Подходы к анализу нелинейной динамики жидкостей
Зубарев Николай Михайлович
Основная область моей научной деятельности - нелинейные явления в электрогидродинамике. Эти явления можно обнаружить, если наблюдать за поведением проводящей жидкости со свободной поверхностью во внешнем электрическом поле. На границе жидкости за конечное время формируются особенности - острия, играющие важную роль в последующей эволюции системы. Взаимодействие поля и индуцированных им зарядов на поверхности проводящих и диэлектрических жидкостей приводит к взрывному росту возмущений границы, формированию на ней особых точек.
Почему эти процессы нельзя отнести к линейным? Дело в том, что линейными процессами в задачах, связанных с описанием движения жидкостей со свободной поверхностью, считаются те, при которых амплитуда отклонения поверхности от плоской оказывается малой по сравнению с характерной длиной волны. Понятно, что для процесса формирования острий это условие не выполняется, и описывать его можно лишь в рамках нелинейных моделей. В настоящее время не существует общего подхода к решению нелинейных уравнений движения. Поэтому в нелинейной физике - в частности, в ее электрогидродинамических приложениях - остается значительное количество нерешенных задач, что делает это направление науки привлекательным для исследователей.
Требуются новые теоретические подходы к анализу нелинейной динамики жидкостей со свободной заряженной поверхностью, в частности методы построения сингулярных решений уравнений электрогидродинамики, ответственных за коллапс электрокапиллярных волн. К моим основным научным результатам за последние три года, закладывающим основу развиваемой теории, я бы отнес следующие.
Мне удалось найти приближенные автомодельные решения уравнений электрогидродинамики, ответственные за фундаментальный процесс формирования на заряженной поверхности жидкостей конических острий - динамических конусов Тейлора. Установлен характер поведения напряженности электрического поля, скорости движения жидкости и кривизны ее поверхности на заключительных стадиях процесса. Определено критическое значение диэлектрической проницаемости среды, превышение которого необходимо для реализации автомодельного сценария коллапса электрокапиллярных волн.
Я исследовал динамику развития неустойчивости свободной поверхности жидкого гелия, заряженной локализованными над ней электронами. Оказалось, что в случае, когда заряд полностью экранирует электрическое поле над поверхностью, а его величина существенно превышает пороговое для неустойчивости значение, асимптотическое поведение системы описывается хорошо известными уравнениями трехмерного лапласовского роста. Их интегрируемость в плоской геометрии позволила описать эволюцию границы вплоть до формирования на ней особенностей - точек заострения, в которых бесконечными оказываются напряженность электрического поля, скорость движения жидкости и кривизна ее поверхности. Получены точные решения задачи о профиле электрокапиллярной волны на границе жидкого гелия.
Мне удалось найти достаточные интегральные критерии взрывной неустойчивости поверхности проводящих и диэлектрических жидкостей в околокритическом электрическом поле, когда основным нелинейным взаимодействием является взаимодействие трех электрокапиллярных волн, образующих гексагональную структуру. Эти критерии представляют собой обобщение известных критериев линейной устойчивости на случай возмущений конечной амплитуды. Я также сформулировал условия взрывного роста возмущений заряженной поверхности жидкостей в случае квадратной симметрии задачи, для которого трехволновые взаимодействия вырождаются, а основными становятся четырехволновые.
Кроме того, я исследовал возможные равновесные конфигурации заряженных цилиндрических струй проводящей жидкости и нашел критические значения зарядов, при которых струи распадаются на отдельные. Показано, что для крупномасштабных азимутальных мод режим возбуждения неустойчивости струй круглого сечения - мягкий, а для мелкомасштабных - жесткий.
Наконец, я исследовал поведение идеальной диэлектрической жидкости со свободной поверхностью в сильном тангенциальном электрическом поле. Получены уравнения для эволюции волн малой амплитуды с учетом квадратичных нелинейностей. Как оказалось, уравнения могут быть решены в предельном случае жидкостей со значительной диэлектрической проницаемостью, что позволило описать нелинейное взаимодействие встречных поверхностных волн.
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Адроны, очарованные мезоны и поиски кварк-глюонной плазмы
Юдичев Валерий ЛеонидовичМои научные интересы связаны с исследованием свойств адронов - элементарных частиц, включающих мезоны и барио
- Закон Грэма
Томас ГРЭМ (Thomas Graham, 1805–69)Шотландский химик. Родился в Глазго в семье преуспевающего фабриканта. Вопреки воле отца, желавшего видеть сын
- Атомная теория строения вещества
Слово «атом» — греческого происхождения, и переводится оно «неделимый». Принято считать, что первым идею о том, что кажущаяся гладкой и
- О природе высокотемпературной сверхпроводимости
Бобков Александр МихайловичДаже те, кто далеки от науки, слышали о сверхпроводимости. Суть этого явления, которое было открыто около ста
- К вопросу о "высокотемпературных" осцилляциях магнетосопротивления висмута в ультраквантовом пределе
К вопросу о "высокотемпературных" осцилляциях магнетосопротивления висмута в ультраквантовом пределед. ф.-м. н. Богод Ю.А.Проанализирова
- О развитии математики в XIX столетии. Гамильтон
Христиан Феликс КлейнГамильтон Вильям Роуан Гамильтон родился в 1805 г. в Дублине. Как и Сальмон, он вышел из Тринити-колледжа, который бле
- Скалярная проекция гиперкомплексных чисел
Каратаев Е.А.Введение. При первой же попытке рассмотрения гиперкомплексных чисел в качестве основания для соответствующей геометрии во