Применение углеродных нанотрубок в энергетике
Энергетика - это одна из наиболее важных отраслей промышленности, развитие которой практически сразу отражается на качестве жизни людей. От того, над чем работают сегодня ученые, какие идеи они считают перспективными, какие проекты востребованы коммерческим сектором, во многом зависит состояние энергетики нашей страны и мира в будущем. В настоящее время поиск и изучение альтернативных источников энергии являются одними из самых популярных направлений научных исследований. В дело идет практически всё, что угодно – солнечный свет, ветер, океанские течения, энергия вакуума и т.д. Устройства, способные сами добывать энергию из окружающей среды, могут иметь массу полезных применений.
В своем реферате я хотела бы рассмотреть наиболее успешные и перспективные разработки, которые уже реализуются на практике или будут востребованы в ближайшие годы. Здесь речь пойдет о наноматериалах, разрабатываемых для атомной энергетики, светодиодного освещения, электротехники, сверхпроводимости, водородной и солнечной энергетики.
1. Углеродные нанотрубки
1.1 Углеродные нанотрубки
Протяжённые цилиндрические структуры диаметром от одного до нескольких десятков нанометров и длиной до нескольких сантиметров состоят из одной или нескольких свёрнутых в трубку гексагональных графитовых плоскостей (графенов) и заканчиваются обычно полусферической головкой.
1.2 Классификация нанотрубок
Как следует из определения, основная классификация нанотрубок проводится по способу сворачивания графитовой плоскости. Этот способ сворачивания определяется двумя числами n и m, задающими разложение направления сворачивания на вектора трансляции графитовой решётки.
По значению параметров (n, m) различают
· прямые (ахиральные) нанотрубки
· «кресло» или «зубчатые» n=m
· зигзагообразные m=0 или n=0
· спиральные (хиральные) нанотрубки
При зеркальном отражении (n, m) нанотрубка переходит в (m, n) нанотрубку, поэтому, трубка общего вида зеркально несимметрична. Прямые же нанотрубки либо переходят в себя при зеркальном отражении (конфигурация «кресло»), либо переходят в себя с точностью до поворота.
Различают металлические и полупроводниковые углеродные нанотрубки. Металлические нанотрубки проводят электрический ток при абсолютном нуле температур, в то время как проводимость полупроводниковых трубок равна нулю при абсолютном нуле и возрастает при повышении температуры. Полупроводниковые свойства у трубки появляются из-за щели на уровне Ферми. Трубка оказывается металлической, если (n-m), делённое на 3, даёт целое число. В частности, металлическими являются все трубки типа «кресло».
1.3 История открытия
Говоря об углеродных нанотрубках, нельзя назвать точную дату их открытия. Хотя общеизвестным является факт наблюдения структуры многослойных нанотрубок Ииджимой в 1991 г. (3), существуют более ранние свидетельства открытия углеродных нанотрубок. Так, например в 1974—1975 гг. Эндо и др. (4) опубликовали ряд работ с описанием тонких трубок с диаметром менее 100 Å, приготовленных методом конденсации из паров, однако более детального исследования структуры не было проведено. В 1992 в Nature (5) была опубликована статья, в которой утверждалось, что нанотрубки наблюдали в 1953 г. Годом ранее, в 1952, в статье советских учёных Радушкевича и Лукьяновича (6) сообщалось об электронно-микроскопическом наблюдении волокон с диаметром порядка 100 нм, полученных при термическом разложении окиси углерода на железном катализаторе. Эти исследования также не были продолжены.
Существует множество теоретических работ по предсказанию данной аллотропной формы углерода.
В работе химик Джонс (Дедалус) размышлял о свёрнутых трубах графита.
В работе Л. А. Чернозатонского и др. (7), вышедшая в тот же год, что и работа Ииджимы, были получены и описаны углеродные нанотрубы, а М. Ю. Корнилов не только предсказал существования однослойных углеродных нанотруб в 1986 г., но и высказал предположение об их большой упругости (8).
1.4 Структурные свойства
Нанотрубки обладают упругими свойствами. Имеют дефекты при превышении критической нагрузки. В большинстве случаев представляют собой разрушенную ячейку-гексагон решётки – с образованием пентагона или септогона на её месте. Из специфических особенностей графена следует, что дефектные нанотрубки будут искажаться аналогичным образом, т.е. с возникновением выпуклостей (при 5-и) и седловидных поверхностей (при 7-и). Наибольший же интерес в данном случае представляет комбинация данных искажений, особенно расположенных друг напротив друга – это уменьшает прочность нанотрубки, но формирует в её структуре устойчивое искажение, меняющее свойства последней: иными словами, в нанотрубке образуется постоянный изгиб. (9)
1.5 Возможные применения нанотрубок
· механические применения: сверхпрочные нити, композитные материалы, нановесы
· применения в микроэлектронике: транзисторы, нанопровода, прозрачные проводящие поверхности, топливные элементы
· для создания соединений между биологическими нейронами и электронными устройствами в новейших нейрокомпьютерных разработках
· капиллярные применения: капсулы для активных молекул, хранение металлов и газов, нанопипетки
· оптические применения: дисплеи, светодиоды
· медицина (в стадии активной разработки)
· одностенные нанотрубки (индивидуальные, в небольших сборках или в сетях) являются миниатюрными датчиками для обнаружения молекул в газовой среде или в растворах с ультравысокой чувствительностью — при адсорбции на поверхности нанотрубки молекул её электросопротивление, а также характеристики нанотранзистора могут изменяться. Такие нанодатчики могут использоваться для мониторинга окружающей среды, в военных, медицинских и биотехнологических применениях.
· трос для космического лифта, так как нанотрубки теоретически, могут держать и больше тонны… но только в теории. Потому как получить достаточно длинные углеродные трубки с толщиной стенок в один атом не удавалось до сих пор.(10)
· листы из углеродных нанотрубок можно использовать в качестве плоских прозрачных громкоговорителей, к такому выводу пришли китайские учёные.(10)
1.6 Получение углеродных нанотрубок
В настоящее время наиболее распространенным является метод термического распыления графитовых электродов в плазме дугового разряда. Процесс синтеза осуществляется в камере, заполненной гелием под давлением около 500 торр. При горении плазмы происходит интенсивное термическое испарение анода, при этом на торцевой поверхности катода образуется осадок, в котором формируются нанотрубки углерода. Наибольшее количество нанотрубок образуется тогда, когда ток плазмы минимален и его плотность составляет около 100 А/см2. В экспериментальных установках напряжение между электродами обычно составляет около 15-25 В, ток разряда несколько десятков ампер, расстояние между концами графитовых электродов 1-2 мм. В процессе синтеза около 90% массы анода осаждается на катоде.
Образующиеся многочисленные нанотрубки имеют длину порядка 40 мкм. Они нарастают на катоде перпендикулярно плоской поверхности его торца и собраны в цилиндрические пучки диаметром около 50 мкм. Пучки нанотрубок регулярно покрывают поверхность катода, образуя сотовую структуру. Ее можно обнаружить, рассматривая осадок на катоде невооруженным глазом. Пространство между пучками нанотрубок заполнено смесью неупорядоченных наночастиц и одиночных нанотрубок. Содержание нанотрубок в углеродном осадке (депозите) может приближаться к 60%.
Для разделения компонентов полученного осадка используется ультразвуковое диспергирование. Катодный депозит помещают в метанол и обрабатывают ультразвуком. В результате получается суспензия, которая (после добавления воды) подвергается разделению на центрифуге. Крупные частицы сажи прилипают к стенкам центрифуги, а нанотрубки остаются плавающими в суспензии. Затем нанотрубки промывают в азотной кислоте и просушивают в газообразном потоке кислорода и водорода в соотношении 1:4 при температуре 750°C в течение 5 мин. В результате такой обработки получается достаточно легкий и пористый материал, состоящий из многослойных нанотрубок со средним диаметром 20 нм и длиной около 10 мкм. Технология получения нанотрубок довольно сложна, поэтому в настоящее время нанотрубки - дорогой материал: один грамм стоит несколько сот долларов США.
Согласно публикации в журнале NanoLetters, физикам из нескольких китайских исследовательских центров удалось доработать технологию, которой пользовались ученые по всему миру – технологию химического осаждения атомов углерода из газовой среды. Им удалось синтезировать углеродные нанотрубки длиной до 18,5 сантиметров.
Цуньшень Ванг (Xueshen Wang) и его коллеги использовали смесь веществ, которые многим известны отнюдь не в качестве химреактивов: свои рекордные нанотрубки китайцы вырастили в атмосфере паров спирта и воды. Правда, эти вещества находились в несколько нестандартных по алкогольным меркам пропорциях: 4 части спирта на 1 часть воды.
Кроме того, китайские ученые использовали водород, продуваемый через специальный реактор, а также сверхтонкий порошок железа и молибдена – это были зерна для затравки реакции. Также пригодилась им пленка из обычных, меньшей длины, нанотрубок, – для эффективного удаления «мусора» в виде растущих в неправильных направлениях углеродных цилиндров вкупе с аморфным и потому неинтересным углеродом.(11)
2. Электронные свойства нанотрубок
2.1 Электронные свойства графитовой плоскости
· обратная решётка, первая зона Бриллюэна
Все точки K первой зоны Бриллюэна отстоят друг от друга на вектор трансляции обратной решётки, поэтому все они на самом деле эквивалентны. Аналогично, эквивалентны все точки K'.
· спектр в приближении сильной связи
· спектр углеродной плоскости в первой зоне Бриллюэна. Показана только часть E(k)>0, часть E(k)<0 получается отражением в плоскости kx, ky.
· дираковские точки
Графит — полуметалл, что видно невооружённым глазом по характеру отражения света. Можно убедиться, что электроны p-орбиталей полностью заполняют первую зону Бриллюэна. Таким образом, оказывается, что уровень Ферми графитовой плоскости проходит точно по дираковским точкам, т.о. вся поверхность Ферми (точнее, линия в двумерном случае) вырождается в две неэквивалентные точки.
Если энергия электронов мало отличается от энергии Ферми, то можно заменить истинный спектр электронов вблизи дираковской точки на простой конический, такой же как спектр безмассовой частицы, подчиняющейся уравнению Дирака в 2+1 измерениях.
· SU(4) симметрия
2.2 Экситоны и биэкситоны в нанотрубках
Эксито́н (лат. excito — «возбуждаю»)— водородоподобная квазичастица, представляющая собой электронное возбуждение в диэлектрике или полупроводнике, мигрирующее по кристаллу и не связанное с переносом электрического заряда и массы.
Хотя экситон состоит из электрона и дырки, его следует считать самостоятельной элементарной (не сводимой) частицей в случаях, когда энергия взаимодействия электрона и дырки имеет тот же порядок, что и энергия их движения, а энергия взаимодействия между двумя экситонами мала по сравнению с энергией каждого из них. Экситон можно считать элементарной квазичастицей в тех явлениях, в которых он выступает как целое образование, не подвергающееся воздействиям, способным его разрушить. (14)
Биэкситон— связаное состояние двух экситонов. Представляет собой, фактически, экситонную молекулу.
Впервые идея о возможности образования экситонной молекулы и некоторые её свойства были описаны независимо С. А. Москаленко и М. А. Лампертом.
Образование биэкситона проявляется в оптических спектрах поглощения в виде дискретных полос, сходящихся в коротковолновую сторону по водородоподобному закону. Из такого строения спектров следует, что возможно образование не только основного, но и возбуждённых состояний биэкситонов.
Стабильность биэкситона должна зависеть от энергии связи самого экситона, отношения эффективных масс электронов и дырок и их анизотропии.
Энергия образования биэкситона меньше удвоенной энергии экситона на величину энергии связи биэкситона. (15)
2.3 Ток в нанотрубках
Ученые из университета штата Иллинойс доказали, что углеродные нанотрубки пропускают большое количество электрического тока.
По сообщению журнала «NanoWeek», продемонстрировать это помогло подведение полупроводниковых углеродных нанотрубок к лавинообразному процессу, в котором свободные электроны образуются в значительном количестве.
До этого было известно, что одностенные углеродные нанотрубки могут пропускать токи плотностью до 100 раз выше, чем лучшие металлы-проводники (например, медь). Однако исследования, проводимые под руководством профессора Эрика Попа, показали, что полупроводниковые нанотрубки могут пропускать ток вдвое более высокой плотности.
В работе, результаты которой опубликованы в одном из научных изданий, авторы определили, что в напряженных электрических полях высокоэнергетические электроны и дырки могут создавать дополнительные электрон-дырочные пары, что приводит к лавинообразному процессу роста потока свободных носителей. При этом ток быстро нарастает до тех пор, пока нанотрубка не разрушается.
По мнению профессора Попа, крутое нарастание тока определяется всплеском лавинообразной ионизации – явлением, встречающимся в определенных видах полупроводниковых диодов и транзисторов в напряженных электрических полях, однако в нанотрубках до этого не наблюдавшимся.
Для исследования эффектов, связанных с протеканием тока, ученые вырастили одностенные полупроводниковые нанотрубки, используя метод химического напыления испарением. Для измерений использовали палладиевые электрические контакты. Эксперименты проводили в бескислородной среде.
Было обнаружено, что при увеличении напряженности электрического поля нарастание величины тока, проходящего через нанотрубки, в районе 25 микроампер замедляется, а затем резко возрастает с увеличением поля. Ученые довели ток через нанотрубки до значений порядка 40 микроампер, что вдвое превышает известные результаты.
«Лавинный процесс, который не наблюдается в металлических углеродных нанотрубках, дает новые возможности трубкам с полупроводниковыми свойствами, – сообщает Эрик Поп. – Результаты экспериментов говорят о том, что на основе полупроводниковых одностенных нанотрубок могут быть созданы устройства с высоконелинейными характеристиками включения». (16)
2.4 Сверхпроводимость нанотрубок
Физики из Японии доказали, что многостенные углеродные трубки с «полностью соединёнными концами» могут быть сверхпроводящими даже при температурах не ниже 12 К, что в 30 раз превышает температуру, необходимую для одностенных углеродных трубок. Открытие было сделано группой учёных под руководством г-на Юньджи Харуяма (Junji Haruyama) из университета Aoyama Gakuin University в г. Канагава (Kanagawa). Сверхпроводящие нанотрубки можно было бы использовать для изучения фундаментальных одномерных квантовых эффектов, а также они могли бы найти практическое применение в молекулярных квантовых вычислениях.
Сверхпроводимость – это полное отсутствие электрического сопротивления, которое наблюдается в определённых материалах при их охлаждении до температуры перехода в сверхпроводящее состояние (Tc). Физики утверждают, что сверхпроводимость вызвана тем, что электроны преодолевают взаимное кулоновское отталкивание и образуют «пары Купера». Согласно теории низкотемпературной сверхпроводимости Бардина-Купера-Шриффера (Bardeen-Cooper-Schrieffer - BCS), электроны удерживаются вместе благодаря взаимодействию с фононами – колебаниями кристаллической решётки в материале.
Однако одномерные проводники, такие как углеродные трубки (свёрнутые листы графита диаметром всего несколько нанометров), обычно не являются сверхпроводящими. Одна из причин этого – наличие так называемых жидких состояний Томонага-Луттингера (Tomonaga-Luttinger liquid - TLL) в материале, которые вызывают отталкивание электронов друг от друга и таким образом приводят к разрушению пар Купера.
Г-н Харуяма и его коллеги создали систему, в которой имеется сверхпроводящая фаза, которая конкурирует с фазой TLL и даже превосходит её – что, до сих пор считалось невозможным. Система состоит из множества многостенных углеродных нанотрубок, каждая из которых состоит из серии концентрических нанотрубчатых оболочек. Выполненные из металла электрические контакты присоединены к трубкам таким образом, что они касаются верхней части всех оболочек. Обычные же соединения (контакты) касаются только самой верхней оболочки трубки и вдоль всей её длины. Японские учёные создали нанотрубки, в которых почти все оболочки электрически активны. Они открыли, что нанотрубки с соединёнными концами теряют сопротивление при температуре ниже 12 К. Это происходит потому, что состояния TLL подавляются настолько, что может возникнуть состояние сверхпроводимости. Кроме того, температура Tc зависит от количества электрически активных оболочек, и теперь физики пытаются увеличить их число, сделав большее количество или все оболочки активными. (17)
2.5 Преобразователи энергии
Механические преобразователи на основе нанопроводов могут получать энергию за счет вибрации, возникающей при ходьбе, сердцебиении, течении жидкостей или газов. Исследователи Georgia Institute of Technology предложили простой и недорогой способ генерации электрического тока при помощи пьезоэлектрических нанопроводов из оксида цинка, выращенных на текстильных волокнах. Одежда из такого материала будет вырабатывать электричество за счет трения, возникающего при ее эксплуатации.
Изображения чудо-волокон представлены на рисунке 5. Кевларовая сердцевина была покрыта нанопроводами ZnO в процессе гидротермального синтеза. В качестве связующего компонента использовался ТЭОС. Диаметр проводов составил 50-200 нм, длина – до 3.5 мкм. Нанопровода растут из пленки ZnO, которая выступает в роли общего электрода. Волокно оказалось очень гибким и прочным – при сворачивании его в петлю диаметром 1 мм не было замечено никаких повреждений.
Для получения электричества была разработана следующая схема (рис. 6). Два волокна были скручены в спираль, причем одно из них было покрыто слоем золота. Оно выступало в роли катода наногенератора. При трении волокон между концами цепи возникала разность потенциалов 1-3 мВ. Сила тока в цепи лимитируется сопротивлением волокон. Путем снижения сопротивления удалось добиться силы тока 4 нА. Объединение волокон в нити, из которых потом можно изготовить ткань, должно привести к увеличению производительности устройства. Ожидается, что таким образом будет достигнута мощность 20-80 мВт на квадратный метр такой ткани. (18)
3. Применение нанотрубок в энергетике
3.1 Использование наноматериалов в атомной энергетике
Технологии, основанные на качественном изменении свойств материалов при переходе к нанометровому размеру, стали разрабатываться в атомной отрасли в середине XX века, практически одновременно с первым испытанием советского ядерного оружия. Хотя в то время приставка «нано» еще не использовалась, уже в ходе начатых в 1950 г. работ были получены ультрадисперсные порошки, используемые в промышленных технологиях разделения изотопов урана; в 1965 г. коллективу разработчиков была присуждена Ленинская премия. В 1962 г. академику А.А. Бочвару было поручено создание технологий получения сверхпроводников, и в 1970–1980-х годах многие сотрудники отрасли были удостоены государственных наград, премий и почетных званий за соответствующие работы.
Перспективы развития атомной энергетики связаны со снижением удельного потребления природного урана, в основном за счет увеличения глубины выгорания ядерного топлива. Для этого необходимо создание крупнокристаллических структур ядерных материалов с контролируемой пористостью, удерживающих продукты деления и препятствующих транспорту осколков деления к оболочке тепловыделяющего элемента и ее внутреннего повреждения. Активация процесса спекания за счет добавок нанометрического размера – одно из направлений создания новых видов уран-плутониевых оксидов и нитридов для ядерной энергетики.
При достижении выгорания ~18–20 % т.а. возникает проблема обеспечения радиационной стойкости материала оболочки при повышенных характеристиках жаропрочности. Решение состоит в использовании нового класса конструкционных материалов для элементов активных зон перспективных ядерных реакторов – феррито-мартенситных радиационно-стойких сталей, упрочненных частицами оксидов нанометрового размера (ДУО-сталь). Разработанная технология производства ДУО-стали включает: получение гомогенных быстрозакаленных порошков со сферической и чешуйчатой формой методом центробежного распыления расплава; твердофазное легирование матричного материала нанодисперсными оксидами иттрия в высокоэнергетическом аттриторе; компактирование порошков и термомеханическая обработка изделия для создания в матрице стали выделений оксидов иттрия нанометрового размера. Наноструктурированная ДУО-сталь сохраняет достаточно высокое остаточное удлинение после обработки со степенями деформации до 60 %. Начато опробование технологии в заводских условиях. Дореакторные испытания в опытно-промышленных условиях показали многократное, до 8 раз, увеличение параметров жаропрочности по сравнению со штатной сталью.
В целом ряде современных исследовательских проектов используются импульсные магнитные поля предельно высокой интенсивности, с индукцией более 50 Тл. Это потребовало создания нового класса обмоточных материалов с уникальным сочетанием высоких прочностных и электропроводящих свойств. Разработаны технологии производства высокопрочных Cu-Nb обмоточных проводов прямоугольного сечения (предел прочности – 1100–1250 MПa; электропроводность – 70–80 % от проводимости чистой меди), технические высокопрочные Cu-Nb тонкие провода диаметром от 0,4 мм до 0,05 мм с пределом прочности 1300–1600 MПa, показана принципиальная возможность создания контактных проводов нового поколения с существенно более высоким комплексом свойств за счет использования наноструктурных компонентов.
Наиболее эффективный способ обеспечения радиационной стойкости – образование в твердом растворе наноструктурной подрешетки кластеров ближнего упорядочения – ловушек вакансий и интерстиций с периодом 5–10 нм, соизмеримым с длиной свободного пробега радиационных точечных дефектов. В отличие от обычной деградации реакторных материалов, связанной с появлением хрупкости при радиационном воздействии, высокодозное облучение подобных сплавов приводит к повышению их прочности при сохранении вязкости. Они уже используются для особо ответственных элементов: систем управления реакторов АЭС, конструкционных материалов активных зон транспортных реакторов нового поколения. Сейчас обнаруженный эффект исследуется применительно к другим системам, и это может положить начало новому направлению радиационного материаловедения – созданию конструкционных материалов, «положительно» реагирующих на фактор радиации.
Создание в объеме фильтрующей перегородки системы сообщающихся разветвленных каналов нерегулярного сечения, от микро- до нанометрического размеров, открывает новые возможности для ультрафильтрации. Металлические объемные нанофильтры перспективны для применения в системах водоподготовки и очистки теплоносителя реакторов АЭС.
Бористые нержавеющие стали могут использоваться в системах управления реакторов, в ядерно-безопасном оборудовании переработки отработанного ядерного топлива. Для равномерного распределения боридов в стали применяется метод сверхбыстрого охлаждения частиц расплава с получением рентгеноаморфной структуры; при последующих переделах образуются выделения боридов нанометрового уровня (от 5 до 100 нм), что позволяет увеличить содержание бора в 3–4 раза при сохранении пластичности и свариваемости нержавеющих сталей. Толщина стенки трубы из бористых нержавеющих сталей – несколько десятых долей миллиметра.
Переход к нанометрическим структурам позволил увеличить токонесущую способность сверхпроводников сразу в несколько раз. По промышленным технологиям в России уже изготовлено более 100 тонн многокилометровых сверхпроводящих нанокомпозитов с размером структурных составляющих 1–50 нм.(19)
3.2 Нанотрубки в водородной энергетике
В последнее время в связи с проблемами сокращения не восполняемых энергоресурсов и загрязнениями окружающей среды продуктами их разработки все больше актуальной становится водородная энергетика. В России уже давно существует и достаточно развита данная отрасль, целью которой при ее создании была в основном космическая отрасль. Технологии производства водорода к настоящему времени достаточно хорошо освоены. Основной проблемой водородной энергетики, которая и сдерживает развитие отрасли, остается его безопасная транспортировка и хранение. Достижения нанотехнологий могут помочь сделать это производство более дешевым, качественным и экологически чистым.
Реакция окисления водорода происходит с выделением большого количества тепла. Кроме того, в процессе не образуются экологически вредные оксиды азота, углерода и серы. Реакцию можно проводить двумя путями: обычным горением и окислением при использовании электрохимических ячеек, в которых может быть реализован КПД вплоть до 95-97%.
Одним из основных методов производства атомарного водорода является преобразование солнечного излучения в энергию связи Н-Н. Был предложен комплекс на основе кластера рутения в качестве катализатора, который преобразует солнечный свет и воду в энергию, заключённую в отдельных молекулах кислорода и водорода. Но существует несколько проблем: образование агрессивных продуктов при окислении воды, которые разрушают катализатор и образование смеси кислорода и водорода - "гремучего" газа. В других способах получения водорода используются полупроводниковые наноструктуры. При попадании на них квантов солнечного излучения образуются электронно-дырочные пары, затем происходит разделение зарядов и фотолиз воды (энергия передается молекулам воды и расщепляет их). Образуются кислород и водород. Проблемы этого метода сходны с предыдущими. Еще существуют методы, связанные с применением бактерий и водорослей. Например, в некоторых бактериях содержатся специальные ферменты (гидрогеназы), которые позволяют преобразовать формиаты - соли муравьиной кислоты - в диоксид углерода и водород. Здесь тоже существую свои проблемы - протекание побочных реакций с непредельными органическими соединениями, но эти проблемы достаточно успешно решаются.
В области хранения и транспортировки водорода дело обстоит сложнее. Ведь водород обладает самым маленьким диаметром атома и свободно проникает через обычные материалы, а при его утечке может быть взрывоопасен.
Существует несколько методов хранения водородного топлива. Физические методы используют обычно компрессование или ожижение для приведения водорода в компактное состояние. Сжатый водород хранят в газовых баллонах, подземных резервуарах трубопроводах и т.д. Химические методы хранения водорода основаны на процессах его взаимодействия с отдельными материалами, водород в этих случаях взаимодействует с материалом среды хранения. В способах хранения посредством адсорбции используют такие вещества как цеолиты, активированный уголь, углеродные наноматериалы. Можно применять также абсорбцию в объеме материала. Для хранения посредством химического взаимодействия подходят алонаты, фуллерены, органические гидриды, аммиак и др.
Использование нанотехнологий позволяет ученым решать проблемы, связанные с хранением и транспортировкой водорода. К наноматериалам, которые химически связывают водород, относятся различные комплексы переходных металлов с ненасыщенными углеводородными лигандами, способными запасать водород по средством реакции гидрирования двойных и тройных связей C-C, или другие более сложные реакции с участием органических и элемент-органических соединений, а так же гидриды и сплавы металлов. На рисунке 7 представлено строение органических молекул, используемых для хранения водорода с помощью химического связывания.
Наноматериалы, которые способны физически связывать водород, это углеродные и другие виды нанотрубок, каркасные 3D-структуры на основе композитов цеолит/углеродные материалы.
Наиболее распространенный в настоящее время способ заполнения молекулярным водородом нанотрубок заключается в использовании высоких и сверхвысоких давлений, которые заставляют молекулы водорода проникать в мельчайшие поры и полости углеродных структур, размер которых соизмерим с поперечником молекулы водорода. В процессе эксплуатации при нагреве такого материала он постепенно отдает накопленный водород.
Так же для заполнения водородом массива нанотрубок можно использовать электрохимический процесс.
Работа "водородной губки" основана на помещении водорода в межатомные полости материала при высоком давлении и освобождении газа при нагревании и низком давлении, когда тепловые флуктуации приводят к колебаниям решетки, и водород может свободно выйти из сплава (рис.8).
Наиболее популярные и востребованные на сегодняшний день сплавы для хранения водорода: LaNi5, FeTi, Mg2Ni, ZrV2 и др. Важно наноструктурирование таких материалов, поскольку при этом увеличивается размер их удельной поверхности. А это важно для быстроты их наполнения и освобождения от водорода.
Ведется разработка каркасных материалов, например, упорядоченных массивов нанотрубок, пытаются применять многостенные углеродные нанотрубки с интеркалированием между коаксиальными трубками достаточно крупных катионов и внедрение в эти области молекул водорода. На рисунке 9 показана 3D-модель заполнения водородом массива углеродных нанотрубок.
Исследователи из американской Тихоокеанской Северо-западной Национальной Лаборатории разработали компаунд на основе наноматериалов, способный впитывать водород и отдавать его в сто раз быстрее, чем это было возможно ранее. Это низкотемпературный способ хранение водорода с использованием наноструктурированных материалов, в т. ч. легких элементов. Новый метод позволяет химически не связано хранить водород при низком давлении. Таким образом, развитие нанотехнологий должно помочь решить основные проблемы водородной энергетики: создание материалов с высоким коэффициентом сорбции водорода и быстрой кинетикой его извлечения из материала. (20)
3.3 Солнечная энергетика и нанотехнологии
Американским исследователям из института Санта Фе удалось усовершенствовать конструкцию солнечных батарей на основе сенсибилизированных красителей. Заменив диоксид титана и платину, использующиеся при производстве этих батарей, на углеродные нанотрубки с дефектами, ученые добились прироста производительности и удешевления конструкции. Работа опубликована в журнале Nano Letters. В настоящее время они патентуют свое изобретение.
Солнечные батареи на основе сенсибилизированных красителей (Dye-sensitized solar cells или DSC) были изобретены в 1991 году. В настоящее время схема элементов батареи следующая: на стеклянной основе располагается слой прозрачного проводящего ток диоксида титана с вкраплениями сенсибилизированных красителей (красители с химически повышенной чувствительностью к ультрафиолету). Между слоем диоксида и стеклом находится слой платины. Электрический ток возникает в результате химических реакций, которые происходят во вкраплениях красителей под воздействием солнечного света. Эти реакции катализируются платиной.
Группа американских исследователей из института Санта Фе заменила оксид и платину на слой из углеродных нанотрубок. Как оказалось "обычные" нанотрубки для этой цели не подходят: полученный слой не обладает прозрачностью и проводимостью оксида и катализирующими свойствами платины. Для получения первых двух свойств ученые добавили слой более длинных нанотрубок.
Чтобы получить каталитический эффект, исследователи решили внести в нанотрубки дефекты. Предположительный механизм катализа с помощью дефективных нанотрубок заключается в том, что дефекты являются "посадочными площадками" для атомов реагирующих веществ. Исследователи поместили нанотрубки в озон - крайне активное химическое соединение. Воздействие озона вызвало разрушения в структурах трубок, то есть, образованию необходимых дефектов. Катализирующие свойства батарей при этом выросли в десятки раз.
Применение углеродных нанотрубок призвано решить ряд принципиальных проблем солнечных батарей на основе сенсибилизированных красителей. Во-первых, новая конструкция обладает большой выходной мощностью. Батареи традиционной конструкции по этому параметру уступали широко распространенным кремниевым. Во-вторых, уменьшается тепловыделение, что позволяет использовать в качестве основы для батареи не только термостойкие материалы. В третьих, производство батарей на основе нанотрубок существенно дешевле, так как при этом не используется дорогая платиновая пленка.(22)
Уче6ным же из Корнельского отделения исследований в области нанотехнологий (Cornell NanoScale Science and Technology Facility) удалось создать элемент солнечной батареи, в которой вместо кремния также используются углеродные нанотрубки. По словам нанотехнологов, новая батарея, как показывают расчеты и тесты, будет намного эффективней переводить солнечную энергию в электрическую.
По словам ведущего проект ученого, профессора физики Пола МакЭвена, его команда изготовила фотодиод нового типа на основе углеродных нанотрубок и провела испытания, подвергая его облучения потока света. Результат показал, что такой фотодиод выделяет намного больше электричества, чем традиционный.
Для его создания ученые использовали одностеночную нанотрубку размером с молекулу ДНК. Эта трубка была подсоединена к двум контактам и помещена между источниками положительного и отрицательного заряда. Затем трубка освещалась лучом лазера разного спектра под разными углами. Учеными было замечено, что усиление потока света приводило к многократному увеличению выделяемой электроэнергии.
Дальнейшее исследование показало, что за счет цилиндрической формы электроны как бы выдавливаются из трубки, а проходя вдоль нее они вырывают новые электроны. По словам ученых, это делает трубку очень эффективным солнечным элементом, поскольку энергия свободных электронов также задействуется для выработки электричества. Это явное преимущество по сравнению с традиционными фотоэлементами, в которых много энергии уходит впустую на нагревание.
В настоящее время ученые занимаются дальнейшими исследованиями физических свойств процесса при изменении внешнего воздействия.(23)
Ученых продолжает привлекать мир насекомых, как источник новых уникальных технологий. Ранее "Нано Дайджест" уже рассказывал о создании английскими учеными математической компьютерной модели полета саранчи. Недавно ученым из Университета Пенсильвании и их испанским коллегам из Автономного Университета Мадрида удалось разработать технологию, которая позволяет воспроизводить биологические структуры, такие, как крыло бабочки, на наноуровне. Получившиеся биоматериалы могут использоваться в оптически активных структурах, таких, как, например, светорассеиватели в солнечных батареях.
Окраска насекомых и их способность менять цвет в зависимости от угла зрения, которую ученые называют «иридисценцией», а также наличие у насеко
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Принципова схема автоматичного керування електроводонагрівача
Курсовий проект на тему:Принципова схема автоматичного керування електроводонагрівачаЗмістВведення1. Принципова схема автоматичног
- Приплотинна ГЕС потужністю 2х27 МВт на річці "Т"
ПередмоваТема комплексного дипломного проекту:"Приплотинна ГЕС потужністю 2х27 МВт на річці "Т"".Першу частину " Проектування головної сх
- Природа шаровой молнии
УДК 533.9.03-551.594ПРИРОДА ШАРОВОЙ МОЛНИИВ. Н. ЛеоновичФГУП "ФНПЦ Научно Исследовательский ИнститутИзмерительных Систем им. Ю.Е. Седакова"На
- Проблемы термоядерного синтеза
В настоящее время человечество не может представить свою жизнь без электроэнергии. Она везде. Но традиционные способы получения элект
- Провода и кабели
В этом реферате рассказывается о проводах и кабелях. Провод электрический – это неизолированный или изолированный проводник электрич
- Проводники и полупроводники
Задача 1Дайте краткое описание физического смысла и практического значения пробоя. Приведите величины измерений величины характерист
- Проект новой подстанции для обеспечения электроэнергией нефтеперерабатывающего завода
Темой данного дипломного проекта является строительство подстанции в сети Западного района, а также разработка эскизного проекта раз