Розвиток і вдосконалення льотної промисловості України
ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ
САЕ – системи автономного електропостачання;
ЕЕС – електроенергетична система;
РП – розподільчий пункт;
ЦЖ – центр живлення;
ЛЕП – лінія електропередач;
ВН – висока напруга;
НН – низька напруга;
ЕЕ – електрична енергія;
ЕМ – електрична мережа;
ЕРС – електрорушійна сила;
СЕП – система електропостачання;
НДР – науково–дослідна робота;
АД – асинхронний електродвигун;
ЕД – електродвигун;
УГЖ – установку гарантованого живлення;
ШГЖ – шина гарантованого живлення;
ГПП – головна понижуюча підстанція;
ЦРП – центральний розподільчий пункт;
ТП – трансформаторна підстанція|харчування|;
АВР – автоматичне вмикання резерву;
СД – синхронний двигун;
ЕРС – електрорушійна сила;
ЕОМ – електронно обчислювальна машина;
КУ – конденсаторна установка;
ТЕЦ – теплоелектроцентраль;
ДЖ – джерело живлення.
ВСТУП
Подальший розвиток і вдосконалення льотної промисловості України тісно пов'язаний з розвитком систем електропостачання, за допомогою яких забезпечуються нормальна життєдіяльність людей, які користуються послугами льотного транспорту і виконання обслуговуючим персоналом поставлених перед ними задач. Особлива роль відводиться системам автономного електропостачання.
Системи автономного електропостачання (САЕ) в загальному випадку призначені для отримання, виробництва, перетворення і розподілу електроенергії між електроприймачами. Широке використання в електроприймачах нових елементів і пристроїв, що виконують відповідальні задачі, значна їх концентрація вимагають різкого підвищення надійності і безперебійності електроживлення споживачів електричною енергією підвищеної якості. Отже, основними елементами САЕ повинні бути установки гарантованого живлення (УГЖ) як змінного, так і постійного струму. Тому в даному дипломному проекті основну увагу надається установкам гарантованого живлення і їх елементам (різноманітним перетворювачам електричної енергії, стабілізаторам напруги і автономним джерелам електричної енергії).
За довгі роки наші вчені, інженери і робітники створили передову електротехнічну промисловість, що випускає перетворювачі електричної енергії, стабілізатори напруги і автономні джерела струму (акумуляторні батареї), які не тільки не поступаються кращим зарубіжним зразкам, але і у багатьох випадках перевищуючі їх.
Перші керовані випрямлячі на тиратронах з'явилися в 1933 році. В 1940 році розроблені германієві і кремнієві вентилі, на основі яких будувалися і в цей час будуються перетворювачі електричної енергії. В 50-х роках, після винаходу транзисторів, розвернулися роботи із створення на їх основі статичних перетворювачів електричної енергії різного призначення.
Новий могутній стрибок в силовій напівпровідниковій техніці викликаний появою в 60-х роках напівпровідникових керованих вентилів-тиристорів. На їх базі створені могутні керовані випрямлячі і інвертори.
Вдосконалення і практичне застосування перетворювачів і стабілізаторів електричної енергії і хімічних джерел струму пов'язано з роботами радянських учених: А.Н. Ларіонова, І.Л. Каганова, Д.Г. Толстова, А.В. Поосе, І.М. Чиженкс, Г.А. Глазенко, Ф.І. Ковальова, Б.В. Беляєва, Б.Н. Кабанова, Г.В. Болкунова, С.І. Гальперіна, Б.А. Кособрокова, Т.з. Калайди, М.Г. Абахаева і багатьох інших.
Враховуючи важливість напівпровідникової перетворювальної техніки і хімічних джерел струму для подальшого вдосконалення льотно-транспортної техніки і СЕП, які забезпечують їх електроенергією, а також для розвитку народного господарства, актуальними є задачі розвитку високоавтоматизованих електродвигунів, акумуляторних батарей, безконтактної низьковольтної і високовольтної апаратури, силових напівпровідникових приладів і модулів. А також створення нових і удосконалення вже існуючих СЕП з високоефективними УГЖ. Адже такі споживачі електричної енергії дуже вимогливі як до її якості, так і до її безперебійності постачання електричної енергії. Тому, далі в цій роботі знайшли своє відображення всі вище перераховані аспекти розгляданої проблема.
1. ЗАГАЛЬНІ ВІДОМОСТІ ПРО ЕЛЕКТРИЧНІ СИСТЕМИ ТА МЕРЕЖІ
По техніко-економічних міркуваннях всі електростанції, розташовані в одному або в декількох сусідніх економічних районах, зв'язуються за допомогою електричних ліній різних напруг і підстанцій для паралельної роботи на загальне навантаження.
Сукупність електростанцій, ліній електропередачі, підстанцій і теплових мереж, зв'язаних в одне ціле спільністю режиму і безперервністю процесу виробництва і розподілу електричної і теплової енергії, називається енергетичною системою (енергосистемою)(1).
Частина енергетичної системи, що складається з генераторів, розподільних пристроїв, підстанцій, ліній електропередачі різних напруг і електроприймачів, називається електричною системою. У електричну систему не входять первинні двигуни і теплові мережі з їх живленням.
Окремі електричні системи з'єднуються між собою лініями передачі високої напруги, внаслідок чого утворюється єдина високовольтна мережа крупного району країни - частина єдиної електроенергетичної системи (ЕЕС) всієї країни.
Передача великих кількостей електричної енергії на значні відстані можлива і економічно доцільна тільки по лініях передачі високої напруги. З цією метою електрична енергія, що виробляється генераторами, перетвориться в енергію високої напруги за допомогою трансформаторів, що встановлюються безпосередньо на електростанціях.
Підстанції, на яких проводиться ця трансформація, називаються трансформаторними підстанціями, що підвищують.
Приймальні ж підстанції, що перетворюють електричну енергію з напруги, при якій вона передавалася по лініях передачі, до напруги приєднаної до підстанції розподільної мережі, називаються знижуючими трансформаторними підстанціями.
Підстанції, призначені для прийому і розподілу електроенергії на одній напрузі, без перетворення і трансформації її, називаються розподільними пунктами (РП).
Розподільні пристрої генераторної напруги електростанцій і знижуючих підстанцій з регулюванням вторинної напруги під навантаженням, до яких приєднані розподільні мережі даного району, називаються центрами живлення (ЦЖ).
1.1Призначення, види та класифікація електричних мереж
Електрична лінія (лінія електропередачі, ЛЕП|) – електроустановка, що є сукупністю токоведущих елементів, їх ізоляції і що несуть конструкцій, призначена для передачі електричної енергії.
Електрична підстанція – електроустановка, призначена для перетворення і розподілу електричної енергії.
Електричний розподільний пристрій – електроустановка, призначена для прийому і розподілу електричної енергії на одній напрузі і що містить комутаційні апарати, допоміжні пристрої і елементи, що їх сполучають.
Електрична мережа – сукупність підстанцій, розподільних пристроїв і електричних ліній, що їх сполучають, призначених для передачі електричної енергії від джерел до споживачів.
Рисунок 1.1 - Види електричних мереж
Класифікація електричних мереж:
По розміщенню: зовнішні і внутрішні.
За призначенням:
- що живлять мережі (лінії) – для передачі електричної енергії від джерел до розподільних пунктів великих груп споживачів;
- розподільні електричні мережі – для розподілу електричної енергії по споживачах;
- місцеві електричні мережі з напругою до 35 кВ завдовжки 15-30 км і більш;
- районні електричні мережі з напругою 110 кВ і вище. До них відносяться одиночні протяжні ЛЕП напругою 35 кВ;
- ЛЕП міжсистемні з напругою 220 кВ – 750 кВ і вище, призначенні для зв'язку окремих електричних систем.
По роду струму:
- електричні мережі постійного струму;
- електричні мережі змінного струму.
По числу дротів:
- двухдротяні;
- трьох дротяні;
- четирйохдротяні;
- п'ятидротяні.
По структурі схем з'єднання (рис. 1.2):
- магістральні розімкнені мережі, що складаються з одиночних ліній, кожна з яких живить декілька навантажень;
- магістральні з відгалуженням;
- радіальні розімкнені мережі, що складаються з ліній, кожна з яких живить окреме навантаження або окрему групу близько розташованих споживачів;
Рисунок 1.2 - Класифікація електричних мереж по структурі схем з'єднання
Крім того, бувають електричні мережі магістральні замкнуті, радіальні замкнуті, складно замкнуті.
За способом заземлення нейтралі:
- з ізольованою нейтраллю;
- з компенсованою нейтраллю;
- з глухозаземленою;
- з нейтраллю заземленої через реактор.
По напрузі:
- електричні мереж з напругою до 1000В;
- електричні мережі з напругою вище 1000В;
- електричні мережі надвисокої напруги (вище за 220кВ).
1.2 Вимоги до електричних мереж і види їх розрахунків
Електричні мережі повинні забезпечувати:
- Надійність та живучість електропостачання;
- Високу якість електроенергії;
- Зручність та безпеку в експлуатації;
- Економічність;
- Можливість подальшого розвитку мережі без її докорінного переобладнання.
Вимоги надійності електропостачання забезпечуються вибором схеми мережі надійністю окремих елементів мережі та її виконання в цілому.
Забезпечення високої якості електроенергії полягає в підтриманні у споживачів частоти і напруги в заданих границях. Для електричної мережі ця вимога зводиться до забезпечення споживачів електроенергією при заданій якості напруги за рівнем і формою кривої.
Зручність і безпека при експлуатації забезпечується додержанням всіх норм проектування електричних мереж зазначених в „Правилах обладнання електроустановок” , будівельних нормах та інших провідних документах.
Економічність еклектичної мережі забезпечується тим що в процесі проектування робиться глибокий техніко-економічний аналіз всі рішень, що приймаються. Його мета – забезпечити мінімум втрат при умові виконання вимог з надійності та якості електроенергії, інших вимог, що стоять перед електричними мережами. Особливу увагу звертають на вибір номінальних напруг схемних рішень і на застосування найновіших досягнень в розвитку науки і техніки, нових засобів експлуатації, а також найповніше використання досягнень в області автоматизації.
Вимога забезпечення подальшого розвитку електричних мереж без докорінного переобладнання досягається проектуванням мереж з врахуванням їх розвитку та перспективного навантаження.
Всі перелічені вимоги до електричних мереж щодо економічності. Будь-яке посилення, наприклад, надійності або якості електроенергії вимагає збільшення витрат. Тому вимоги до тієї чи іншої мережі висуваються різні в залежності від характеру і категорії споживачів, що одержують електроенергію від даної мережі.
Для забезпечення викладених вимог до електричних мереж при їх проектуванні мають бути виконані такі види техніко-економічних розрахунків.
1. Економічні розрахунки. Завданням розрахунків є вибір номінальної напруги мережі та перерізу провідникового матеріалу, способів і засобів регулювання напруги, вибір кількості джерел нормального і резервного живлення, визначення схеми електропостачання, втрат електроенергії та способів їх зменшення при умові оптимального співвідношення первісних втрат та обладнання мережі та мережних споруджень експлуатаційних втрат.
2. Розрахунок з умов забезпечення допустимих втрат і відхилень напруги.Задачею розрахунку є забезпечення споживачів електроенергією потрібної якості за напругою при мінімальних розрахункових витратах. В процесі розрахунків визначення втрати та відхилення напруги в даній мережі або, навпаки, визначаються перерізи проводів засобів регулювання напруги та інші параметри проектованої мережі при яких втрати та відхилення напруги мереж не будуть перевищувати допустимих значень.
3. Додаткові розрахунку.Завданням додаткових розрахунків є перевірка вибраних перерізів проводів і кабелів на тепловий вплив струмів короткого замикання ; перевірка стійкості паралельної роботи електростанцій зв’язаних між собою лініями електричних мереж ;перевірка мереж і систем на можливість виникнення в них перенапружень.
При передачі електричної енергії по проводам на відстань електромагнітне поле розподілене по всій довжині лінії. Процес перетворення електроенергії в тепло також відбувається протягом всієї лінії.
1.3 Схеми заміщення і параметри ліній місцевих електричних мереж
До місцевих мереж відносяться мережі порівняно невеликого радіусу дії (15 - 30 км), напругою до 35 кВ включно.
Явища, що відбуваються в електричних мережах мережах (ЕМ) при передачі електричної енергії (ЕЕ), багато в чому пояснюють їх схеми заміщення. Основні електричні параметри ЛЕП: активний і індуктивний опір, активна і реактивна провідність, рівномірно розподілені по всій довжині лінії. Проте точне врахування таких опорів і провідності необхідний лише при розрахунку дуже довгих ліній.
При розрахунках місцевих мереж йдуть на наступні спрощення:
а) параметри ЛЕП вважають такими, які знаходяться в окремих крапках;
б) провідністю лінії нехтують взагалі, оскільки при обмежених довжинах місцевих мереж і порівняно невисоких напругах її вплив на результати розрахунків малий;
в) опорів і провідності трансформаторів не враховують, оскільки вважають, що втрати напруги вже відбиті величинами допустимих значень втрат напруги в мережі, що задаються;
г) в деяких випадках, наприклад при розрахунках кабельних мереж з малим перетином кабелів, нехтують їх індуктивним опором, оскільки він малий в порівнянні з активним опором;
д) розрахунок ведеться для однієї фази, вважаючи напруги і струми фаз симетричними.
Розрахунок місцевих електричних мереж проводять по послідовній схемі заміщення (рис. 1.3).
Як відомо з курсу електротехніки, розрізняють:
а) опір провідника постійному струму (омічний);
б) опір провідника змінному струму (активний).
По своїй величині другий опір більше першого унаслідок поверхневого ефекту, що полягає в перерозподілі струму по перетину провідника з центральної його частини до поверхні. В результаті струм в центральній частині дроту менше, ніж на поверхні, перетин дроту використовується не повністю, і опір дроту зростає в порівнянні з омічним.
Рисунок 1.3 - Послідовна схема заміщення електричної мережі
Поверхневий ефект особливо різко виявляється при струмах високої частоти, а також в сталевих дротах, у яких магнітний потік усередині дроту значно більше завдяки високій магнітній проникності стали.
Для ліній, виконаних дротами з кольорового металу, явище поверхневого ефекту при промислових частотах незначне; тому в практичних розрахунках активні опоридля цих дротів звичайно приймають рівними їх омічним опорам.
ХЛ| і RЛвизначають через питомі параметри на кілометр довжини ЛЕП|.
RЛ = R0 · ℓ, (1.1)
ХЛ = Х0 · ℓ,(1.2)
де ℓ - довжина ЛЕП| в км;
, Ом/км, ρ - питомий опір матеріалу;
γ - питома провідність матеріалу;
F – перетин дроту|проводу|.
Показники питомої провідності та питомого опору для дроту з кольорових металів приведені у табл. 1.1.
Таблиця 1.1 - Показники питомої провідності та питомого опору дроту
ρ, Ом·мм2/км | γ, м/Ом·мм2 | |
Дріт мідний | 18,8 | 53 |
Дріт алюмінієвий | 31,5 | 31,7 |
Проходження змінного струму по лінії викликає створення навколо провідників змінного магнітного поля, яке наводить в провіднику електрорушійну силу зворотного напряму - ЕРС самоіндукції.
Опір струму, обумовлений протидією ЕРС самоіндукції, називається реактивним індуктивним опором.
Величина індуктивного опору одного дроту (фази) повітряної лінії на 1 км виражається наступною формулою:
, (1.3)
де ω – кругова частота змінного струму;
– середня відстань між осями дротів;
d – діаметр дроту; μ – відносна магнітна проникність матеріалу дроту (для ліній з дротами з кольорового металу μ = 1).
1.4 Схеми заміщення і параметри трансформаторів
Для місцевих мереж звичайно враховують тільки активний і індуктивний опори трансформаторів (рис. 1.4).
Рисунок 1.4 - Послідовна схема заміщення трансформатора
Активний опір обмотокдвообмоточного трансформатора визначають по відомих втратах потужності в міді (у обмотках) трансформатора ΔРМ кВт при його номінальному навантаженні:
,
. (1.4)
У практичних розрахунках втрати потужності в міді (у обмотках) трансформатора при його номінальному навантаженні приймають рівними втратам короткого замикання при номінальному струмі трансформатора, тобто ΔРМ ≈ ΔРК.
Знаючи напругу, короткого замикання uК% трансформатора (з довідкової літератури), яка чисельно рівна падінню напруги в його обмотках при номінальному навантаженні, виражена у відсотках від його номінальної напруги, тобто
, (1.5)
можна визначити повний опір обмоток трансформатора
, (1.6)
а потім і індуктивний опір обмоток трансформатора
. (1.7)
Для крупних трансформаторів, що мають дуже невеликий активний опір, звичайно визначають індуктивний опір з наступної наближеної умови:
. (1.8)
При користуванні формулами слід, враховувати, що опори обмоток трансформатора можуть бути визначені при номінальній напрузі як його первинної, так і вторинної обмотки. У практичних розрахунках зручніше визначати RТі XТпри номінальній напрузі тієї обмотки, для мережі якої ведуть розрахунок.
2. РОЗРОБКА СХЕМИ ЕЛЕКТРОПОСТАЧАННЯ ПІДПРИЄМСТВА
Схема електропостачання показує зв'язок між джерелом живлення (ДЖ) та споживачами електроенергії підприємства.
Питання живлення електроенергією промислових підприємств вирішуються проектними організаціями разом з енергосистемою залежно від необхідної споживаної електроенергії, особливостей технології підприємства, перспектив розвитку електропостачання даного району та інших факторів.
Крім того, схема живлення підприємства також залежить від відстані до ДЖ, загальної схеми електропостачання даного району, величини необхідної потужності з урахуванням її зростання, територіального розміщення навантажень, необхідного ступеня надійності електропостачання, наявності на підприємстві власного ДЖ – заводської теплоелектроцентралі (ТЕЦ).
2.1 Загальні відомості про джерела живлення в системах промислового електропостачання
До основних ДЖ підприємств належать енергосистема та заводські електростанції. Крім того, на підприємствах застосовують установки гарантованого живлення (УГЖ), ДЖ вторинних допоміжних кіл.
Техніко-економічні показники енергосистем кращі, ніж у заводських електростанцій, які будують, якщо це технічно доцільно та економічно рентабельно, для сумісного виробництва теплової та електричної енергії у таких випадках: наявності відходів виробництва, придатних як паливо; при великому тепло-споживанні; особливих вимогах до електропостачання.
УГЖ використовують за наявністю електроприймачів (ЕП) особливої групи надійності як третє незалежне ДЖ. При невеликій потужності ЕП особливої групи застосовують УГЖ потужністю від 16 до 250 кВА.
ДЖ вторинних допоміжних кіл живлять апарати захисту, сигналізації й управління комутаційних апаратів (вимикачів та інших апаратів з дистанційним управлінням).
електричний мережа дріт трансформатор
2.2 Основні принципи побудови схем електропостачання промислових підприємств
Перший принцип – максимальне наближення ДЖ високої напруги до електроустановки (ЕУ) споживачів, що приводить до мінімуму кількості мережних ланок і кількості проміжних трансформацій та комутацій.
Другий принцип – резервування живлення для різних категорій надійності має бути передбачене в схемі електропостачання (відмова від "холодного" резерву). Для цього всі елементи (лінії, трансформатори) повинні нести постійне навантаження в нормальному режимі, а в післяаварійному режимі при вимиканні пошкоджених елементів приймати на себе живлення залишених у роботі споживачів з урахуванням допустимих правилами для цих елементів перевантажень.
Третій принцип – наскрізне секціонування усіх ланок СЕП (шини ГПП, ПГВ, РП, вторинної напруги цехових ТП) з установленням на секційних апаратах пристроїв АВР.
Четвертий принцип – вибір режиму роботи елементів СЕП. Основним є роздільна робота елементів (ліній, трансформаторів), що призводить до зниження струмів короткого замикання (КЗ), застосування більш „легкої” та дешевої комутаційної апаратури, спрощеного релейного захисту.
2.3 Електропостачання промислового підприємства від енергосистеми без власної електростанції
Залежно від напруги ДЖ електропостачання здійснюється за двома варіантами схем (2-5):
1) схеми напругою 6 - 10 кВ;
2) схеми напругою 35 - 220 кВ.
Перші застосовуються при живленні промислових підприємств невеликої потужності з одним ЦРП чи РП і розташованих на відстані від енергосистеми не більше ніж 5 - 10 км. Існують різні схеми, які дозволяють живлення ЕП 1, 2 та 3-ї категорій надійності.
Другі застосовуються при живленні підприємств середньої та значної потужності з ЕП різних категорій надійності та розташованих на великій відстані від енергосистеми. Як ПП найчастіше бувають ГПП чи ПТВ. Існують схеми з одним, двома та більше ПП.
Залежно від місця в мережі енергосистеми та схеми приєднання до мережі розрізняють ПС:
- вузлові – приєднані трьома та більше лініями;
- прохідні – приєднані шляхом заходу та виходу лінії з двостороннім живленням або лінії з подальшим приєднанням інших ПС;
- відгалужувальні – приєднуються до однієї або до двох ліній у "відпайку";
- тупикові – живляться однією або двома радіальними лініями від ДЖ.
Відповідно до нових норм технологічного проектування ПС змінного струму з вищою напругою 6-750 кВ (11) у схемах розподільних пристроїв 35 кВ і більше на ГПП віддільники та короткозамикачі замість вимикачів не застосовуються, бо їх використання вимагає утворення штучного КЗ для забезпечення умов вимкнення вимикача на початку лінії, що призводить до таких обставин: збільшується зона аварії, бо при пошкодженні на живильному відгалуженні до трансформатора чи на самому трансформаторі короткочасно відключаються всі інші трансформатори, приєднані до даної магістралі, що недопустимо для виробництв з безперервним технологічним процесом; підвищується потужність однофазних КЗ (особливо в разі наявності СД, які створюють підживлення КЗ); значно ускладнюються схеми релейного захисту та автоматики.
У наш час застосовують блочні схеми з вимикачами в колах ВН трансформаторів у разі недоцільності (за умовами надійності) або неможливості (за умовами відсутності електрооюлажнання необхідного виконання) застосування більш простих схем.
У разі відсутності транзиту потужності застосовують перемички з двома роз'єднувачами, що дозволяє використовувати одну лінії та два трансформатори або дві лінії та один трансформатор в умовах ремонту відповідно лінії та трансформатора (наприклад, як на рис. 2.1, а).
Доцільність використання блочних схем без перемичок з боку ВН (наприклад, як на рис. 2.1, б) найчастіше визначається їх простотою та надійністю (менша кількість ЕА), дефіцитом території навколишньої забудови, бо наявність перемички при напрузі 110 кВ збільшує довжину ПС практично на 10 м.
На промислових підприємствах невеликої (до 5 МВт) та середньої потужності (від 5 до 75 МВт), до яких належать машинобудівні заводи, для ГПП переважним є застосування двообмоткових трансформаторів з напругами 35/6(10) кВ потужністю від 0,63 до 16 МВА та 110/6(10) кВ потужністю від 4 до 40 МВА, причому трансформатори потужністю 25, 32, 40 та 63 МВА випускаються з розщепленою вторинною обмоткою однакової напруги 6 або 10 кВ. Іноді розщеплені обмотки мають різні напруги 6 і 10 кВ, що сприяє економічному вирішенню питань електропостачання, якщо на підприємстві є ЕП на 6 і 10 кВ.
На підприємствах електротехнічної промисловості України освоєно випуск комплектних трансформаторних підстанцій блочних розподільних (КТПБР) з вищою напругою 35 та 110 кВ.
2.4 Схеми внутрішньозаводського електропостачання напругою 6 та 10 кВ
Внутрішньозаводський розподіл електричної енергії при напрузі 6 або 10 кВ може бути виконаний за радіальною, магістральною або змішаною схемами. Кожна з цих схем відрізняється за ступенем надійності та техніко-економічними показниками залежно від конкретних вимог проектованого об'єкта (2-5).
У сучасній практиці проектування та експлуатації промислових підприємств здійснюється ступеневий принцип побудови схем. Під ступенем електропостачання розуміють вузли схеми електропостачання, між якими електроенергія, одержувана від ДЖ, передається визначеній кількості споживачів.
Схеми бувають одноступеневі та багатоступеневі. У багатоступеневих схемах застосовуються РП однієї напруги, від яких живляться окремі потужні ЕП або група ЕП. Це дозволяє зменшити кількість вимикачів у розподільному пристрої 6-10 кВ ГПП від великої кількості відгалужувальних ліній малої потужності. При виборі схем слід прагнути до зниження кількості ступенів (більше двох ступенів, як правило, не рекомендується), бо це спрощує комутацію, захист та автоматику, знижує втрати електроенергії.
Радіальні схеми розподільних мереж напругою 6 - 10 кВ.Радіальні схеми – це такі схеми, в яких електроенергія від ДЖ (ГПП, ПГВ, ЦРП, РП) передається до цехових ТП або до окремих ЕП напругою понад 1 кВ окремою лінією без відгалуження для живлення Інших споживачів.
Радіальні схеми слід застосовувати при навантаженнях, розташованих у різних напрямках від ДЖ. Найбільш поширеними є одно- та двоступеневі схеми.
Одноступеневі радіальні схеми (рис. 2.2) краще застосовувати на невеликих підприємствах і на великих підприємствах для живлення потужних зосереджених навантажень (компресорні та насосні станції, підстанції електричних печей та ін.).
Перевагою радіальних схем є висока надійність електропостачання. Так, вихід із ладу однієї лінії (точка КЗ К1 на рисунку 2.2) не впливає на роботу споживачів, що живляться від інших ліній.
Основним недоліком радіального живлення одиотрансформаторних ПС є втрата живлення всіма ЕП у разі відсутності резервування, наприклад, при КЗ в живильній лінії ТП1 (точка К2) чи в самому трансформаторі ТП1 (точка КЗ). Тому радіальне живлення цехових однотрансформаторних ПС залежно від конкретних вимог (категорії всіх ЕП, необхідного відсотка резервування, розташування ПС, схем та виконання цехових мереж та ін.) потребує резервування, яке здійснюється за такими схемами (4):
- з резервною перемичкою на боці ВН між сусідніми ТП;
- з резервною магістраллю ВН;
- з резервним радіусом ВН;
- з резервною кабельною перемичкою на боці НН між сусідніми ТП;
- з резервною шинною перемичкою між кінцями двох магістралей НН одного цеху в разі застосування схеми БТМ.
Живлення ТП, що взаємно резервуються, слід здійснювати від різних секцій ГПП, ПТВ, ЦРП, РП.
Радіальне живлення цехових двотрансформаторних ПС необхідно здійснювати від різних секцій РП, як правило, окремими лініями для кожного трансформатора (див. ТП2 на рис. 2.2). Кожна лінія і трансформатор мають бути розраховані на покриття усіх навантажень 1-ї та основних навантажень 2-ї категорій даної ПС у післяаварійному режимі (наприклад, при КЗ у точках К4 і К5).
Двоступеневі радіальні схеми застосовують на великих і середніх підприємствах з цехами (групами цехів), які розташовані на великій території. Живлення розташованих поруч одно та двотрансформаторних ПС без шин ВН та ЕП з напругою понад 1 кВ здійснюється від проміжних РП (РП1 – РПЗ), що живляться від ГПП радіальними лініями першого ступеня (рис. 2.3). При цьому всі комутаційні та захисні апарати розміщуються на РП (див. рис. 2.2). На цехових ТП передбачається глухе приєднання трансформаторів до радіальних ліній другого ступеня. Це дуже спрощує конструкцію та зменшує габарити ТП, що має велике значення при застосуванні внутрішньоцехових ТП.
Питання про спорудження РП розглядають при кількості радіальних ліній, що перевищує вісім. Сумарна потужність секцій РП повинна забезпечувати повне використання пропускної здатності головних вимикачів І ліній, які живлять ці секції.
При використанні радіальних схем здійснюється глибоке секціонування всієї СЕП – від основних ДЖ (ГПП) і до шин напругою до 1 кВ, а іноді навіть цеховими СРШ. За допомогою секційних апаратів може здійснюватися АВР для живлення в післяаварійному режимі роботи СЕП.
Магістральні схеми розподільних мереж напругою 6-10 кВ.У магістральних схемах цехові ТП приєднують до магістралі, що забезпечує найкоротший шлях передачі електроенергії від ДЖ, завдяки чому зменшуються втрати електроенергії, а також зменшується кількість ланок розподілу та комутації електроенергії. Це є основною і суттєвою перевагою таких схем.
Конструктивно магістральні схеми виконуються кабелями, струмопроводами, повітряними ЛЕП.
Магістральні схеми при кабельній прокладці застосовують:
- у разі прямолінійного розміщення цехових ТП на території підприємства;
- у разі необхідності (з вимог надійності електропостачання) резервування живлення цехових ТП від іншого ДЖ при аварії основного;
- для групи технологічно пов'язаних агрегатів, якщо магістральні схеми мають техніко-економічні переваги порівняно з іншими схемами.
При струмах понад 1,5 – 2 кА застосовують магістральні струмопроводи.
Повітряні ЛЕП застосовуються рідко. їх використовують для специфічних підприємств (кар'єри, торфорозробки та ін.).
Магістральні схеми можна поділити на одиночні (одинарні) магістралі, з двома та більше паралельними магістралями, з одним чи з двома ДЖ (2-5).
Одиночні магістралі без резервування (рис. 2.4) застосовуються для живлення ЕП 3-ї категорії лише в нормальному режимі. У разі аварії на кожній ділянці магістралі (точки КЗ К1, К2 чи К3) під дією РЗ вимикається вимикач Q1 і усі ТП припиняють електропостачання споживачів на час пошуку та полагодження пошкодженої ланки магістралі.
Кількість трансформаторів, що приєднуються до однієї магістралі, може бути орієнтовно прийнята в межах двох при номінальній потужності 2500 – 1600 кВА, двох-трьох – при номінальній потужності 1000 кВА і чотирьох-п'яти – при номінальній потужності 630 – 250 кВА.
Основні схеми приєднання однотрансформаторних ПС в магістральних схемах наведені на рис. 2.5.
Варіант "б" найбільш поширений, бо в ньому застосовують КТП, що сприяє максимальному спрощенню порівняно зі схемою "а" при збереженні високої надійності та зручностей експлуатації. На вводі до трансформатора встановлюють вимикач навантаження QW у комплекті з високовольтними запобіжниками F, що необхідно для селективного вимикання трансформатора при його пошкодженні.
При варіанті "в" дуже спрощується конструкція ТП, хоча відсутність апаратів ВН ускладнює умови експлуатації. Крім того, схема за варіантом "в" може застосовуватися в тих випадках, коли установлення апаратів ВН ускладнюється специфічними умовами.
Для підвищення надійності електропостачання одиночних магістралей (можливості часткового живлення споживачів 2-ї категорії, які допускають перерву живлення на час пошуку і від'єднання пошкодженої ланки магістралі та приєднання споживачів до резервного ДЖ у післяаварійних режимах) застосовують такі схеми:
- одиночні магістралі з загальною резервною магістраллю ВН;
- одиночні магістралі з частковим резервуванням з боку ГІН;
- одиночні наскрізні ("зустрічні") магістралі з двостороннім живленням;
- кільцеві магістралі.
Одиночні магістралі із загальною резервною магістраллю ВН застосовують для живлення ЕП 3-ї та частково 2-ї категорій, які допускають перерву живлення на час пошуку і від'єднання пошкодженої ланки магістралі та приєднання споживачів до резервної магістралі, у разі необхідності живлення від незалежного ДЖ в післяаварійних режимах (4).
Одиночні магістралі з частковим резервуванням з боку НН застосовують для близько розташованих ПС, що живляться від різних магістралей, які приєднані до різних секцій ДЖ.
Одиночні наскрізні ("зустрічні") магістралі з двостороннім живленням застосовують, якщо група ПС розташована між двома живильними пунктами.
Кільцеві магістралі допускається застосовувати для живлення ЕП 3-ї та частково 2-ї категорій при відповідному розміщенні груп ПС, які вони живлять (4). Не рекомендується приєднувати більше 4 – 6 ПС до одного кільця при потужності одного трансформатора до 630 кВА. У нормальному режимі експлуатації кільцева магістраль розімкнута вимикачем на дві частини, кожна з яких є одиночною магістраллю і приєднується до різних секцій збірних шин ГПП, ПTВ, ЦРП, РП. На промислових підприємствах кільцеві магістралі застосовують порівняно рідко.
Магістральні схеми з двома та більшою кількістю паралельних магістралей можуть бути застосовані для живлення споживачів будь-якої категорії надійності. Кількість паралельних магістралей більш двох зустрічається рідко.
Подвійні магістральні схеми слід застосовувати в разі наявності двотрансформаторних ПС без збірних шин первинної напруги 6-10 кВ (рис. 2.6, а) та в разі наявності збірних шин первинної напруги 6-10 кВ (рис. 2.6, б).
Кожна магістраль у цій схемі розрахована на покриття навантаження ЕП 1 та 2-ї категорій надійності всіх ПС (4).
При подвійних магістралях можливі три варіанти схеми приєднання цехових двотрансформаторних ПС до магістралі:
а)з апаратами ВН для захисту трансформаторів і роз'єднувачами на вводах;
б)із захисними апаратами ВН, але без роз'єднувачів на вводах;
в)без апаратів ВН на вводах.
Ці схеми приєднання такі самі, як для однотрансформаторних ПС (рис. 6.5), з такими самими перевагами та недоліками.
Схеми подвійних наскрізних ("зустрічних") магістралей з двостороннім живленням застосовуються в разі наявності двох незалежних ДЖ.
При магістральному живленні установлення комутаційного апарата на кожній з ПС (роз'єднувача, вимикача, вимикача навантаження із запобі
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Рынки факторов производства
Глава I. Сущность и особенности функционирования рынков факторов производства1.1 Рынок земли1.2 Рынок труда1.3 Рынок капиталаГлава II. Разв
- Статистическое изучение денежного обращения
КУРСОВАЯ РАБОТАна тему: Статистическое изучение денежного обращенияпо дисциплине: «Статистика»СОДЕРЖАНИЕВведение41. Теоретические ас
- Статистическое наблюдение: понятие, виды и методы
Успех дела сбора качественных и полных исходных данных с учетом требования экономного расходования материальных, трудовых и финансов
- Инфляция: причины, последствия, методы преодоления (на примере России и других стран)
Актуальность выбранной темы. В последнее время, а если точнее – с конца 90-го года, понятие «Инфляция» достаточно плотно вошло в сознани
- Обоснование возможности использования зарубежных методов планирования на белорусских предприятиях (на примере ЗАО "Атлант")
Планирование – средство обоснования любого дела.В последние годы уровень планирования на предприятиях снизился. Такое положение обус
- Повышение прибыли и рентабельности (на примере ГТПУП "Белрыба")
РЕФЕРАТОбъём пояснительной записки стр. 89, рисунков 5, таблиц 23, приложений 1.Тема: Повышение прибыли и рентабельности (на примере ГТПУП
- Повышение прибыли предприятия в современных условиях (на примере РУП "Главный расчетный информационный цент" БЖД)
1 Роль прибыли в современных экономических условиях1.1 Экономическая сущность прибыли в современных условиях, ее функции и виды1.2 Форми