Скачать

Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов

На протяжении многих лет было широко распространено представление, что современный глобальный климат более или менее постоянен и что нет оснований ожидать его заметных изменений в ближайшем будущем. Немногочисленные высказывания отдельных ученых, которые, начиная с конца XIX века, выдвигали предположения о возможном влиянии на климат роста количества углекислого газа в атмосфере, образуемого при сжигании углеродного топлива, не вызывали доверия и не получали какой-либо поддержки.

Однако во второй половине XX века стало очевидно, что общая климатическая ситуация меняется гораздо быстрее, чем в прежние времена. Это обстоятельство заставило ученых всего мира направить усилия на изучение природы климатических изменений и их воздействия на биосферу и общество.

Стоит отметить, что большая часть работ связана с изучением изменений глобального климата, климата регионов мира, отдельных стран, а климатические колебания в пределах небольших территорий исследуются в меньшей степени.

Таким образом, цель данной работы: проанализировать закономерности вековой динамики климата на территории Рязанской области, её пространственно-временные особенности и показать значимость происходящих изменений для природных комплексов области и хозяйственной деятельности человека в этом регионе.

В рамках данной цели были поставлены следующие задачи:

1. Изучить современные представления о процессах глобальной климатической динамики.

2. Охарактеризовать изменения параметров климата на территории Рязанской области в конце XIX и в XX веке и сравнить их с глобальными тенденциями климатических изменений.

3. На основании пространственно распределенных метеоданных за первые годы XXI века дать характеристику современных климатических параметров Рязанской области и провести сопоставление с показателями за 60-е – 80-е годы, а также выявить тенденции территориальных изменений в распределении соответствующих величин.

4. Охарактеризовать речной сток с территории Рязанской области, проанализировать факторы его динамики (в первую очередь климатические).

5. Оценить направленность климатических изменений, происходящих на территории исследуемого региона и оценить изменение состояния природных комплексов под их влиянием.

Исходными материалами являются ряды метеонаблюдений по 13 метеостанциям Рязанской области и соседних территорий, среди которых наиболее длительные периоды наблюдений в Елатьме (1886 – 2003) и Павельце (1936 – 2003). Также использовались данные по расходу воды в реках Рязанской области (Ока, Мокша, Проня, Гусь, Пёт, Истья).

Достоверность определяется большими объемами выборок метеоданных (ежесуточные данные наблюдений с 1886 по 2003 гг.). Полученные результаты являются статистически достоверными, что подтверждается в процессе применения соответствующих методов (метод статистического анализа, эмпирических зависимостей и др.).

Основные положения работы докладывались и обсуждались на студенческих научных конференциях по итогам 2006 и 2008 гг.

По теме выпускной квалификационной работы опубликовано 2 статьи, вошедшие в межвузовские сборники научных трудов («Вопросы региональной географии и геоэкологии: Материалы Всероссийской научной конференции «Петр Петрович Семенов-Тян-Шанский и географическая наука: вопросы региональной географии»: Межвузовский сборник научных трудов» / Отв. ред. В.А. Кривцов, 2007 год; «Вопросы региональной географии и геоэкологии: Межвузовский сборник научных трудов» / Отв. ред. В.А. Кривцов: Вып. 8, 2008 год).

Дипломная работа состоит из введения, четырех глав, заключения. Содержит 90 страниц основного текста, 32 рисунка, 9 таблиц, список литературы из 30 наименований и приложения.

климат региональный ландшафт рязанский


ГЛАВА 1. Современные подходы к оценке климатических изменений и их последствий для природных комплексов

1.1 Вековая динамика климатической системы Земли, ее масштабы и периодизация

Для понимания физического механизма современных изменений климата большое значение имеет изучение колебаний климатических условий, происходивших за последнее столетие, когда на большей части поверхности континентов существовала сеть постоянно действующих метеорологических станций.

Наиболее крупное изменение климата за время инструментальных наблюдений началось в конце XIX века. Оно характеризовалось постепенным повышением температуры воздуха на всех широтах северного полушария во все сезоны года, причем наиболее сильное потепление происходило в высоких широтах и в холодное время года. Потепление ускорилось в 10-х годах XX в., после небольшого минимума в конце XIX в., и достигло максимума в 30-х годах, когда средняя температура воздуха в северном полушарии повысилась приблизительно на 0,6 0C по сравнению с концом XIX в. Затем до середины 60-х годов наблюдалось некоторое снижение глобальной средней температуры воздуха в пределах 0,30C, которое сменилось дальнейшим повышением, с максимумом в 1990-1992 гг., относительно 60-х годов прошлого столетия. Об этом говорят и рассчитанные Л. П. Спириной аномалии температуры для внеэкваториальных широт, которая использовала не данные отдельных метеостанций, а карты средних аномалий температуры воздуха для каждого месяца с 1881 года на северном полушарии, кроме экваториальной зоны.

Из рисунка 1.1.1 также следует, что во внеэкваториальных широтах северного полушария в конце XIX в. началось потепление, которое достигло слабо выраженного максимума в последние годы прошлого столетия. Затем последовало некоторое понижение температуры, сменившееся быстрым повышением. Это повышение особенно ускорилось для холодного периода года в конце 10-х и начале 20-х годов. Положительная аномалия температуры была максимальной в конце 30-х годов, в 40-х годах процесс потепления сменился похолоданием, которое ускорилось в 60-х годах. К середине 60-х годов средняя температура для северного полушария достигла уровня температуры конца 10-х годов.

Рис. 1.1.1. Вековой ход аномалий температуры воздуха (пятилетнее скользящее осреднение).

1 — аномалии средней за год температуры северного полушария, 2 — аномалии температуры широтной зоны 70—85° с. ш. для теплого полугодия, 3 — то же для холодного полугодия.

Можно думать, что вековой ход температуры для внеэкваториальной зоны северного полушария качественно соответствует вековому ходу температуры воздуха у земной поверхности для земного шара в целом. Имеющиеся данные (более ограниченные по сравнению с материалами для внетропических широт северного полушария) показывают, что в экваториальной зоне и во внетропических широтах южного полушария также происходили изменения средней температуры воздуха, причем характер этих изменений в большинстве районов, для которых имеются соответствующие данные, по-видимому, совпадал с изменениями в зоне, освещенной многочисленными материалами наблюдений. Из рисунка 1.1.1 видно, что с повышением широты вековой ход температуры воздуха усиливался и что температура воздуха для холодного периода года, в особенности в более высоких широтах, изменялась сильнее, чем температура для теплого периода.

Важной особенностью является значительно большая (приблизительно в 3,5 раза) амплитуда изменений температуры в высоких широтах, чем в низких).

Если до начала 80-х годов увеличение глобальной температуры в определенной степени было замаскировано естественными изменениями климата (колебания прозрачности атмосферы и частично с влиянием циркуляционных процессов типа Эль-Ниньо – южное колебание, североатлантическое колебание и другие), то со второй половины 80-х годов отмечается почти линейный рост аномалий глобальной температуры. Если за 1971 – 1975 гг. аномалия средней глобальной температуры по сравнению с нормой 1951 – 1975 гг. была еще отрицательной (-0,030С), то в 1976 – 1980 гг. она равнялась 0,120С, в 1981 – 1985 гг. 0,200С, а в 1986 – 1990 гг. достигла 0,330С.

Глобальное потепление климата практически охватило как Северное, так и Южное полушарие. Глобальное повышение температуры, с учетом территории континентов и акватории океанов, за последние 100 лет составило 0,830С. При этом Северное полушариепрогрелось на 0,30С больше, чем Южное, более океаническое и с большей массой льда.

Потепление на территории континентов составило 1,60C, а в районе морской поверхности – около 0,80C. Таким образом, разница потепления на суше по сравнению с акваторией океана составила около 0,80С (10).

Анализ колец древесины лиственницы (Larix sibirica) из северных районов Сибири (62,5 и 67,20 с. ш.) с 914 по 1990 г. показал, что, несмотря на относительно холодную погоду в 1960 – 1970 гг., температура воздуха в XX столетии была самой высокой за последние 1000 лет и на 0,130С превышала температуру воздуха климатического оптимума средних веков («потепление викингов») (7).

Материалы полярных исследований указывают на то, что температура воды в районе Северного полюса выросла на 20С, вследствие чего началось подтаивание льда снизу.Температура воды в тропических широтах в 1995 году также была значительно выше нормы, наиболее высокие значения температуры были зафиксированы в районе Азорского максимума в Атлантике и в экваториальных широтах Тихого океана.

Согласно данным измерений температуры поверхности почвы в 56 отработанных нефтяных скважинах в Канадских прериях на площади более 7 млн. км2, со второй половины XX века отмечается статистически значимое увеличение температуры поверхности почвы в среднем на 2,10С за 100 лет, что хорошо согласуется с трендом температуры воздуха для этой территории, равным 2,00С за 100 лет.

Развитие потепления и увеличение контрастности температур между океаном и континентами, между северными и южными широтами приводит к интенсификации циркуляционных процессов в атмосфере с возрастанием в Северном полушарии переноса с запада на восток, смещением и усилением центров низкого давления, например, Алеутская депрессия увеличилась более, чем на 6 млн. км2. Это вызвало увеличение количества глубоких циклонов над Европой на 50%. Происходит заметная активизация циклональных процессов и над Восточной Европой, в результате чего в последнее десятилетие возросло количество циклонов на 12% (в августе – на 31%, в сентябре – на 38%). Возросло число атлантических (на 48%) и западно-европейских (на 31%) циклонов с одновременным ростом их водности на 35% и 18% на фоне глобального повышения температуры воздуха. Это привело к росту облачности и атмосферных осадков.

Существенное возрастание количества ураганов и тропических циклонов происходит в северной части Атлантического океана. Оно возросло в четыре раза по сравнению с началом текущего столетия. Увеличение количества тропических циклонов на 30% наблюдается на востоке северной части Тихого океана.

Потепление климата привело к интенсификации процессов водообмена. Возросло испарение с океанической поверхности приблизительно на 4%, что привело к изменению динамики тепловлагообмена между океаном, атмосферой и континентами. Материалы спутниковых наблюдений показывают, что в атмосфере происходит постоянный рост облачности, как над океанами, так и над континентами и это увеличение составляет почти 10%.

Облачность является мощным фактором, регулирующим тепловое состояние и увлажнение земной поверхности. Влияние диапазона колебаний облачности в природе на изменение температуры воздуха и количества осадков на порядок превышает эффект, обуславливаемый ростом содержания в атмосфере парниковых газов антропогенного происхождения. Наблюдаемый рост облачности является мощным фактором, который сдерживает потепление климата.

Рост испарения, как с морской поверхности, так и с территории суши, вызвавший рост облачности, привел к увеличению количества атмосферных осадков, как над акваторией океана, где их выпадает около 80%, так и над территорией суши. Увеличение количества осадков в среднем составило около 3 – 4%. Наибольший прирост осадков характерен для приокеанических склонов континентов и, особенно – над островами, в то время как во внутриконтинентальных районах они могли и сокращаться вследствие меридиональных градиентов температур и снижения поступления влаги в центральных районах суши.

В работах О. А. Дроздова и А. С. Григорьевой (1963, 1971) установлено, что, хотя общая картина изменений количества выпадающих осадков при потеплении или похолодании в высоких широтах довольно сложна, в районах недостаточного увлажнения умеренных широт преобладает тенденция к увеличению количества осадков при понижении температуры в Арктике. Этот эффект Дроздов и Григорьева объяснили усилением переноса водяного пара в глубь материков при увеличении контраста температуры между низкими и высокими широтами.

С изложенной выше концепцией хорошо согласуются результаты исследования Лэма, в котором были построены мировые карты аномалий осадков для периода с повышенными и пониженными средними температурами воздуха у земной поверхности (1974). Из этих карт видно, что во время глобальных похолоданий суммы осадков увеличивались на большей части поверхности континентов в средних широтах, уменьшались в субтропической и тропической зонах пояса высокого давления и увеличивались в экваториальных широтах. Эти данные подтверждаются и результатами исследования И. И. Борзенковой (7).

Рис. 2.1.1. Широтное распределение сумм осадков.

1 — по данным Лема, 2 — по данным Борзенковой.


Согласование этих кривых подтверждает наличие закономерной связи между распределением атмосферных осадков и глобальными колебаниями средней температуры воздуха. Анализ данных об осадках в Северном полушарии (8300 станций и дождемерных постов) показал, что 1980-е и начало 1990-х годов были не только самыми теплыми, но и самыми влажными годами за весь период инструментальных наблюдений. Высокий уровень увлажнения обеспечивался в основном за счет районов, расположенных севернее 500 с. ш., в то время как в тропической зоне отмечалось заметное его уменьшение. Положительный тренд осадков в зоне 35 – 700 с. ш. оценивается равным 6 – 8% за 100 лет. Исследования последних лет показали, что в 80-х и 90-х годах статистически значимо увеличились ливневые осадки, что, по-видимому, связано с усилением внутримассовой конвекции в летнее время во внутриконтинентальных районах из-за повышения температуры воздуха (П.Я. Гройсман, устное сообщение). Определенные изменения в циркуляционном режиме, характерные для теплых эпох прошлого, также отмечаются и в последние 15–20 лет. В частности, максимум зональной циркуляции, обеспечивающий высокий уровень увлажнения в высоких широтах, с начала 80-х годов постепенно смещается в более северные широты. Такие изменения в климатическом режиме, произошедшие за последнее столетие, и особенно за последние 15 – 20 лет, свидетельствуют о фундаментальной перестройке глобальной климатической системы. Можно предположить, что в значительной степени эти изменения обусловлены антропогенными причинами, и прежде всего изменением концентрации парниковых газов.

1.2 Предполагаемые причины и факторы климатических изменений. Циклические колебания климата

Известно, что естественные колебания глобального климата определяются изменениями в приходе солнечной радиации на верхнюю границу атмосферы в результате колебания солнечной постоянной, колебания радиации из-за изменений астрономических параметров земной орбиты или из-за ослабления радиации стратосферным аэрозолем после крупных вулканических извержений взрывного типа. Одна из концепций, утверждающая зависимость современных климатических изменений от вулканической активности, была предложена Гемфрисом (1913, 1929 и др.).

Уже в работах Гемфриса было установлено, что среднее количество прямой солнечной радиации, приходящей к земной поверхности в безоблачных условиях, в различные годы может заметно изменяться. Эти изменения хорошо видны на кривых векового хода прямой радиации, построенных по материалам наблюдений на ряде актинометрических станций. Такие кривые показывают, что прямая радиация, заметно изменяясь от года к году, в среднем изменяется также и за более длительные периоды времени, порядка десятилетий. Представляет значительный интерес сопоставление векового хода температуры в северном полушарии с вековым ходом радиации, приходящей к земной поверхности. Для этой цели был обработан материал актинометрических наблюдений за 1880— 1965 гг. для группы станций Европы и Америки с наиболее длительными рядами наблюдений, расположенных в зоне 40—60° с. ш., и построена средняя для этих станций кривая векового хода прямой радиации при безоблачном небе (Будыко, Пивоварова, 1967; Пивоварова, 1968). На рис. 1.2.1 представлены сглаженные по 10-летнему скользящему периоду значения солнечной радиации для рассматриваемого интервала времени (кривая б). Как видно, солнечная радиация имела два максимума: один, кратковременный, в конце XIX в. и второй, более длительный, с наибольшими значениями радиации в 30-х годах XX в. Можно высказать два предположения о причинах изменений прямой радиации при безоблачном небе. Первое из них — связь этих изменений с колебаниями астрономической солнечной постоянной (светимости Солнца), второе — с колебаниями так называемой метеорологической солнечной постоянной, т. е. количества радиации, поступающей на верхнюю границу тропосферы, которое может изменяться при постоянной светимости Солнца из-за нестабильности прозрачности стратосферы. Первая гипотеза была предложена в нескольких работах, примером которых является исследование Босоласко и его соавторов (1964).

Рис. 1.1.2. Вековой ход аномалий температуры (а) и прямой радиации (б)

В этой работе из данных наблюдений на трех актинометрических станциях был сделан вывод, что солнечная постоянная растет при повышении солнечной активности (характеризуемой числами Вольфа) до некоторого предела, после чего при дальнейшем увеличении солнечной активности солнечная постоянная уменьшается.

Для выяснения механизма современных изменений климата сравним кривую б на рис. 1.2.1 со сглаженной по скользящему 10-летнему периоду кривой векового хода температуры (кривая а). Очевидно, что между этими кривыми имеется определенное сходство. Так, на обеих кривых имеется два максимума, из которых один относится к концу XIX в., а второй (главный) — к 30-м годам XX в. Можно предположить, что это естественное потепление климата, связанное с увеличением прозрачности нижних слоев атмосферы в результате длительного отсутствия вулканических извержений взрывного типа. Обычно этот процесс сильнее всего проявляется в высоких широтах в летнее время, когда вступает в действие механизм обратной связи со льдами.

Вместе с тем, между этими кривыми имеются некоторые различия; в частности, первый максимум более заметен в вековом ходе радиации по сравнению с вековым ходом температуры. Сходство кривых а и б позволяет предположить, что изменения радиации, обусловленные нестабильностью прозрачности атмосферы, являются существенным фактором изменений климата. Для выяснения этого вопроса следует выполнить количественный расчет изменений температуры в результате изменений атмосферной прозрачности для коротковолновой радиации.

В упомянутых исследованиях Гемфриса было установлено, что наибольшее влияние на планетарные колебания прозрачности атмосферы оказывают сравнительно небольшие частицы аэрозоля, которые длительное время задерживаются в нижних слоях стратосферы.

Гемфрис и Векслер предполагали, что наиболее мелкие частицы могут оставаться в атмосфере на протяжении нескольких лет. Эти частицы мало влияют на длинноволновое излучение, но заметно усиливают рассеяние коротковолновой радиации, в результате чего увеличивается планетарное альбедо Земли и уменьшается величина радиации, поглощенной Землей как планетой.

Оценивая влияние изменения количества прямой радиации на среднюю температуру у поверхности Земли, следует принять во внимание зависимость средней температуры от приходящей солнечной радиации. Расчеты показывают, что при изменении приходящей радиации на 1 % средняя температура у поверхности Земли при постоянном альбедо системы Земля — атмосфера изменяется на 1,1—1,50C.

С.И. Савинов (1913), Кимбалл (1918), H.H. Kaлитин (1920) и другие авторы установили, что после сильных вулканических извержений взрывного характера происходят резкие уменьшения солнечной радиации. В таких случаях средняя для больших территорий величина прямой радиации в течение нескольких месяцев или лет может быть понижена на 10—20%. Пример такого изменения радиации представлен на рис. 2.2.1, где изображено изменение отношения средних месячных значений прямой радиации при безоблачном небе к их нормам после извержения вулкана Катмай на Аляске в 1912 году.

Эта кривая, построенная по данным наблюдений на нескольких актинометрических станциях в Европе и Америке, показывает, что в отдельные месяцы атмосферный аэрозоль уменьшил прямую радиацию более чем на 20 %.

Рис. 2.1.2. Изменение прямой радиации после вулканического извержения.

В некоторых районах уменьшение прямой радиации было еще более значительным. Так, например, в Павловске (район Петербурга), расположенном на громадном расстоянии от Аляски, солнечная радиация в течение полугодия была на 35 % ниже нормы. Аналогичные изменения радиации имели место после извержения вулкана Кракатау (Индонезия) в 1883 г. В обоих случаях после извержения вулканов на огромных территориях наблюдались аномальные оптические явления в атмосфере, что подтверждало планетарный характер изменений радиационного режима в результате распространения стратосферного аэрозоля.

После крупных извержений в течение нескольких лет существенно снижается температура воздуха в теплое время года, причем в северном полушарии это снижение достигает максимума в северной части средних широт. В холодные сезоны изменения температуры после извержения имеют более сложный характер; она обычно понижается в полярной зоне и часто повышается в средних широтах. В результате этого средняя годовая температура понижается значительно сильнее в высоких широтах по сравнению со средними широтами. Так, за последние 20 лет произошло два крупных вулканических извержения такого типа (Эль-Чичон в 1982 г. и Пинатубо в 1991 году), последствием которых было заметное уменьшение средней глобальной температуры в течение 2 – 3 лет. В конце июня 1997 г. было зафиксировано еще одно значительное извержение (вулкан Попокатепетль), влияние которого на климат пока еще не совсем ясно, так как извержение этого типа отличается от извержений вулканов Эль-Чичон и Пинатубо.

Таким образом, вулканическая деятельность оказывает определенное влияние на климат, а именно способствует снижению температуры за счет накопления продуктов вулканической деятельности (в частности, аэрозолей) в стратосфере, что в свою очередь приводит к уменьшению поступления количества солнечной радиации к поверхности Земли. Наиболее яркий пример – это снижение среднегодовой температуры в 60-е годы, которое, скорее всего, было вызвано серией извержений: Агунг (1963), Суртсей (1964), Таал (1965), Таал и Аву (1966), Фернандина (1968). Однако, извержения вулканов наблюдались и в годы относительного увеличения температуры: Фуэго (1974), Суфриер (1979), Сент-Хеленс (1980), Алаид (1981). Возможно, что в данный период факторы, способствующие повышению температуры, оказались более значимыми и сгладили влияние продуктов вулканической деятельности на климат.

Анализ хода метеорологических элементов (осадков, давления, температуры и пр.) по современным данным указывает на существование прямой связи между ходом солнечной активности и частотой и интенсивностью смены воздушных масс над данной произвольно выбранной территорией. С усилением солнечной активности возрастает частота и интенсивность смены воздушных масс, а с ослаблением солнечной активности она падает. В соответствии с этим и основные переносы претерпевают усиление или ослабление.

Как правило, проявления солнечной активности связывают с появлением солнечных циклов с периодами 11, 22, 33 и 88 – 90 лет в климатических вариациях метеовеличин (12). Проявление 11-летнего цикла солнечной активности (цикл Швабе – Вольфа) представляет собой колебания числа солнечных пятен. Данная периодичность не столь выражена, как 22-летний цикл Хэйла, обнаруженный в климатических записях во многих регионах земного шара. Этот цикл связан с переполюсовкой магнитного поля на Солнце. Для объяснения существующих неопределенностей в климатическом отклике на солнечное воздействие (пространственные неоднородности, слабость внешнего сигнала) в ряде работ разработан механизм возникновения в атмосфере энергоактивных областей (систем), связанных с зонами развития неустойчивости, усиливающими атмосферный эффект солнечно-обусловленного сигнала из-за внутренних свойств самой системы. Свойство усиливать внешний сигнал характерно для нелинейных динамических систем. В частности, одной из таких областей по мнению (12) является зона Северной Атлантики.

33-летний цикл был выявлен Э. Брюкнером. Он соответствует трем 11-летним циклам и выражает многолетние колебания климата от холодных и влажных лет к теплым и сухим на протяжении от 20 до 50 лет. В отдельных случаях продолжительность цикла Брюкнера может меняться.

Периодичность около 88 – 90 лет (цикл Глейсберга) проявляется в климатических характеристиках очень редко.

Определенное влияние на изменение глобальной температуры может оказывать тропосферный аэрозоль, причем влияние его на температуру имеет обратный знак по сравнению с ростом концентрации парниковых газов. В настоящее время не существует единого мнения о роли тропосферного аэрозоля в современном изменении климата. Ряд исследователей считают, что эти два процесса, действующие в противоположных направлениях, оказывают равнозначное влияние на температуру воздуха. Однако существует и другое мнение о том, что роль тропосферного аэрозоля значительно меньше по сравнению с влиянием антропогенной деятельности в результате выбросов парниковых газов в атмосферу.

Существует и ряд других факторов, вызывающих естественные колебания климата, среди которых особое внимание уделяется автоколебаниям климатической системы, включающих такие явления, как Эль-Ниньо – южное колебание. Эти естественные изменения климата продолжительностью от 3 до 7 лет оказывают наибольшее влияние на изменение локальных температур поверхности воды и воздуха в тропических районах Тихого океана.

Среди причин антропогенного изменения климата можно назвать:

- увеличение концентрации углекислого газа в атмосфере. По данным наблюдений объемная концентрация CO2 в атмосфере повысилась с 315 млн -1 в 1958 году до 343 млн -1 в 1984 г. Исходя из расчетов Будыко М. И. (2) можно заключить, что в середине XIX века эта концентрация составляла около 280 млн -1. Таким образом, к середине 80-х годов прошлого века количество углекислого газа возросло на 20 – 25%. Весьма вероятно, что удвоение количества CO2будет иметь место во второй половине XXI века. Есть основания считать, что увеличение количества CO2, достигнутое в современную эпоху, уже оказывает существенное влияние на глобальный климат и на биосферу в целом. Так, существуют неоспоримые доказательства прямого влияния увеличения концентрации CO2 на физиологические процессы в растениях (см. пункт 1.3).

- увеличение содержания малых примесей в атмосфере. Хозяйственная деятельность человека приводит к росту концентрации не только углекислого газа, но и ряда других газов, которые также усиливают парниковый эффект и способствуют повышению температуры нижних слоев воздуха: метан (CH4), окислы азота, озон и др.

Содержание метана в атмосфере, куда он поступает из болот, глубоких трещин в земной коре и некоторых других источников невелико (примерно 1 – 2 млн -1). В современную эпоху количество атмосферного метана быстро возрастает как в результате развития сельскохозяйственного производства (особенно расширения обильно орошаемых рисовых полей), так и в результате роста добычи природного газа.

Из окислов азота главное значение имеют N2O и NO2, концентрация которых составляет около 0,3 млн -1. Значительное количество окислов азота поступает в атмосферу при производстве минеральных удобрений и в результате некоторых других видов хозяйственной деятельности.

Есть основания считать, что хозяйственная деятельность оказывает влияние на рост озона (О3) в тропосфере. Увеличение массы тропического озона также должно усилить парниковый эффект в атмосфере.

В современном воздухе имеются также малые примеси, поступившие туда только из антропогенных источников – хлорфторуглеводороды (фреоны).

- рост производства энергии, который приводит к дополнительному нагреванию атмосферного воздуха. Имеются оценки количества тепла, которое выделяется в результате хозяйственной деятельности человека. В целом для Земли это количество на единицу поверхности невелико и составляет около 0,01 Вт/м2. Для наиболее развитых промышленных районов указанная величина на два порядка больше и достигает 2 – 3 Вт/м2. На территориях больших городов эта величина возрастает еще на один – два порядка, т. е. до десятков и сотен Вт/м2.

При изменении притока энергии, получаемой Землей от Солнца на 1% средняя температура у ее поверхности изменяется на 1,50С. Если считать, что производство тепла в результате деятельности человека составляет около 0,006% от общего количества радиации, поглощенной системой Земля – атмосфера, то соответствующее этому повышение средней температуры будет равно примерно 0,010С. Эта величина сравнительно незначительна, однако при резкой неравномерности размещения на поверхности Земли источников тепла, созданных человеком, в отдельных районах повышение температуры может быть значительно большим.

- другие факторы. К их числу можно отнести: увеличение массы антропогенного аэрозоля в атмосфере, орошение засушливых районов (понижение альбедо примерно на 0,10 (2)), строительство водохранилищ (понижение альбедо).

1.3 Наблюдаемые последствия климатических изменений и их возможное влияние на эволюцию геосистем

Несмотря на относительную недолговременность происходящих климатических изменений, уже сейчас можно выявить ряд вызванных ими последствий. В частности, к ним можно отнести:

· отступление горных ледников практически во всех широтных зонах;

· сокращение площади и уменьшение толщины морских льдов в Арктическом бассейне;

· уменьшение площади шельфовых ледников в Антарктиде;

· изменение структуры кораллов в тропических широтах;

· изменение границ и толщины снежного покрова в умеренных и высоких широтах;

· увеличение длины вегетационного периода;

· изменение сезонных амплитуд температуры воздуха и сезонных колебаний концентрации CO2 в атмосфере;

· прямое влияние увеличения концентрации CO2 на естественную и культурную растительность;

· смещение сроков наступления сезонных явлений в жизни растений и животных;

· расширение границ ареалов растений и животных к северу.

Так же как и в прошлом, криосфера, и, прежде всего горные ледники, является наиболее чувствительной частью глобальной климатической системы. В таблице 3 приведены следующие данные об уменьшении длины ледников (l,м/год), наблюдаемом начиная с конца прошлого века практически во всех районах земного шара.

Наиболее значительные изменения площадей горных ледников происходят в Центральной Европе, в Тропической Африке, Исландии и Азии. В Центральных Альпах объем ледников сократился на 10 – 20% в 1980 – 1990 гг. по сравнению с их объемами в 1970-е годы. Около половины ледников Исландии активно отступают в последние 20 – 25 лет. Площадь ледников Восточной Африки с начала века уменьшилась на 50 – 60%. В Средней Азии сокращение площадей горных ледников происходит быстрее, чем все известные сокращения за последние 12 тысяч лет(7).

Таблица 1. Уменьшение длины ледников с конца XIX до конца XX веков (7)

Район

Скалис

тые горы

 Шпиц

берген

Ислан

дия

Норвегия Европа (Альпы) Центральная АзияАфрика (Кения)Новая Зеландия
Период

1890-

1974

 1906–

1990

 1880–

1965

 1880–

11990

 1880–

1988

 1874–

1980

1893–

1987

1844–

1990

l,м/год

-15,2 -51,7 -12,2 -28,7 -15,6 -9,9-4,8-25,9