Прикладная фотохимия
Фотохимия - наука о химических превращениях веществ под действием электромагнитного излучения: ближнего ультрафиолетового (~ 100-400 нм), видимого (400-800 нм) и ближнего инфракрасного (0,8 - 1,5 мкм).
Исследования химического действия излучения на различные вещества и попытки его теоретического истолкования начались с конца 18 в., когда Дж. Сенеби высказал предположение о том, что необходимая для достижения определенного химического эффекта продолжительность действия света обратно пропорциональна его интенсивности. В 19 в. параллельно происходило открытие новых реакций органических и неорганических веществ под действием света и физико-химическое исследование механизма и природы фотохимических реакций. В 1818 T. Гротгус отверг гипотезу о тепловом действии света, предположив аналогию в воздействии на вещество света и электричества и сформулировав принцип, согласно которому причиной химического действия может быть только тот свет, который поглощается веществом (закон Гротгуса). Дальнейшими исследованиями было установлено, что количество продукта фотохимической реакции пропорционально произведению интенсивности излучения на время его действия (P. Бунзен и Г. Роско, 1862) и что необходимо учитывать интенсивность только поглощенного, а не всего падающего на вещество излучения (Я. Вант-Гофф, 1904). Одно из важнейших достижений фотохимии - изобретение фотографии (1839), основанной на фотохимическом разложении галогенидов серебра.
Принципиально новый этап в развитии фотохимии начался в 20 в. и связан с появлением квантовой теории и развитием спектроскопии. А. Эйнштейн (1912) сформулировал закон квантовой эквивалентности, согласно которому каждый поглощенный веществом фотон вызывает первичное изменение (возбуждение, ионизацию) одной молекулы или атома. Вследствие конкуренции химических реакций возбужденных молекул и процессов их дезактивации, а также обратного превращения нестабильных первичных продуктов в исходное вещество, химические превращения претерпевает, как правило, лишь некоторая доля возбужденных молекул. Отношение числа претерпевших превращение молекул к числу поглощенных фотонов - квантовый выход фотохимической реакции. Квантовый выход, как правило, меньше единицы; однако в случае, например, цепных реакций он может во много раз (даже на несколько порядков) превышать единицу.
В России большое значение имели в начале 20 в. работы П.П. Лазарева в области фотохимии красителей и кинетики фотохимических реакций. В 40-е гг. А.Н. Терениным была высказана гипотеза о триплетной природе фосфоресцентного состояния, играющего важную роль в фотохимических реакциях, и открыто явление триплет-триплетного переноса энергии, составляющее основу одного из механизмов фотосенсибилизации химических реакций.
Использование достижений квантовой химии, спектроскопии, химической кинетики, а также появление новых экспериментальных методов исследования, в первую очередь методов изучения очень быстрых (до 10-12 с) процессов и короткоживущих промежуточных веществ, позволило развить детальные представления о законах взаимодействия фотонов с атомами и молекулами, природе возбужденных электронных состояний молекул, механизмах фотофизических и фотохимических процессов. Фотохимические реакции протекают, как правило, из возбужденных электронных состояний молекул, образующихся при поглощении фотона молекулой, находящейся в основном (стабильном) электронном состоянии. Если интенсивность света очень велика (более 1020 фотонов/ (с·см2)), то путём поглощения двух или более фотонов могут заселяться высшие возбужденные электронные состояния и наблюдаются двух- и многофотонные фотохимические реакции. Возбужденные состояния не являются лишь "горячей" модификацией их основного состояния, несущей избыточную энергию, а отличаются от основного состояния электронной структурой, геометрией, химическими свойствами, поэтому при возбуждении молекул происходят не только количественные, но и качественные, изменения их химического поведения. Первичные продукты реакций возбужденных молекул (ионы, радикалы, изомеры и т.п.) чаще всего являются нестабильными и превращаются в конечные продукты очень быстро.
Для качественного и количественного исследования продуктов используют всевозможные аналитические методы, в т. ч. оптическую спектроскопию и радиоспектроскопию. Для определения дозы облучения и квантовых выходов применяют актинометрию. Свойства короткоживущих возбужденных состояний обычно изучают методами оптической эмиссионной (флуоресцентной и фосфоресцентной) и абсорбционной спектроскопии. Особенно большое значение для исследования механизмов фотохимических реакций имеют импульсные методы: импульсный фотолиз, лазерная спектроскопия и др. Эти методы позволяют изучать кинетику первичных реакций возбужденных молекул, нестабильные промежуточные продукты и кинетику их превращений.
Практическое применение фотохимии связано с фотографией, фотолитографией и иными процессами записи и обработки информации, промышленным и лабораторным синтезом органических и неорганических веществ, синтезом и модификацией полимерных материалов, квантовой электроникой (фотохимические лазеры, затворы, модуляторы), микроэлектроникой (фоторезисты), преобразованием солнечной энергии в химическую.
Фотохимические процессы играют очень важную роль в природе. Фотосинтез обеспечивает существование почти всех живых организмов на Земле. Подавляющую часть информации об окружающем мире человек и большинство животных получают посредством зрения, механизм которого основан на фотоизомеризации родопсина, запускающей цепь ферментативных процессов усиления сигнала и тем самым обеспечивающей чрезвычайно высокую чувствительность (вплоть до регистрации отдельных фотонов). Озон образуется в верхних слоях атмосферы из кислорода под действием коротковолнового (<180 нм) излучения Солнца по реакции:
O2 + h O + O O3
Он поглощает излучение Солнца в области 200-300 нм, губительно действующее на живые организмы.
Фотосинтез
Первичный источник энергии почти для всех живых существ на Земле солнечный свет (исключение – хемотрофные организмы). Диапазон солнечного излучения, достигающего земной поверхности, называется видимым (белым) светом; его длина волны – 400 – 700 нм. Фотосинтезирующие организмы (зелёные растения, водоросли, цианобактерии) способны улавливать кванты солнечного света и трансформировать их в химическую энергию. Процесс фотосинтеза, заключительной реакцией которого является синтез углеводов из CO2, может быть суммирован следующим уравнением:
6CO2 + 6H2O + hν C6H12O6 + 6O2
Таким образом, в результате фотосинтеза происходит:
- восстановление световой энергией низкоэнергетической окисленной формы углерода (CO2) в высокоэнергетическую восстановленную форму углерода в составе углеводов, которые затем используются гетеротрофными организмами как источник энергии и углерода;
- образование молекулярного кислорода; эта реакция – единственный природный источник кислорода на Земле.
В процессе фотосинтеза выделяют световую и темновую фазы.
Световая фаза включает в себя три процесса:
- фотохимический процесс окислительного расщепления воды (фотоокисление):
2H2O 4H+ + 4e- + O2
- Энергия высокоэнергетических электронов воды используется специализированной мембранной системой для фосфорилирования АДФ и образования АТФ в системе фотосинтетического фосфорилирования;
- Часть энергии электронов восстанавливает НАДФ+ в реакции фотовосстановления:
НАДФ+ + 2e- + 2H+ НАДФН + Н+
В световых реакциях электроны переносятся по электронтранспортной цепи от одной окислительно-восстановительной системы к другой; фотосинтетический перенос электронов в энергетическом отношении подобен “подъёму в гору”. Возбуждение электронов за счёт энергии поглощённого света происходит в двух реакционных центрах (фотосистемах). Это белковые комплексы, в состав которых входит множество молекул хлорофилла (зелёный пигмент, содержащий ионы Mg2+) и других пигментов. Зелёный цвет хлорофилла обусловлен тем, что он поглощает преимущественно синий, частично – красный свет из солнечного спектра (т. е. отражает зелёный), т. к. эти фотоны оптимальны для фотосинтеза по энергии и интенсивности потока.
Темновая фаза – ферментативная утилизация и превращение СО2 в углеводы:
6СО2 С6Н12О6
Таким образом, НАДФН и АТФ, образующиеся в результате световых реакций, являются восстанавливающими и энергетическими агентами при фотосинтезе глюкозы из СО2 в темновой стадии.
В зелёных водорослях и высших растениях фотосинтез происходит в хлоропластах. Это органеллы, окружённые двумя мембранами и содержащие собственную ДНК. В их внутреннем пространстве, строме, находятся тилакоиды, уплощённые мембранные мешки; будучи сложены стопками, тилакоиды образуют граны. Внутреннее содержимое тилакоида называют люменом. Световые реакции катализируются ферментами тилакоидной мембраны, в то время как темновые реакции происходят в строме.
Фотография
Фотография - получение и сохранение статичного изображения на светочувствительном материале (фотоплёнке или фотографической матрице) при помощи фотокамеры.
В зависимости от принципа работы светочувствительного материала фотографию принято делить на три больших подраздела:
- Плёночная фотография — основана на фотоматериалах, в которых происходят фотохимические процессы.
- Цифровая фотография — в процессе получения и сохранения изображения происходят перемещения электрических зарядов (обычно в результате фотоэффекта и при дальнейшей обработке), но не происходит химических реакций или перемещения вещества.
- Электрографические и иные процессы, в которых не происходит химических реакций, но происходит перенос вещества, образующего изображение. Специального общего названия для этого раздела не выработано, до появления цифровой фотографии часто употреблялся термин «бессеребряная фотография».
Цифровая фотография
В цифровых фотоаппаратах светочувствительным элементом является ПЗС (прибор с зарядной связью) - матрица, состоящая из светочувствительных полупроводниковых элементов (множество кремниевых диодов). Падающий на матрицу свет заряжает каждый из элементов (пикселей) индивидуально; эта зарядка в дальнейшем соответствует электрическому импульсу, и таким образом получаются данные (в цифровой форме) об освещённости каждого из пикселей. Поскольку невозможно записать полностью информацию обо всем изображении, то в дальнейшем оно подвергается обработке программным обеспечением для восстановления потерянных данных и записывается на магнитных носителях. Таким образом, цифровая фотография есть комбинация работы ПЗС матрицы, программного обеспечения и карт памяти, заменяющих плёнку в аналоговом фотоаппарате.
ПЗС – матрица не больше ногтя на пальце (примерно 1.5 см по диагонали), содержащая несколько миллионов светочувствительных диодов, расположенных на поверхности матрицы в виде столбцов и колонок.
Поскольку диоды реагируют только на яркость, цифровой фотоаппарат может воспроизвести лишь чёрно-белое изображение. Для того чтобы преобразовать полученное чёрно-белое изображение в цветное, каждая ячейка (диод) покрывается красным, зелёным или синим цветовым фильтром; фильтры собраны в группы по четыре, причём на два зелёных приходится по одному красному и одному синему (такой тип организации фильтров называется "шаблоном Байера"). Подобная структура обусловлена тем, что человеческий глаз наиболее чувствителен к зелёному цвету. Полученная картинка состоит только из пикселей красного, синего и зелёного цвета – именно в таком виде записываются файлы формата RAW (сырой формат).
Схема ПЗС с цветовыми фильтрами
Для записи файлов JPEG и TIFF процессор камеры анализирует цветовые значения соседних ячеек и рассчитывает цвет пикселей. Этот процесс обработки называется цветовой интерполяцией, и он исключительно важен для получения качественных фотографий.
Плёночная фотография
В качестве светочувствительного элемента в химической (плёночной, аналоговой) фотографии обычно используется галогенсеребряная плёнка - гибкий прозрачный лист пластика, на который нанесена фотоэмульсия, содержащая зёрна галогенидов серебра; в состав фотоэмульсии входит также защитный коллоид (обычно - фотографическая желатина).
Светочувствительные зерна галогенидов серебра на фотоплёнке
Первая стадия фотографического процесса - экспонирование фотоматериала светом и появление скрытого изображения. Под действием фотонов происходит восстановление галогенидов серебра; в микрокристаллах возникают центры скрытого изображения (устойчивые группы атомов восстановленного серебра). Их размер оценивается в 10-7-10-8 см, то есть лежит за пределами возможностей разрешения оптических микроскопов (именно поэтому изображение и называется "скрытым").
Сущность проявления (визуализации) скрытого изображения сводится к химическому восстановлению галогенидов серебра на освещённых участках фотоматериала. Специфика этого процесса состоит в том, что восстановитель должен действовать на облученные светом микрокристаллы намного быстрее, нежели на необлученные. Значительно большая скорость восстановления облученных кристаллов связана с тем, что образовавшиеся частицы металлического серебра оказывают каталитическое действие на реакцию химического восстановления. В результате проявления скрытое изображение "усиливается" в 105...1011 раз.
После проявления изображения следует стадия его закрепления (фиксирования). Для этого необходимо удалить с фотоматериала незасвеченные и потому не восстановленные проявителем кристаллы галогенида серебра. Цель достигается путём перевода малорастворимой в воде соли серебра в хорошо растворимую. Наиболее распространенным средством закрепления изображения является тиосульфат натрия Na2S2O3. Его старое название – гипосульфит. Данная соль переводит галогенид серебра (например, NaBr) в растворимое комплексное соединение Na3(Ag(S2O3)2). После обработки фиксажным раствором фотоматериал тщательно промывается водой.
В результате трех изложенных стадий фотопроцесса на фотопленке получается негативное изображение. Для создания позитивного изображения необходимо повторить процесс, освещая (обычно) фотобумагу через плёнку, на которой имеется негативное изображение.
В современной фотографии разработаны также способы получения прямого позитивного изображения.
Выводы
Цифровую и аналоговую фотографию можно сравнивать как с научной точки зрения (физико-химические основы получения изображений), так и с позиции пользователя, фотографа (качество полученных изображений, простота и доступность).
Исходя из вышеизложенного, можно сделать вывод, что основное различие между цифровой и плёночной фотографией (с научной точки зрения) - использование разных светочувствительных элементов (галогенсеребряная плёнка и полупроводниковая матрица); именно этим и обусловлено дальнейшее расхождение процессов получения изображения (см. выше).
С точки зрения потребителя, наиболее удобным, доступным способом получения качественных изображений сегодня является, несомненно, цифровая фотография. Среди её основных достоинств:
- Простота получения и возможность обработки (на компьютере) изображений;
- Высокое качество снимков даже при использовании относительно недорогих цифровых фотоаппаратов (особенно в последние годы);
- Возможность хранения полученных изображений на компактных магнитных и оптических носителях;
- Возможность мгновенной передачи полученных изображений на большие расстояния (по сети Интернет).
Печатные формы (фоторезисты)
Фотолитография - метод получения рисунка на тонкой плёнке материала; широко используется в микроэлектронике и в полиграфии. Кроме того, это один из основных приёмов планарной технологии, используемой в производстве полупроводниковых приборов. Для получения рисунка фотолитографическим методом используется свет определённой длины волны; минимальный размер деталей рисунка — половина длины волны (определяется дифракционным пределом). Стадии процесса фотолитографии:
- На толстую подложку (в микроэлектронике часто используют кремний) наносится тонкий слой материала, из которого нужно сформировать рисунок. На этот слой наносится фоторезист.
- Производится экспонирование (облучение актиничным электромагнитным излучением) через фотошаблон.
- Облучённые участки фоторезиста изменяют свою растворимость и удаляются химическим способом (процесс травления); также удаляются освобождённые от фоторезиста участки.
- Заключительная стадия — удаление остатков фоторезиста.
Светочувствительные материалы, применяемые в фотолитографии для формирования рельефного покрытия заданной конфигурации и защиты нижележащей поверхности от воздействия травителей, называют фоторезистами.
Как правило, фоторезист представляет собою композицию из светочувствительных органических веществ, плёнкообразователей (феноло-формальдегидные и др. смолы), органических растворителей и специальных добавок. Основные характеристики фоторезистов - светочувствительность, контрастность, разрешающая способность и теплостойкость. Кроме того, в зависимости от наличия в светочувствительных органических веществах тех или иных хромофорных групп, фоторезисты характеризуются различной спектральной чувствительностью:
видимая область спектра (400 - 800 нм), ближний (320 - 450 нм) и дальний (180 - 320 нм) ультрафиолет. Фоторезисты могут быть жидкими, сухими и пленочными; жидкие содержат 60-90% по массе органического растворителя, плёночные - менее 20%, а сухие обычно состоят лишь из светочувствительного вещества. Жидкие фоторезисты наносят на подложку центрифугированием, напылением или накаткой валиком, сухие - напылением и возгонкой, плёночные - накаткой. Последние имеют вид плёнки, защищённой с двух сторон тонким слоем светопроницаемого полимера, например полиэтилена. В зависимости от метода нанесения образуются слои толщиной 0,1-10 нм; наиболее тонкие слои (0,3-3,0 мкм) формируют из жидких фоторезистов методом центрифугирования или из сухих фоторезистов методом возгонки.
При экспонировании светочувствительный компонент фоторезиста претерпевает определённые фотохимические превращения, например подвергается фотополимеризации или разлагается с выделением газообразных продуктов; в зависимости от этого светочувствительное вещество закрепляется на засвеченных участках и не удаляется при последующем проявлении (негативные фоторезисты), либо, напротив, становится растворимым и удаляется при травлении (позитивные фоторезисты).
Преобразование и накопление солнечной энергии
В течение года на Землю "падает" порядка 100 триллионов тут (тонн условного топлива; 1 тут соответствует 2.9308*10(10) Дж) солнечной энергии; порядка 34% (по другим оценкам - 0.1-10%) её поглощается фотосинтезирующими организмами (см. выше - фотосинтез). На сегодняшний день энергопотребление всего человечества составляет примерно 12.9 - 13.5 млрд тут в год; таким образом,использование лишь 1% солнечной энергии, достигающей Земли в виде фотонов, решило бы многие проблемы на века вперёд.
В настоящее время для улавливания солнечного света и его преобразования в иные виды энергии используются следующие устройства:
- Фотоэлектрические преобразователи (ФЭП) — полупроводниковые устройства, прямо преобразующие солнечную энергию в электричество (солнечные элементы). Несколько объединённых СЭ называются солнечной батареей.
- Гелиоэлектростанции (ГЕЭС). Солнечные установки, использующие высококонцентрированное солнечное излучение в качестве энергии для приведения в действие тепловых и др. машин (паровой, газотурбинной, термоэлектрической и др.).
- Солнечные коллекторы (СК) - солнечные нагревательные низкотемпературные установки.
- Органические батареи - устройства, преобразующее солнечные лучи в электричество с помощью генетически модифицированных клеток, напечатанных на тонком пластике с проводником.
Полученная в солнечных батареях энергия может быть сохранена в электро- и теплоаккумуляторах, а также использована при синтезе различных соединений (то есть сохранена в виде энергии химических связей). Так, в фотоэлектрохимических элементах можно проводить электролиз воды с образованием кислорода и водорода. Этот метод будет представлять практический интерес, когда его КПД достигнет 10-12% (сегодня он составляет 3%), однако в будущем именно фотоэлектролиз может стать жизнеспособной альтернативой нефти как источнику энергии.
Ксерокопирование
Первой важной областью практического применения аморфных полупроводников явилась ксерография. В ксерографическом процессе используется фотопроводимость некоторых высокоомных аморфных проводников, содержащих селен. Ксерографический процесс был впервые предложен Ч. Ф. Карлсоном еще в 1938 г. Однако потребовалось более 20 лет для того, чтобы этот процесс стал применяться в промышленных масштабах. Суть ксерографического процесса состоит в следующем: с помощью коронного разряда аморфная пленка (ксерографический слой, обычно толщиной ~50 мкм) заряжается положительно. Затем пленка локально подвергается воздействию света, в результате чего в ней образуются электронно-дырочные пары, разделенные электрическим полем пленки, и поверхностный заряд пленки нейтрализуется. Таким образом, формируется скрытое электрографическое изображение. Далее осуществляется проявление скрытого изображения. Отрицательно заряженные частицы красителя (сажа в легкоплавком пластике) притягиваются к неэкспонированным областям пленки. После этого с помощью второго коронного разряда частицы красителя переносятся на лист бумаги, где изображение фиксируется нагреванием.
В середине 70-х годов Xerox Corporation предложила новый метод цветного копирования, в котором ксерографический слой является трехслойным и состоит из трех аморфных полупроводников (халькогенидных стекол), чувствительных в различных областях видимой части спектра. Фотопроводящие свойства халькогенидных стекол нашли также применение в телевизионных трубках, разработанных фирмой Hitachi и японской радиовещательной компанией (Japan Broadcasting Corporation) для малогабаритных цветных телевизоров; в качестве активного элемента в таких трубках используется дифференцированный аморфный сплав селена, мышьяка и теллура.
Основные принципы ксерографии
В переводе на русский язык термин «Xerox» означает «сухой». Данный термин используется в случае, когда речь идет о многократном использовании плоской или цилиндрической поверхности с фотопроводящим слоем, например слоем аморфного селена.
Сущность метода «Ксерокс» состоит в следующем. Если на какую-либо основу нанести слой фотополупроводника толщиной 10-100 мкм с высоким удельным сопротивлением (порядка 1013-1014 Ом⋅см), а затем равномерно зарядить этот слой по всей поверхности до высокого электрического потенциала, то электрический потенциал слоя в темноте длительное время существенно не изменится. Это явление называется фотоэлектрическим эффектом. При экспонировании такого фотополупроводникового слоя на освещенных участках, соответствующих пробельным участкам оригинала, происходит полная или частичная нейтрализация электрических зарядов, в то время как на неосвещенных участках, соответствующих тёмным участкам оригинала, сохраняется первоначальное распределение зарядов, в результате чего образуется так называемое скрытое электростатическое изображение. Для получения видимого изображения поверхность экспонированного фотополупроводника покрывают специальным темным порошком – тонером (или его суспензией), заряд которого противоположен по знаку заряду фотополупроводникового слоя. Порошок притягивается к поверхности фотополупроводникового слоя в местах скрытого электростатического изображения, сохранивших высокий потенциал, и изображение таким образом проявляется. Однако проявленное изображение является непрочным, оно легко нарушается, если прикоснуться к нему, поэтому это изображение закрепляется на самом полупроводнике или переносится на другую поверхность, где также закрепляется. Перенос проявленного изображения производится контактным способом - наложением бумаги или какого-либо другого носителя на проявленную поверхность фотополупроводника. При контакте поверхность, на которую переносится изображение, равномерно заряжается большим потенциалом того же знака, что и фотополупроводник, поэтому большая часть порошка притягивается к носителю. Процесс закрепления состоит в том, что порошок, с помощью которого было проявлено электростатическое изображение, расплавляется и прочно соединяется с поверхностью, образуя постоянное и длительно сохраняющееся изображение. Фотополупроводниковую поверхность, с которой переносится электростатическое изображение на другую поверхность, можно использовать многократно, очищая ее для последующего использования.
Таким образом, основу технологии ксерографического метода с переносом изображения составляют шесть следующих операций:
- электризация фотополупроводникового слоя;
- экспонирование слоя для создания скрытого электростатического изображения;
- проявление скрытого изображения проявляющим составом;
- перенос проявленного изображения на бумагу или другие носители;
- закрепление изображения;
-очистка фотополупроводникового слоя для повторного использования.
Перенос изображения может происходить как с плоской фотополупроводниковой поверхности, так и с цилиндрической (барабана).
Фотохромные материалы
Фотохромизмом называется явление обратимого изменения строения молекул или их электронного состояния, происходящего под действием света и сопровождающегося изменением окраски вещества. При этом могут происходить обратимые изменения и других свойств, например, показателя преломления, растворимости, реакционной способности, электрической проводимости. Фотохромизм присущ большому числу органических и неорганических соединений.
Различают химический и физический фотохромизм.
Химический фотохромизм обусловлен внутри- и межмолекулярными обратимыми фотохимическими реакциями (таутомеризация, диссоциация, димеризация, цис-транс-изомеризация и др.).
Физический фотохромизм — результат перехода атомов или молекул из основного синглетного в возбуждённые синглетные или триплетные состояния. Изменение окраски в этом случае обусловлено изменением заселённости электронных уровней. Такой фотохромизм наблюдается при воздействии на вещество только мощных световых потоков.
Фотохромными называются материалы, в которых используется явление фотохромизма органических и неорганических веществ; они используются для регистрации, хранения, обработки и передачи оптической информации и для модуляции оптического излучения.
Стимулом разработки фотохромных материалов послужили высказанные в 1956 идеи их использования при создании оптической памяти вычислительных машин и средств защиты глаз от солнечного света и излучения ядерного взрыва. С развитием лазерной техники повысился интерес к фотохромным средам для регистрации и обработки оптической информации. Выявление новых свойств фотохромных материалов, изменяющихся при фотохромных превращениях, например изменение показателя преломления, расширило возможности области их применения (например, для модуляции излучения).
В зависимости от области использования фотохромные материалы изготавливаются в виде жидких растворов, полимерных плёнок, тонких аморфных и поликристаллических слоёв на гибкой или жёсткой подложке, полимолекулярных слоёв, силикатных и полимерных стёкол, монокристаллов.
Применение фотохромных материалов основано на их светочувствительности, на появлении или изменении окраски непосредственно под действием излучения, на обратимости происходящих в них фотофизических и фотохимических процессов, на различии термических, химических и физических свойств исходной и фотоиндуцированной форм фотохромных веществ.
Обладая уникальной способностью изменения светопропускания в зависимости от интенсивности активирующего излучения, фотохромные материалы оказались пригодными для создания светозащитных устройств с переменным светопропусканием. Наиболее широкое применение получили фотохромные силикатные стёкла, содержащие микрокристаллы галогенидов серебра (AgBr, AgCl и др.), благодаря почти неограниченной цикличности процесса фотоиндуцированного окрашивания - спонтанного обесцвечивания в темноте. В модуляторах оптического излучения, в т. ч. лазерного, всё большее применение находят органические полимерные стёкла и плёнки на основе светочувствитвительных соединений, проявляющих физический фотохромизм (фотоиндуцированное триплет-триплетное поглощение и синглет-синглетное просветление).
На основе органических фотохромных соединений, испытывающих обратимые фотохимические превращения (спирооксазины, дитизонаты металлов, фульгиды и др.), создаются солнцезащитные очки массового спроса.
Использование фотохромных материалов в качестве светочувствительных регистрирующих сред основано на их высокой разрешающей способности (менее 1 нм); на возможности получения изображения непосредственно под действием света, т. е. без проявления и в реальном масштабе времени ( не больше 10-8с); на возможности перезаписи и исправления зарегистрированной информации с помощью теплового или светового воздействия; на возможности хранения записанной информации в широких пределах (от 10-6 с до нескольких месяцев и даже лет).
Светочувствительность фотохромных материалов на 4-7 порядков ниже, чем у галогенидсеребряных фотоматериалов, поэтому наиболее эффективно применение фотохромных материалов в лазерных устройствах, обеспечивающих запись и обработку оптич. информации в мощных потоках излучения.
Фотохромные материалы используются в системах скоростной обработки и вывода оптических и электрических сигналов; в качестве сред для создания элементов оперативной оптической памяти, где быстродействие, длительность хранения зарегистрированной информации до перезаписи и многократность использования особенно важны; в системах ультрамикрофильмирования и микрозаписи; в голографии, где особенно существенно высокое разрешение.
В качестве регистрирующих сред наибольший практический интерес представляют полимерные и полимолекулярные слои на основе фотохромных соединений, проявляющих химический фотохромизм (например, спиросоединений).
Фотохромные материалы используются также в системах визуализации гидродинамических потоков, для исправления недостатков негативных и позитивных изображений, в оптоэлектронике, дозиметрии, актинометрии и других областях науки и техники. Широкое применение нашли фотохромные материалы для регистрации и отображения цветной информации, где в зависимости от их типа можно получать негативные или позитивные многоцветные изображения.
Некоторые ограничения на практическое использование фотохромных материалов накладывает недостаточная цикличность фотопревращений органических веществ, испытывающих необратимые фотохимические и термические реакции, а также термическая нестабильность фотоиндуцированной формы большинства фотохромных материалов.
Лазеры. История развития и принцип работы лазеров
В 1953-м году Басовым и Прохоровым и независимо от них Таунсом и Вебером были созданы первые квантовые генераторы, работающие в диапазоне сантиметровых волн; эти устройства получили название мазеров (англ. Microwave amplification by stimulated emission jf radiation - усиление радиоволн с помощью стимулированного излучения). В 1960-м году Мейманом был создан первый аналогичный прибор, работающий в оптическом диапазоне - лазер (light amplification by stimulated emission of radiation - усиление света с помощью вынужденного излучения). Лазеры называют также оптическими квантовыми генераторами (ОКГ) или генераторами когерентного света (ГКС).
Эти устройства работают на основе эффекта вынужденного (индуцированного, стимулированного) излучения, открытого Эйнштейном. Такое излучение может приводить к отрицательному поглощению (т. е. усилению) света при его прохождении через вещество. Эйнштейн показал, что вынужденное излучение должно быть по своим характеристикам совершенно тождественно с тем первичным излучением, которое его вызывает, т. е. новый фотон, образовавшийся в результате того, что атом (молекула) вещества переходит с высшего энергетического состояния на низшее под действием света,имеет ту же энергию и летит строго в том же направлении, что и первичный квант света. На волновом языке эффект вынужденного излучения сводится к увеличению амплитуды проходящей волны без изменения её частоты, направления распространения, фазы и поляризации. Таким образом, вынужденное излучение строго когерентно с вынуждающим излучением.
Новый фотон, возникающий в результате индуцированного излучения, усиливает свет, проходящий через среду. Однако следует учитывать, что кроме индуцированного излучения происходит также и процесс поглощения света; в результате поглощения фотона атомом, находящимся на низком энергетическом уровне, фотон исчезает, и атом переходит на более высокий энергетический уровень. При этом уменьшается мощность света, проходящего через среду. Таким образом, имеются два конкурирующих друг с другом процесса. В результате актов вынужденного излучения фотон "сваливает" электрон с высокого на низкий энергетический уровень, и вместо одного фотона дальше "летят" два; акты же поглощения уменьшают число фотонов, проходящих сквозь среду. Усиливающее действие среды определяется тем, какой из двух процессов преобладает. Если преобладают акты поглощения фотонов, то среда будет ослаблять проходящий через неё свет; если главную роль играют акты вынужденного излучения, то среда усиливает свет.
Поглощение света в веществе подчиняется закону Бугера-Ламберта:
I=I0e-ax
где a - положительный натуральный показатель поглощения; х - толщина поглощающего слоя; I0 - интенсивность света, входящего в среду; I интенсивность света, прошедшего слой толщиной х.
В. А. Фабрикантом впервые были рассмотрены особенности среды с отрицательным поглощением света; им было показано, что для неё закон Бугера-Ламберта имеет вид
I=I0eax
В такой среде из-за преобладания актов вынужденного излучения лавинообразно нарастает число фотонов. Два фотона, образовавшихся в одном акте индуцированного излучения, при встрече с двумя атомами, находящимися на возбуждённых уровнях, "свалят" их вниз, и после этого будут "лететь" уже четыре одинаковых фотона и т. д. С волновой точки зрения, амплитуда электромагнитной волны и её квадрат, пропорциональный интенсивности света, будут нарастать за счёт энергии, получаемой от возбуждённых атомов.
Показатель поглощения a в законе Бугера-Ламберта-Фабриканта пропорционален разности между числом актов поглощения и вынужденного излучения:
a=k(N1-N2),
где k - коэффициент пропорциональности, k>0. В состоянии термодинамического равновесия число атомов N2 на возбуждённом энергетическом уровне меньше числа атомов N1 на более низком уровне, следовательно, а>0. Это означает, что число актов обычного (положительного) поглощения превышает число переходов, сопровождающихся отрицательным поглощением (индуцированным излучением). Однако
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Применение и использование полиэтилена
Российский химико-технологический Университет им. Д. И. Менделеева.РефератПрименение и использование полиэтиленаВыполнил: Антонов Д.О.
- Применение радиоактивных изотопов в технике
Радиоактивность – превращение атомных ядер в другие ядра, сопровождающееся испусканием различных частиц и электромагнитного излучени
- Принципы определения примесей арсена в неизвестном минерале
В условиях активного загрязнения окружающей среды и реальности экологического кризиса возрастает значение научных исследований, напр
- Основные этапы развития химии
ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ ХИМИИ2500 - 2000 гг. до н.э. - Проникновение металлургии меди с Востока в Европу. В Вавилоне изобретены весы - орудие дл
- Основы термодинамики
ОСНОВЫ ТЕРМОДИНАМИКИ.Глава 1. Основные понятия.1.1. Система.Тело или группа тел, произвольно выделяемая нами из внешнего мира, называе
- Анализ технологического процесса схемы переэтерификации диметилового эфира цианоэтилфосфоновой кислоты моноэтиленгликоль (мет) акрилатом
СОДЕРЖАНИЕ1.Информационный поиск2. Концептуальное описание схемы переэтерификации диметилового эфира β-цианоэтилфосфоновой кислот
- Бутадиен-стирольные каучуки, получаемые в растворе и эмульсии
ВведениеБутадиен-стирольные каучуки (дивинил-стирольные каучуки, БСК, СКС, СКМС, ДССК, америпол, интол, карифлекс, крилен, нипол, плайофл