Разбиения выпуклого многоугольника
П.1. Выпуклый многоугольник с n сторонами можно разбить на треугольники диагоналями, которые пересекаются лишь в его вершинах. Вывести формулу для числа таких разбиений.
Определение: назовем правильным разбиением выпуклого n-угольника на треугольники диагоналями, пересекающимися только в вершинах n-угольника.
Пусть P1, P2 , … ,Pn–вершины выпуклого n-угольника, Аn- число его правильных разбиений. Рассмотрим диагональ многоугольника PiPn.В каждом правильном разбиение P1Pn принадлежит какому-то треугольнику P1PiPn, где1
Пусть i=2 – одна группа правильных разбиений, которая всегда содержит диагональ P2Pn.Число разбиений, входящих в эту группу совпадает с числом правильных разбиений (n-1) угольника P2P3…Pn, то есть равно Аn-1.
Пусть i=3 – одна группа правильных разбиений, которая всегда содержит диагональ P3P1 и P3Pn.Следовательно, число правильных разбиений, входящих в эту группу, совпадает с числом правильных разбиений (n-2)угольника P3P4…Pn, то есть равно Аn-2.
При i=4 среди треугольников разбиение непременно содержит треугольник P1P4Pn.К нему примыкают четырехугольник P1P2P3P4 и (n-3)угольник P4P5 …Pn.Число правильных разбиений четырехугольника равно A4, число правильных разбиений (n-3) угольника равно
Аn-3.Следовательно, полное число правильных разбиений, содержащихся в этой группе, равно
Аn-3A4.Группы с i=4,5,6,… содержат Аn-4A5, Аn-5A6, … правильных разбиений.
При i=n-2 число правильных разбиений в группе совпадает с числом правильных разбиений в группе с i=2,то есть равно Аn-1.
Поскольку А1=А2=0, А3=1, A4=2 и т.к. n ³ 3, то число правильных разбиений равно:
Аn= Аn-1+Аn-2+Аn-3 A4+Аn-4 A5+ … + A 5Аn-4+ A4Аn-3+ Аn-2+ Аn-1.
Например:
A 5= A4+ А3+ A4=5
A6= A5+ А4+ А4+ A5=14
A7= A6+ А5+ А4 *А4+А5+ A6 =42
A8= A7+ А6+А5*А4+ А4*А5+А6+ A7 =132
П.2.1.Найдем количество во всех диагоналей правильных разбиениях, которые пересекают внутри только одну диагональ.
Проверяя на частных случаях, пришли к предположению, что количество диагоналей в выпуклых n-угольниках равно произведению количества разбиений на (n-3)
Докажем предположение, что P1n=Аn(n-3)
Каждый n-угольник можно разбить на (n-2) треугольника, из которых можно сложить (n-3) четырехугольника, причем каждый четырехугольник будет иметь диагональ. Но в четырехугольнике можно провести 2 диагонали, значит в (n-3) четырехугольниках можно провести (n-3) дополнительные диагонали. Значит, в каждом правильном разбиении можно провести (n-3) диагонали удовлетворяющих условию задачи.
П.2.2.Найдем количество во всех диагоналей правильных всех разбиениях, которые пересекают внутри только две диагонали.
Проверяя на частных случаях, пришли к предположению, что количество диагоналей в выпуклых n-угольниках равно произведению количества разбиений на (n-4), где n ≥ 5
Докажем предположение, что P2n=(n-4)Аn , гдеn ≥ 5.
n-угольник можно разбить на (n-2) треугольников из которых можно сложить (n-4) пятиугольника, в котором будут содержаться две непересекающиеся диагонали. Значит, найдется третья диагональ, которая пересекает две другие. Так как имеется (n-4) пятиугольника, значит, существует (n-4) дополнительные диагонали удовлетворяющих условию задачи.
П.2.3. Разбиение n-угольника, в котором дополнительные диагонали пересекают главные k раз.
Определение 1:Главными диагоналями выпуклого n-угольника называются диагонали, которые разбивают его на треугольники, пересекаясь при этом только в вершинах n-угольника.
Замечание: их существует (n-3).
Определение 2:Дополнительными диагоналями выпуклого n-угольника называются диагонали, которые в данном разбиении пересекают главные диагонали.
Замечание: их существует менее (n-3).
I.Определение k:
Будем выделять из выпуклого n-угольника
следующим образом: соединяем диагоналями через одну вершину данного n-угольника, причем выделением считается получение последующего a-угольника из предыдущего, используя не менее двух диагоналей. Выделение ведется до тех пор, пока не получится четырехугольник или треугольник (r = 4 или r = 3 (r – остаточный коэффициент)). Назовем каждое такое выделение циклом и введем величину, которая будет “считать” их (d). Для каждого d существует 2d+1 многоугольников, первый многоугольник для данного d ,будет (2d+1+1)-угольником. Для первой половины (для данного d) многоугольников r = 3, для второй - r = 4. Последним многоугольником, для которого r = 3 будет (3×2d )-угольником. Окончательно получаем: r = 3, если nÎ(2d+1+1; 3×2d), в противном случае r = 4. За каждый цикл, если проводить дополнительные диагонали, будет добавляться по 2 пересечения и через d циклов число пересечений достигнет максимума в полученном данным способом разбиении. Обозначим это число буквой k.
Итак, за 1 цикл 2 пересечения, за 2 цикла – 4, за 3 – 6, очевидна арифметическая прогрессия с разностью 2, a1=2 и количество членов равным d; значит k=2+2(d-1)=2d – только в том случае, если конечной фигурой окажется треугольник. В противном случае k=2d+1, так как четырехугольник имеет собственную диагональ.
Рассчитаем d: т.к.: d=1, n (22+1; 23)
d=2, n (23+1; 24)
d=3, n (24+1; 25)
…
Зависимость d от n- логарифмическая по основанию 2; становится очевидным равенство: d=(log2(n-1))-1. Выразим k через n:
k=2((log2 (n-1))-1), если nÎ(2(log2(n-1))+1; 3×2(log2(n-1))-1)
или
k=2((log2(n-1))-1)+1= 2(log2 (n-1))-1, если nÏ(2(log2(n-1))+1; 3×2(log2(n-1))-1)
Так как k – максимум пересечений, то уместны неравенства:
k≤2((log2 (n-1))-1), еслиÎ(2(log2(n-1))+1; 3×2(log2(n-1))-1)
или (*)
k≤2(log2 (n-1))-1, еслиÏ(2(log2(n-1))+1; 3×2(log2(n-1))-1)
II. Найдем число дополнительных диагоналей (m), которые пересекают главные не более k раз.
Выделим в данном выпуклом n-угольнике (k+3)-угольник (k+3)-угольник (если это возможно), зн.
уже ‘использовано’ (n+3)-2=k+1 всех
отбросили существующих треугольников
1 треугольник n-угольника (всего их (n-2)),потом добавили другой ‘отбросим’ крайний треугольник и реугольник и ‘добавим’ к получившейся фигуре еще опять получили один, имеющий общую с ней сторону, (k+3)-угольник ‘не использованный’ треугольник, тогда останется (k+2) не использованных треугольника, и так далее до тех пор, пока не ‘используем’ все (n-2)треугольника. Очевидна арифметическая прогрессия с разностью 1, am=n-2 и c количеством членов равным m. Получим:n-2=k+1+(m-1)<=>n-2=k+m<=>m=n-k-2óm=n-(k+2)Значит, в n-угольник можно вписать (k+3)угольник (n-(k+2))раз, то есть существуют такие (n-(k+2)) дополнительные диагонали, которые пересекут k главных диагоналей.
Окончательно получаем: Pkn=(n- (k+2))Аn , где(*).
Скращук Дмитрий (г. Кобрин). Разбиения выпуклого многоугольника
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Автоколебательные системы
Под автоколебаниями понимают колебательный процесс в диссипативных системах (т.е. в системах с потерями задействованной в процессе эне
- Правильные и полуправильные многогранники
Реферат выполнила: Гилева Мария, класс 10 "В", школа 412000/2001 учебный годПравильные и полуправильные многогранники (платоновы и архимедовы т
- Алгебра Дж. Буля и ее применение в теории и практике информатики
Информация, с которой имеют дело различного рода автоматизированные информационные системы, обычно называется данными., а сами такие си
- Динамические объекты
Объектные переменные вo многом подобны обычным переменным Турбо Паскаля, в частности, их можно размещать в динамической памяти. Турбо Па
- Родина и народ в лирике Н. А. Некрасова
Примерный текст сочиненияИмя Н. А. Некрасова неразрывно связано в нашем представлении с крестьянской Россией. Пожалуй, никто из поэтов н
- Физика звезд
1. Многообразие звезд.1.1. Светимость звезд, звездная величина.Если смотреть на звездное небо, сразу бросается в глаза, что звезды резко от
- Международные космические организации
Тема моей работы Международные космические организации. Целью данной работы является дать общую характеристику комических организаци