Порошковые и композиционные материалы
инистерство образования РФ
Тюменский Государственный Нефтегазовый Университет
Кафедра «Материаловедения»
РЕФЕРАТ
По дисциплине: «Материаловедение»
На тему:
Порошковые и композиционные материалы
Выполнил:
студент группы ___________
Relax
Проверил:
Тюмень 2001
Содержание
I. КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ | 3 | ||
Композиционные материалы | 3 | ||
Карбоволокниты | 3 | ||
Бороволокниты | 4 | ||
Органоволокниты | 4 | ||
Металлы, армированные волокнами | 4 | ||
II. ПОРОШКОВЫЕ СПЛАВЫ | 4 | ||
III. ОСНОВЫ ПРОИЗВОДСТВА ПОРОШКОВЫХ СПЛАВОВ | 5 | ||
Производство порошков | 5 | ||
Испытание порошков | 6 | ||
Прессование | 6 | ||
Спекание | 7 | ||
IV. ТВЕРДЫЕ СПЛАВЫ | 8 | ||
Микроструктура | 8 | ||
Область применения | 10 | ||
Схема производства | 11 | ||
VI. ПРОЧИЕ ПОРОШКОВЫЕ СПЛАВЫ | 12 | ||
Антифрикционные сплавы | 12 | ||
Фрикционные материалы | 1314 | ||
Пористые фильтры | |||
КерметыСПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ | 15 | ||
17 |
I. КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ
Композиционные материалы — это искусственные материалы, получаемые сочетанием компонентов с различными свойствами. Одним из компонентов является матрица (основа), другим - упрочнители (волокна, частицы). В качестве матриц используют полимерные, металлические, керамические и углеродные материалы. Упрочнителями служат волокна - стеклянные, борные, углеродные, органические, нитевидные кристаллы (карбидов, берилов, нитридов и др.) и металлические проволоки, обладающие высокой прочностью и жесткостью. При составлении композиции эффективно используются индивидуальные свойства составляющих композиций. Свойства композиционных материалов зависят от состава компонентов, количественного соотношения и прочности связи между ними. Комбинируя объемное содержание компонентов, можно, в зависимости от назначения, получать материалы с требуемым и значениями прочности, жаропрочности, модуля упругости или получать композиции с необходимыми специальными свойствами, например магнитными и т. п.
Содержание упрочнителя в композиционных материалах составляет 20-80 % по объему. Свойства матрицы определяют прочность композиционного материала при сжатии и сдвиге. Свойства упрочнителя определяют прочность.
Композиционные материалы имеют высокую прочность, жесткость, жаропрочность и термическую стабильность. Так, для карбоволокнитов d=650-1700 МПа, а для бороволокнитов d=900-1750 МПа. Плотность композиционных материалов 1,35- 1,8 г/см^3 Композиционные материалы являются весьма перспективными конструкционными материалами для многих отраслей машиностроения.
Карбоволокниты (углепласты) - это композиции из полимерной матрицы и упрочнителей в виде углеродных волокон. Для полимерной матрицы используются полиимиды, эпоксидные и фенол формальдегидные смолы. Карбоволокниты КМУ-2 и КМУ-2л на основе полиимидов можно применять при температуре до 300°С Они водо- и химостойки. Карбоволокниты содержат, наряду с угольными, стеклянные волокна, что удешевляет материал. Карбоволокниты используют в химической, судостроительной и авиационной промышленности.
При обработке обычных полимерных карбоволокнитов в инертной или восстановительной атмосфере получают графитированные карбоволокниты или Карбоволокниты на углеродной матрице. Так, карбоволокнит на углеродной матрице типа КУП-ВМ по прочности и ударной вязкости в 5—10 раз превосходит специальные графиты: При нагреве в инертной атмосфере он сохраняет прочность до 2200*C. Карбоволокниты с углеродной матрицей широко применяют при изготовлении химической аппаратуры.
Бороволокниты — это композиции из полимерного связующего и упрочнителя - борных волокон. Для получения бороволокнитов применяют модифицированные эпоксидные и полиимидные связующие. Бороволокниты имеют высокую прочность при сжатии, сдвиге, высокую твердость, тепло- и электропроводность. Бороволокниты водо- и химостойки. Изделия из бороволокнитов применяют в космической и авиационной технике (лопатки и роторы компрессоров, лопасти винтов вертолетов и т. д.).
Органоволокниты - это композиции из полимерного связующего и упрочнителей из синтетических волокон. Упрочнителями служат эластичные волокна, лавсан, капрон, нитрон и др. Связующими служат полиимиды, эпоксидные и фенолформальдегидные смолы. Органоволокниты имеют малую плотность, сравнительно высокую ударную вязкость. Органоволокниты применяют в авиационной технике, электропромышленности, химическом машиностроении и др.
Металлы, армированные волокнами - композиционные материалы с металлической матрицей и упрочнителями в виде волокон. Упрочнителями служат волокна бора, углеродные волокна, нитевидные кристаллы тугоплавких соединений, вольфрамовая или стальная проволока. Матричный материал выбирают из учета назначения композиционного материала (коррозионная стойкость, сопротивление окислению и др.). В качестве матриц используют легкие и пластичные металлы, алюминий, магний и их сплавы. Количество упрочнителя составляет по объему 30-50%. Металлы, армированные волокнами, применяются в авиационной и ракетной технике.
Использование композиционных материалов требует в ряде случаев создания новых методов изготовления деталей и изменения принципов конструирования деталей и узлов машин.
II. ПОРОШКОВЫЕ СПЛАВЫ
Сплавы, изготовляемые из металлических порошков путем прессования и спекания без расплавления или с частичным расплавлением наиболее легкоплавкой составляющей их, называются порошковыми.
Несмотря на то, что объем производства порошковых сплавов невелик и составляет всего 0,1% от общего объема производства металлов, они имеют очень большое значение в народном хозяйстве и область их применения чрезвычайно широка. При этом изготовление многих сплавов практически возможно только из порошка, например, изготовление твердых металлокерамических сплавов, керметов, сплавов из тугоплавких металлов — вольфрам, молибден, тантал, ниобий — или композиций этих металлов с легкоплавкими металлами, или из металлов с неметаллическими материалами. Многие детали из порошковых сплавов отличаются лучшими качествами и дешевле, чем из обычных металлов.
Области применения и составы порошковых сплавов приведены в табл. 1.
Особенно велико значение порошковой металлургии в новых отраслях техники: атомной и химической промышленности, ракетной технике, реактивных двигателях, радио- и электротехнике, энергетической промышленности и в производстве особо жаропрочных сплавов.
III. ОСНОВЫ ПРОИЗВОДСТВА ПОРОШКОВЫХ СПЛАВОВ
Процесс производства порошковых сплавов заключается в получении порошка, составлении шихты, прессовании и спекании.
Производство порошков. Важнейшими методами производства порошков являются:
1) восстановление металлов из окислов;
2) механическое измельчение;
3) электролитическое осаждение;
4) распыление жидкого металла;
5) нагрев и разложение карбонилов.
Наибольшим распространением пользуются первые два метода.
Восстановление металлов из окислов широко применяется в производстве порошков тугоплавких редких металлов, вольфрама и молибдена, а также кобальта, никеля и железа. Руды редких металлов подвергаются сложной переработке и размолу для получения порошков окислов, которые восстанавливаются затем путем нагрева в газовой среде водородом, генераторным газом или твердыми восстановителями—сажей, коксом, графитом. Иногда применяется комбинированное восстановлена путем нагрева вместе с твердым и газовым восстановителем. Восстановление из окислов позволяет получить очень мелкие и чистые порошки.
Таблица 1. Применение и состав порошковых сплавов
Тип порошковых сплавов | Назначение | Исходные материалы |
Антифрикционные | Для подшипников скольжения | Порошки железа и графита Порошки меди, олова и графита |
Фрикционные | Для тормозных дисков | Порошки меди, олова, свинца, графита, асбеста и пр. Порошки железа, свинца, графита и асбеста |
Пористые | Для фильтров | Бронзовая дробь |
Плотные | Для деталей машин из стали и жаропрочных и окалино-стойких сплавов | Порошки железа и различных металлов |
Тугоплавкие | ДЛЯ проволоки ДЛЯ ламп контактов и деталей приборов | Порошки вольфрама, молибдена и других туго-плавких металлов |
Электротехнические | Для контактов н постоянных магнитов | Порошки меди, вольфрама и др. Порошки железа, алюминия, никеля и кобальта. |
Твердые сплавы | Для режущего инструмента. Волок, буры | Порошки карбида вольфрама, карбида титана, кобальта |
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Поршень
В конструкции поршня принято выделять следующие элементы (рис. 5.1): головку 1 и юбку 2. Головка включает днище З, огневой (жаровой) 4 и уплотн
- Построение и исследование динамической модели портального манипулятора
Для решения задачи выбора оптимальной скорости перемещения звеньев манипулятора с шаговым двигателем, с целью увеличения его быстроде
- Пошив костюму
ОпераціяТ.У. прийомиГрафічне зображення1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.Позначити місце розташування кишені.Приметати мішковину до полов
- Пояснительная записка к курсовому проекту по ТММ Расчет редуктора
Пояснительная записка к курсовому проекту «Детали машин»Содержание: Введение (характеристика, назначение).Выбор эл. двигателя и кинема
- Практика на молочному заводі
Shura19@yandex.ru На сучасному етапі в Україні молочна промисловість стоїть на досить високому рівні, хоча в порівнянні з світовими стандартами
- Практические расчёты посадок, размерных цепей, калибров в машиностроении
OverviewПервоеСедьмоеSheet 1: ПервоеРaсчёт посадокDном.ESEIeseiDmaxDmindmaxdminSmaxSminTотв.TвалаTпосадкиTs320.04032.043232320.0400.0400.040.04250.080-0.02-0.0725.082524.9824.930.160.020.080.050.140.14S
- Прецизионные сплавы
ВВЕДЕНИЕ.В конце прошлого века французский исследователь Ч.Гийом ( 1, с. 3—5) обнаружил в системе железо — никель сплавы, обладающие тепл
Copyright © https://referat-web.com/. All Rights Reserved