал, разработанный на основе нанотехнологии, — фасадная силикатная краска Kieselit- Fusion с уникальными характеристиками. Она была впервые представлена на выставке в Кельне в апреле 2005 года. Материал с наноструктурой обеспечивает высокую адгезию покрытия не только к минеральным типам подложек, но и к органическим основаниям. Благодаря сверхмалым размерам частиц достигается также высокая прочность и стойкость покрытия к внешним воздействиям, в том числе к мокрому истиранию (класс 1 согласно EN 13300). Комбинация пигментов-наполнителей в сочетании с наноструктур-ной поверхностью является решающей для фотокаталитического действия краски — грязь на окрашенной поверхности распадается благодаря воздействию света. Сочетание наноструктуры и светостойких пигментов обеспечивает как высокую насыщенность цвета, так и устойчивость покрытия к ультрафиолетовому излучению в целом, что позволяет фасаду зданий и сооружений долгое время сохранять первозданный внешний вид. Коэффициент влагопоглощения этой краски, равный 0,09 кг/м2 ч, гарантирует защиту от дождя. Данная характеристика очень востребована в российских климатических условиях. Коэффициент паропроницаемо-сти краски, равный 0,001 м, обеспечивает максимальную степень "дыхания" стен, полностью поддерживая естественный режим влажности.
Вследствие высокой проникающей способности к диоксиду углерода, которая крайне необходима для процессов карбонизации извести, обеспечивается упрочнение и сохранение известковых штукатурок и старых кладочных растворов.
На основе биохимического метода создана технология синтеза наночастиц серебра, стабильных в растворах и в адсорбированном состоянии. Наночастицы серебра обладают широким спектром антимикробного (биоцидного) действия, что позволяет создавать широкую номенклатуру продукции с высокой бактерицидной и вирулицидной активностью. Они могут использоваться для модифицирования традиционных и создания новых материалов, дезинфицирующих и моющих средств, а также косметической продукции при незначительном изменении технологического процесса производства.
Наночастицы серебра синтезируют в водном и органическом растворе, наносят на поверхность и вводят в структуру материалов, придавая им антимикробные свойства. Антимикробное действие лакокрасочных покрытий с наночасти-цами серебра подтверждено при натурных испытаниях. Организовано мелкосерийное производство растворов наночастиц серебра в лабораторных условиях, налажен выпуск биоцидных лакокрасочных материалов (на основе пентафта-левых эмалей и вододисперсионных красок) и зубной пасты. Антимикробные краски с наночастицами серебра по сравнению с аналогичной продукцией с добавками производных полигексаметиленгуанидина (ПГМГ) безопаснее и дешевле в производстве, поэтому в настоящее время краски с включением наночастиц серебра часто применяются для создания высокого бактерицидного эффекта.
Один из примеров использования нанотехнологии — разработка новых окрашивающих материалов для поездов, которая призвана защитить поверхность вагонов от рисования и нанесения надписей, делая ее настолько гладкой, что никакие другие краски не могут на ней закрепиться.
Фасадные краски должны быть эластичными, чтобы перекрывать, например, трещины штукатурки на критических подложках. Эластичность, однако, всегда предполагает адгезию в определенном объеме, поэтому в таких случаях усиленное загрязнение заранее запрограммировано. Чтобы противодействовать этому, после многолетних практических испытаний фирмой Caparol было разработано новое устойчивое к загрязнению защитное покрытие Silamur.
Silamur является водным, чисто силикатным продуктом, действие которого основано на минерализации окрашенной поверхности. После высыхания материала возникает микропористый слой мельчайших кварцевых частиц диаметром порядка миллионных долей миллиметра. Материал с такой микроструктурой относится к так называемым микроскопическим поверхностным покрытиям, которые уменьшают площадь контакта "грязных" частиц, в результате чего эти частицы меньше "прилипают" к поверхности и поэтому легче смываются дождевой водой. Пористая структура поверхности придает материалу совершенно особые качества.
Микроскопические кварцевые частицы оказывают положительное воздействие и на растрескавшиеся покрытия: они обладают способностью заполнять мелкие, средние и крупные поры. Это препятствует проникновению загрязняющих частиц в пустоты. Кроме того, окрашенная поверхность при дожде смачивается по всей площади, так как микропористые кварцевые частицы поглощают воду, и она распределяется равномерно. Механизм защиты от грязи здесь принципиально отличается от гидрофобных фасадных красок. В то время как гидрофобизацию определяет большой краевой угол водных капель и водоотталкивающий эффект, новый продукт воздействует благодаря противоположному эффекту — общему увлажнению, обеспечивающему смывание грязных частиц дождевой водой. Сравнительные испытания доказали, что этот метод эффективнее гидрофобиза-ции (рис. 3).
Из-за насыщенного цветового эффекта, который возникает при применении кварцевых частиц, рекомендуется использовать Silamur только на белых поверхностях или поверхностях пастельных цветов, что предотвращает оптические искажения, которые могут возникнуть на поверхностях насыщенных цветов.
Формирование наноструктур на поверхностях может быть выполнено с помощью нескольких основных технологий:
лазерным лучом или плазменным травлением;
путем анодного окисления (алюминий) с последующим покрытием, например, гексадецилтриметоксиланом;
приданием формы и созданием микрорельефа гравировкой;
покрытием поверхности слоем металлических класте ров, комплексов "поверхностно-активное вещество — полимер" или трехбочных сополимеров, самоорганизующихся в наноструктуры;
покрытием дисперсией наночастиц с морфологией, не образующей агломератов.
Рис. 4. Капля жидкости на наноповерхности эмали 145
Последняя технология является наиболее многообещающей, так как позволяет образовывать большое число частиц при минимуме затрат. Подходящими материалами для формирования таких наночастиц являются полимеры, сажа, пирогенные кремниевые кислоты, оксиды железа и диоксид титана.
Одна из основных проблем, которую еще предстоит решить, заключается в том, чтобы уже после осаждения частицы, обладающие новым распределением по размеру и новой структурой, оказались стабильными по отношению к старению и факторам воздействия окружающей среды. Например, ультрафиолетовое излучение может инициировать окисление покрытия, что приведет к гидрофилизации поверхности за счет образования кислородсодержащих групп.
Ученым удалось показать, что нанесение дисперсий гидрофильных частиц оксида кремния размером несколько нанометров на твердые керамические поверхности приведет к самоорганизации наночастиц за счет электростатического отталкивания и минимизации свободной энергии поверхности. Полученные в результате модифицирования поверхности обладают пониженным для гидрофильных жидкостей краевым углом смачивания, что улучшает стекание и увеличивает скорость высыхания после очистки.
4.3 Нанотехнологии в медицине
Новое междисциплинарное направление медицинской науки в настоящее время находится в стадии становления. Её методы только выходят из лабораторий, а большая их часть пока существует только в виде проектов. Однако большинство экспертов полагает, что именно эти методы станут основополагающими в XXI веке.
В мире уже созданы ряд технологий для наномедицинской отрасли. К ним относятся - адресная доставка лекарств к больным клеткам, лаборатории на чипе, новые бактерицидные средства.
Адресная доставка лекарств к больным клеткам позволяет медикаментам попадать только в больные органы, избегая здоровые, которым эти лекарства могут нанести вред. Например, лучевая терапия и химиотерапевтическое лечение уничтожая больные клетки, губит и здоровые. Решение этой проблемы подразумевает создание некоторого "транспорта" для лекарств, варианты которого уже предложены целым рядом институтов и научных организаций.
Лаборатории на чипе, разработанные рядом компаний позволяют очень быстро проводить сложнейшие анализы и получать результаты, что крайне необходимо в критических для пациента ситуациях. Эти лаборатории, производимые ведущими компаниями мира, позволяют анализировать состав крови, устанавливать по ДНК родство человека(6), определять ядовитые вещества. Технологии создания подобных чипов родственны тем, что используются при производстве микросхем, с поправкой на трёхмерность.(7)
Новые бактерицидные средства создаются на основе использования полезных свойств ряда наночастиц. Так, например, применение серебряных наночастиц возможно при очистке воды и воздуха, или при дезинфекции одежды и спецпокрытий.
В перспективе, любые молекулы будут собираться подобно детскому конструктору. Для этого планируется использовать нано-роботов (наноботов). Любую химически стабильную структуру, которую можно описать, на самом деле, можно и построить. Поскольку нанобот можно запрограммировать на строительство любой структуры, в частности, на строительство другого нанобота, они будут очень дешевыми. Работая в огромных группах, наноботы смогут создавать любые объекты с небольшими затратами, и высокой точностью.
В медицине проблема применения нанотехнологий заключается в необходимости изменять структуру клетки на молекулярном уровне, т.е. осуществлять "молекулярную хирургию" с помощью наноботов.
Ожидается создание молекулярных роботов-врачей, которые могут "жить" внутри человеческого организма, устраняя все возникающие повреждения, или предотвращая возникновение таковых.
Рис 5, 6 Представление о роботах-врачахвнутри человеческого организма
Манипулируя отдельными атомами и молекулами, наноботы смогут осуществлять ремонт клеток.
В действительности наномедицины пока еще не существует, существуют лишь нанопроекты, воплощение которых в медицину, в конечном итоге, и позволит отменить старение.
Несмотря на существующее положение вещей, нанотехнологии - как кардинальное решение проблемы старения, являются более чем перспективными.
Это обусловлено тем, что нанотехнологии имеют большой потенциал коммерческого применения для многих отраслей, и соответственно помимо серьезного государственного финансирования, исследования в этом направлении ведутся многими крупными корпорациями.
Наноботы или молекулярные роботы могут участвовать (как наряду с генной инженерией, так и вместо нее) в перепроектировке генома клетки, в изменении генов или добавлении новых для усовершенствования функций клетки.
Важным моментом является то, что такие трансформации в перспективе, можно производить над клетками живого, уже существующего организма, меняя геном отдельных клеток, любым образом трансформировать сам организм!
Описание нанотехнологии может показаться немного надуманным, возможно, потому что ее возможности столь безграничны, но специалисты в области нанотехнологии отмечают, что на сегодняшний день не было опубликовано ни одной статьи с критикой технических аргументов Дрекслера. Никому не удалось найти ошибку в его расчетах. Между тем, инвестиции в этой области (уже составляющие миллиарды долларов) быстро растут, а некоторые простые методы молекулярного производства уже вовсю применяются. металлический наноматериал электроника медицина
Нанотехнологии могут привести мир к новой технологической революции и полностью изменить не только экономику, но и среду обитания человека. В рамках этой статьи мы рассматриваем лишь перспективность этих технологий для отмены старения людей.
Вполне возможно, что после усовершенствования для обеспечения "вечной молодости" наноботы уже не будут нужны или они будут производиться самой клеткой.
4.4 Основные направления использования нанотехнологий в АПК
На сегодняшний день наноматериалы и нанотехнологии находят применение практически во всех областях сельского хозяйства: растениеводстве, животноводстве, птицеводстве, рыбоводстве, ветеринарии, пе
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Электроснабжение КТП 17 ЖГПЗ
Департамент образованияАктюбинской областиАктюбинский политехнический колледжКурсовой проектТема: Электроснабжение ктп 17 жгпзВыпол
- Графики нагрузки различных типов потреблений электроэнергии и энергосистемы в целом, их обеспечение и регулирование
Одним из наиболее совершенных видов энергии является электроэнергия. Ее широкое использование обусловлено следующими факторами: - воз
- Водородное охрупчивание титана и его сплавов
Министерство образования Российской ФедерацииГосударственное образовательное учреждениевысшего профессионального образованияМос
- Поверочный расчет парового котла ДКВР 4-14, работающего на твердом топливе Кузнецкий Д
Глава I. Описание основного и вспомогательного оборудования1.1 Паровой котел ДКВР4-141.2 Чугунные экономайзеры1.3 Твердое топливо: Кузне
- Моделирование динамики яркостной температуры земли методом инвариантного погружения и нейронных сетей
Необходимость усиления контроля за глобальными процессами: изменения климата, ростом негативного антропогенного воздействия на биос
- Комплекс заземления нейтрали сети 35 кВ
1. Общая характеристика способов заземления нейтрали в сетях 35 кВ1.1 Анализ нормативной документации способов заземления нейтралиСегод
- Розробка інвертора напруги для апаратури зв'язку
СодержаниеВступ1. Системи електропостачання1.1 Види систем електроживлення1.2 Планування систем електроживлення1.3 Вимоги до систем елек