Планирование и реализация процедуры внедрения линий связи на железнодорожном пути
Организация всех связей для обеспечения оперативной работы дороги по магистральным кабельным линиям отличает железнодорожные кабельные линии от подобных им линий Министерства связи. Это вызвано большим количеством низкочастотных технологических связей и необходимостью их выделения в ряде пунктов как на станциях, так и на перегонах.
Перед железнодорожным транспортом нашей страны стоит задача обеспечения непрерывно растущих объемов перевозок народнохозяйственных грузов и пассажиров. Для этого необходимо повышать пропускную способность железнодорожных участков, скорость и массу поездов при одновременном повышении безопасности движения. Без сложной, разветвленной сети связи невозможно организовать интенсивный перевозочный процесс и оперативно управлять им.
Все шире используют волоконно-оптические кабели для цифровых систем передачи информации, каналы которых являются универсальными, способными передавать аналоговые (например, речевые) и кодированные дискретные сигналы.
Внедрение на транспорте систем перегонного регулирования движения поездов привело к необходимости увеличения числа цепей для устройств автоматики и телемеханики и перевода их в отдельный кабель СЦБ. Распространение электрической централизации стрелок и сигналов на станциях обусловило применение кабельных станционных сетей.
Дальнейший рост объема и скоростей перевозок на железнодорожном транспорте приводит к появлению новых видов связи, автоматики и телемеханики. Устройства автоматики и телемеханики должны становиться все более быстродействующими и надежными, а устройства связи — обеспечивать возможность служебных переговоров с любым пунктом в данный момент с уменьшением времени ожидания соединения и ростом качества передачи сигналов. Как следствие этого, должно существенно возрастать число каналов передачи информации на железных дорогах.
Продолжающийся значительный рост протяженности железных дорог с электротягой на постоянном и переменном токе, развитие железнодорожных линий автоблокировки, продольного электроснабжения линейных потребителей, высоковольтных линий электропередачи приводят к увеличению опасных и мешающих электромагнитных влияний на цепи и каналы железнодорожной автоматики, телемеханики и связи и к необходимости разработок мер борьбы с этими явлениями.
В связи с необходимостью увеличения числа каналов и повышением их качества линии нужно усовершенствовать с учетом экономической целесообразности, т. е. так, чтобы капитальные затраты на строительство, а в дальнейшем расходы на эксплуатацию, отнесенные к единице продукции — канало-километру, не были высокими.
1. Сущность, классификация и особенности использования волоконно-оптической линии связи
1.1 Характеристика волоконно-оптических систем передачи
При проектировании трактов оптической связи необходимо в первую очередь принять оптимальное решение по выбору волоконно-оптической системы передачи. В настоящее время в волоконно-оптических системах передачи общего пользования применяется унифицированная каналообразующая аппаратура цифровых систем передачи различных ступеней иерархии. Системы передачи с частотным разделением каналов связи по оптическим кабелям еще не нашли практического применения, что связано с определенными трудностями в обеспечении качественных показателей линейного тракта.
В настоящее время созданы следующие системы передачи: "Соната-2", "Сопка - 2" с аппаратурой ИКМ - 120; "Сопка - 3" и "Соната-Зм" с аппаратурой ИКМ - 480; "Соната - 4" и "Соната - 4м" с аппаратурой ИКМ - 1920.
Для данного курсового проекта буду использовать систему передачи “Cопка-3” с аппаратурой ИКМ-480 (описание – табл. 1.1.)
Табл. 1.1.
Характеристика | Система передачи | Длина волны, мкм | Энергетический потенциал, дБ | Тип линейного кода | Дальность связи, км | Тип источника излучения | Тип приемника излучения | Тип оптического волокна | Скорость передачи, Мбит/с |
Сопка-3 | ИКМ-480 | 1,3 | 41 | 5В6В | До 600 | ЛД | ЛФД | Многомодовое градиентное | 34 |
1.2 Характеристика оптических кабелей связи
Оптические кабели (ОК) содержат 4, 8 и 16 волокон. Волокна классифицируются на ступенчатые, градиентные и одномодовые и используются на длинах волн 0,85. 1,3 и 1.55 мкм. Кабели могут изготовляться с металлическими элементами (оболочки, оплетки, армирующие стержни) и без них. Достоинствами ОК без металлических элементов являются существенно меньшие габаритные размеры и масса.
Выбор ОК осуществляется на основе: заданного числа каналов магистральной связи и типа аппаратуры связи; назначения кабеля.
В соответствии с заданным числом каналов магистральной связи и типом волоконно-оптической системы передачи следует определить число волокон ОК. При использовании цифровой системы - передачи ИКМ-480 для организации 400 двусторонних каналов связи необходимо два волокна в ОК: одно - для организации 400 каналов связи в прямом, а другое - в обратном направлении.
Исходя из типа системы передачи, типа оптического волокна и значения рабочей длины волны (λ, мкм), (см. табл. 1.1), выбирается марка кабеля: ОЗКГ- линейный оптический многомодовый градиентный зоновый кабель с броней из круглых проволок для прокладки в грунт с оптическим волокном на длину волны 1,3 мкм.
Маркировка оптического кабеля связи может быть записана условно в следующем виде:
ОЗКГ-1-0.7-4/4
где 1 - номер разработки конструкции данного типа оптического кабеля;
0.7-максимальное затухание оптического волокна, дБ/км;
4 - число оптических волокон;
4 - число медных жил для дистанционного питания аппаратуры;
ОЗКГ – кабель оптический с металлическими армирующими элементами, центральным профильным элементом;
Строительная длина 2200 м, диаметр сердечника 50 мкм.
1.3 Оценка параметров световодов
Важной характеристикой световода является числовая апертура NA, представляющая собой синус максимального угла падения φпад лучей на торец световода, при котором в световоде луч на границу "сердцевина-оболочка" падает под критическим углом φкр. Если значение угла падения φпад ≥ φкр то в световоде происходит полное внутреннее отражение луча. Следовательно
NA=n1cos φкр=, (1.3.1.)
где n1 и n2 показатель преломления соответственно сердцевины и оболочки (для многомодового световода 1,53 и 1.5 соответственно).
NA==0.30
Число мод определяет способность световода "принимать" свет. Чем больше мод, тем больше световой энергии можно ввести в световод от источника. С увеличением числа мод полоса передаваемых частот снижается. Чем меньше мод, тем лучше качество связи, и можно организовать большее число каналов.
Для расчета числа мод необходимо рассчитать нормированную частоту
V=, (1.3.2)
где a - радиус сердечника световода, 50 мкм (определяется по маркировке кабеля);
λ - длина волны, 1.3 мкм;
NA - числовая апертура;
V==72.46
Общее число передаваемых мод в световодах может быть определено по формулам:
N =V2/2 - для градиентного профиля.
N=2625.23
Важнейшим параметром световода является затухание передаваемой энергии. Для заданных значений скорости передачи информации и вероятности ошибки мощность на входе фотодетектора должна быть больше некоторой определенной величины. Потери наряду с дисперсией определяют длину ретрансляционного участка волоконно-оптической, линии связи (ВОЛС), т.е. расстояние, на которое можно передавать сигнал без усиления. Данное расстояние соответствует расстоянию между ЛРП волоконно-оптической линии связи, размещенными на схеме трассы линии связи. В тех участках спектра, где существуют надежные источники излучения, световоды должны иметь минимально возможное затухание. Существуют две главные причины собственных потерь в световодах: поглощение и рассеяние энергии.
Затухание поглощения. αп связанное с потерями на диэлектрическую поляризацию, линейно растет с частотой и существенно зависит от свойств материала световода tg δ.
Расчет затухания поглощения, дБ/км:
αп, (1.3.3.)
где, λ - длина волны, м;
tg δ=10-11 - тангенс угла диэлектрических потерь в световоде.
αп=0.32 дБ/км
В этой формуле приближенное вычисление объясняется тем, что показатели преломления и тангенс диэлектрических потерь зависят от частоты, а следовательно, и от длины волны, в связи с чем не могут быть заданы постоянными величинами при расчете.
Потери на рассеяние определяют нижний предел потерь, присущих волоконным счетоводам. Потери с увеличением длины волны уменьшаются. Рассеяние обусловлено неоднородностями материала волоконного световода, размеры которых меньше длины волны, а также тепловой флуктуацией преломления.
Различают линейное и нелинейное рассеяние. При линейном рассеянии его мощность пропорциональна мощности падающей волны. В этом случае происходит частичное изменение потока энергии.
Потери на рассеяние, возникающие в результате флуктуации показателя преломления, называются рэлеевскими и определяются по формуле. дБ/км.
, (1.3.4)
где, λ - длина волны, мкм;
Rp - коэффициент рассеяния, равный для кварца 1.5 дБ/км*мкм4 для многомодового световода;
=0.53 дБ/км
Суммарное значение собственного затухания оптического волокна в общем случае
αс=αп+αр+αпк+αпр, (1.3.5.)
где αпк - коэффициент затухания в инфракрасной области расположенной в диапазоне длин волн свыше 1.6 мкм (для заданных длин волн не рассчитывается);
αпр - коэффициент затухания из-за наличия в материале волоконного световода посторонних примесей, дБ/км (для многомодового световода приблизительно равен на λ=1.3 мкм – 0.1 дБ/км).
Именно из-за нелинейности потерь αпр на заданных частотах за счет резонансных явлений возникаю так называемые "окна прозрачности” световода, то есть существенное уменьшение собственного затухания оптического волокна при длинах волн 0.85, 1.3 и 1.55 мкм, поэтому передача по ОК осуществляется именно на данных длинах волн.
αс=0.1+0.53+0.32=0.95 дБ/км
Кроме собственных потерь αс надлежит учитывать также дополнительные кабельные потери αк. Они связаны с непостоянством размеров поперечного сечения волокна, наличием макро- и микроизгибов из-за скрутки, конструктивных и технологических неоднородностей и других причин. Установлено, что все кабельные потери увеличивают затухание.
Приближенно можно рассчитать. дБ/км
αк= αгв+, (1.3.6.)
где αгв - дополнительное затухание за счет геометрии волокна, (в среднем 0. 15* αс ), дБ/км;
Ам - потери на стыке оптических волокон в муфте (0.3 -на стык, дБ);
lстр - протяженность строительной длины ОК, км.
αк=0.15*0.95+0.3*50/2=7.64
Качество ввода зависит от соотношения площадей излучателя Sп и сердцевины световода Sc. Существенно качество ввода зависит и от апертуры световода (NA). т. к. только в пределах апертурного угла излучение эффективно вводится в световод. Обычно площадь излучателя больше площади сердцевины световода, поэтому не вся излучаемая энергия поступает в оптический тракт. Потери энергии на вводе, дБ,
, (1.3.7)
где m - коэффициент, и учитывается при расчете энергетического потенциала аппаратуры.
Для расчетов приняты следующие данные: Sп – 3*50 мкм для лазера; Sc=πа2 мкм, где а - радиус сердцевины световода, мкм; m=10 для лазера.
αвв=10lg (2/10*0,32*150/3,14*252) = 7,7 дБ/км
Повышение эффективности ввода излучения достигается за счет применения согласующего оптического устройства в виде увеличительной линзы (или комбинации линз), которая устанавливается между излучателем и торцом световода. Эффективность согласующих устройств можно определить по справочным данным. В современных системах волоконно-оптической передачи благодаря применению излучателей с оптимальной диаграммой направленности и правильному их согласованию со световодом потери энергии при вводе не превышают 4% от мощности источника. Поэтому, учитывая дополнительные потери в разъемных и неразъемных соединениях на стыке аппаратуры и ОК, торцевые потери
αт = q*αвв, (1.3.8.)
где q - поправочный коэффициент, равный 0,2 для многомодового световода.
αт = 0,2*7,7 =1,54 дБ/км
В световоде при передаче импульсных сигналов (отличающихся друг от друга различной мощностью) после прохождения ими некоторого расстояния световые импульсы искажаются и расширяются во времени, т. е. время подачи одного импульса увеличивается. В результате наступает такой момент, когда соседние импульсы начинают перекрывать друг друга. Данное явление в теории световодов называют дисперсией.
Расширение импульсов устанавливает предельные скорости передачи информации по световоду при импульсно-кодовой модуляции и при малых потерях ограничивает длину ретрансляционного участка. Дисперсия ограничивает пропускную способность ВОЛС, которая предопределяет полосу частот ∆F, пропускаемую световодом, ширину линейного тракта и соответственно объем информации, который можно передать по ОК
Дисперсия не только ограничивает частотный диапазон использования световодов, она существенно снижает дальность передачи по ОК, т. к. чем длиннее линия, тем больше проявляется дисперсия и больше уширение импульса. Дисперсия возникает по двум причинам: не когерентность источников излучения и появление спектра ∆λ, существование большого числа мод N. Первая называется хроматической (частотной) дисперсией, которая делится на материальную и волновую. Материальная дисперсия обусловлена зависимостью коэффициента преломления материала световода от длины волны. Волновая дисперсия обусловлена процессами внутри моды и связана со световодной структурой моды. Она характеризуется зависимостью коэффициента распространения моды от длины волны. Модовая дисперсия объясняется наличием большого числа мод каждая из которых распространяется со своей скоростью. Результирующее значение уширения импульсов за счет модовой τмод (τмод=1.02), материальной τмат (τмат=0,242) и волновой τвв (τвв=7.179) дисперсией.
, (1.3.10.)
=7,49*10-9 с/км
Дисперсия проявляется по-разному в различных типах волоконных световодов. В ступенчатых световодах при многомодовый передаче доминирует модовая дисперсия, достигающая значений порядка 102-107 нс/км. В градиентных световодах происходит выравнивание времени распространения различных мод, и определяющим является дисперсия материала, которая уменьшается с увеличением длины волны.
1.4 Определение длины регенерационного участка
Длина регенерационного участка lру ВОЛС определяется передаточными характеристиками кабеля: его коэффициентом затухания a и дисперсией t.
Затухание кабеля приводит к уменьшению передаваемой мощности, что соответственно лимитирует длину регенерационного участка. Дисперсия кабеля приводит к наложению передаваемых импульсов и как следствие к их искажению, и чем длиннее линия, тем больше вносимые искажения импульсов, что, в свою очередь, также накладывает ограничения на пропускную способность кабеля ∆F.
Длина регенерационного участка должна удовлетворять значениям, как затухания, так и дисперсии. Поэтому производится расчет длины регенерационного участка сначала исходя из допустимого значения по затуханию , затем исходя из требуемых значений дисперсии и пропускной способности . Из полученных двух значений и длин регенерационного участка выбирается наименьшее значение как отвечающее условиям затухания и дисперсии.
Допустимая длина регенерационного участка ВОЛС по затуханию км, определяется исходя из энергетического потенциала аппаратуры Ώ:
, (1.4.1)
lру = (43-5-1,54)/(0,95+7,64)=4.24 км
где Аз - энергетический запас системы (в среднем - 5 дБ), необходимый для компенсации эффекта старения аппаратуры и ОК компенсации дополнительных потерь, возникающих после проведения ремонтных работ на кабеле, случаев некачественного сращивания сростков ОК и других отклонений параметров участка в процессе эксплуатации.
Для расчета длины регенерационного участка по пропускной способности определим расчетную пропускную способность световода на 1 км длины (Мбит-км/с)
∆Fx=1/τ, (1.4.2)
где τ - дисперсия, c/км.
∆Fx=1/7,49*10-9=130 Мбит/с
Длина регенерационного участка по пропускной способности км. определяется из выражения
∆Fx=∆F, (1.4.3)
где ∆F - скорость передачи волоконно-оптической системы, Мбит/с.
=14.61 км
Из полученных значений и выбирается наименьшее, которое и будет являться значением длины регенерационного участка . Из данных расчетов можно сделать вывод, что длина регенерационного участка будет равна 4.24 км.
Рисунок 1.1 Структурная схема волоконно-оптической системы передачи
2. Общая характеристика кабельных линий связи
Проект на строительство кабельной линии связи является составной частью общего проекта строительства сооружений электросвязи, автоматики и телемеханики на участке железной дороги и разрабатывается в соответствии с генеральными схемами развития железной дороги на данном направлении.
Проект - это предварительно подготовленное, обоснованное техническими и экономическими расчётами и изображенное графически, решение по строительству линейных сооружений электросвязи. Проект является комплексным технико-экономическим документом, в котором техническая и экономическая стороны строительства неразрывно связаны.
В состав проекта входит пояснительная записка с кратким обоснованием принятых технических решений, сметно-финансовый расчёт, определяющий стоимость строительства и рабочие чертежи, по которым выполняются строительные и монтажные работы.
Проект на строительство линейных сооружений связи разрабатывается на основе технического задания и данных изысканий.
Техническое задание включает в себя сведения о потребном количестве каналов для организации всех видов оперативно-технологической и общеслужебной связей на каждом участке железной дороги с учётом резервирования и перспективы развития; сведения о размещении абонентов телефонной и телеграфной сетей и объектов сети телемеханики, а также электрические и эксплуатационные требования, предъявляемые к этим каналам.
По результатам изысканий, проведенных на конкретном участки железной дороги, составляется подробная топографическая схема с описанием характера окружающей местности и физико-электрических свойств почвы вдоль трассы; выявляются естественные препятствия, уточняется расположение всех объектов связи и СЦБ и даётся их привязка к координатам пути; определяются параметры источников внешних электромагнитных влияний; выясняются климатические условия, особенности строительства и эксплуатации линии связи.
На основании этих данных обосновывается выбор типа линии связи и, в случае принятия решения о строительстве кабельной магистрали, производится выбор системы организации кабельной линии и типа аппаратуры ВЧ уплотнения; обосновывается выбор типа и ёмкости кабеля, выбор трассы и устройство переходов и пересечений; выбирают меры защиты кабеля от электромагнитного влияния и коррозии, определяют способы прокладки кабеля и места отпаев от магистрали для ввода в промежуточные станции, путевые здания и другие пункты.
Все запроектированные сооружения должны быть технически совершенны и экономически целесообразны.
После выполнения проекта составляют рабочие чертежи, в состав которых входят чертежи трасс воздушной и кабельной магистрали с привязкой к железной дороге и другим местным сооружениям, чертежи нетиповых конструкций, чертежи вводов линий связи в здания, переходов через различные препятствия, монтажные схемы с указанием мест разрезов кабелей и назначением отдельных кабельных цепей и т.п.
2.1 Обоснование выбора кабельной системы
Выбор системы организации кабельной магистрали производится, исходя из требуемого числа каналов для организации всех видов связи на участке железной дороги и выбранного типа аппаратуры уплотнения. На ж.д. транспорте нашли применение одно-, двух- и трёхкабельные способы организации линий связи.
2.1.1 Характеристика видов аппаратуры ВЧ уплотнения
Количество каналов дорожной связи – 300 (по исходным данным). Можно выбрать или 5 систем К-60п, или 3 системы ИКМ-120. В данном случае выгоднее применить три системы ИКМ-120, т.к. будет ощутимая экономия на стоимости кабеля, который является самой дорогой частью линий связи, из-за того, что на осуществление связи для пяти систем К-60п потребуется значительно больше физических линий связи, и значит будет больший расход меди.
Применяя для уплотнения железнодорожных кабелей аппаратуру ИКМ-120, можно, например, по двум высокочастотным четверкам организовать 480 двусторонних каналов тональной частоты это в два раза больше по сравнению с уплотнением системой К-60п. остальные четверки и пары железнодорожных кабелей используются для организации других цепей связи и СЦБ.
2.1.2 Технические характеристики кабеля
Для систем ИКМ-120 требуется симметричный кабель, значит ВЧ каналы организуем с помощью системы ИКМ-120 с использованием кабеля марки МКПАБ 7х4х1,05+5х2х0,7+1х0,7
Выбранный кабель имеет четыре ВЧ четверки, три НЧ четверки с диаметром жил 1,05 мм, пять сигнальных пар и одну контрольную жилу с диаметром жил 0,7 мм.
ВЧ четверки отличаются от НЧ четверок более высокой точностью изготовления и жесткостью допусков, что в целом обеспечивает меньшие взаимные влияния между цепями, особенно при высоких частотах и предназначены для работы в цифровых системах передачи ИКМ–120. НЧ четверки предназначены для цепей отделенческой связи, цепей автоматики и телемеханики, сигнальные пары (жилы) – для линейных цепей автоблокировки.
По типовым схемам распределения четверок при двухкабельной системе рекомендуется для ВЧ связей использовать в 7-ми четверочном кабеле вторую, четвертую и шестую четверки. Распределение цепей по четвёркам магистральных кабелей представлена в таблице 3.1
Строительные длины кабелей примем равной 850 метров.
Номера четвёрок и сигнальных пар | Тип четвёрок | Цепи связи и СЦБ | ||
Кабель К1 | Кабель К2 | |||
Четвёрки: | Пары 1,2 | ВЧ ВЧ НЧ ВЧ НЧ ВЧ НЧ | ||
1 | ПДС, ЛПС | ТУ, ТС | ||
2 | 1 ИКМ-120,2 ИКМ-120 | 1 ИКМ-120,2 ИКМ-120 | ||
3 | ЭДС, ПС | ДБК, ВГС | ||
4 | 3 ИКМ-120, резерв | 3 ИКМ-120, резерв | ||
5 | ПГС, ПГС | ПРС, ПРС | ||
6 | резерв | резерв | ||
7 | СЭМ, МЖС | Резерв, СЦБ-ДК | ||
Сигнальная пара: | ||||
1 | СЦБ | Резерв | ||
2 | СЦБ | Резерв | ||
3 | СЦБ | Резерв | ||
4 | СЦБ | Резерв | ||
5 | СЦБ | Резерв |
Рис.1. Двухкабельная линия связи.
2.2 Распределение видов связи по кабелях
На основании выбранной системы организации кабельной магистрали, типов и ёмкостей кабелей, типа аппаратуры ВЧ уплотнения распределяем виды связи по физическим цепям.
На железнодорожном транспорте в соответствии с принятой структурой управления существует несколько отдельно организуемых первичных сетей связи: магистральная, дорожная, отделенческая и станционная.
Дорожные связи организуются в пределах каждой дороги и соединяют между собой управления дороги с отделениями и крупными железнодорожными станциями, а так же последние между собой. Для этого вида связи по заданию предоставляется 300 ВЧ каналов.
Самым насыщенным различными видами связи являются отделения дороги, так как именно на участках дорог в пределах отделений осуществляется непосредственное регулирование движения поездов и эксплуатация технических устройств железнодорожного транспорта. В отделении дороги с его территории стекается вся оперативная информация и здесь диспетчера, которые руководят движением поездов, энергосистемами, погрузкой, выгрузкой и распределением вагонов и другими технологическими операциями на участках и станциях.
В отделении дороги организуются следующие виды связи:
· отделенческая связь транспортной военизированной охраны (СТВ) - для оперативного управления отрядом транспортной военизированной охраны;
· отделенческая связь транспортной милиции (СТМ) - для оперативного управления линейными отделами транспортной милиции, организуется в пределах отделения;
· поездная диспетчерская связь (ПДС) - для руководства движением поездов, служит для переговоров поездного диспетчера (ДНЦ) с раздельными пунктами, входящими в обслуживаемый им участок l~100-200 км, границы участков обычно устанавливаются по сортировочным горкам и участковым станциям. Руководство движением ДНЦ реализует через дежурных по станциям (ДСП) и маневровых диспетчеров (ДСЦ). В процессе работы ДНЦ передает по цепи ПДС приказы об отправлении, проследовании поездов, обгоне их на промежуточных пунктах;
· энергодиспетчерская связь (ЭДС) - для оперативного руководства работой хозяйства электрификации и электроснабжения на электрифицированных участках железных дорог;
· вагонная диспетчерская связь (ВДС) - для оперативного регулирования вагонного парка, контроля за его продвижением и состояния погрузочно-разгрузочных работ;
· билетная диспетчерская связь (БДС) по продаже билетов на пассажирские поезда, организуется от бюро отделений до линейных пунктов (билетных касс). БДС является частью общего комплекса связи для централизованной продажи билетов на пассажирские поезда (ЖАОП-ЛЖД-БДС). Она используется для переговоров диспетчеров бюро по распределению мест на пассажирские поезда с кассирами линейных и городских билетных касс;
· служебная диспетчерская связь (СДС) - для оперативного руководства работой технического персонала дистанциями сигнализации и связи по обеспечению надежного действия устройств автоматики, телемеханики и связи на станциях и перегонах, организуется в пределах каждой дистанции;
· локомотивная диспетчерская связь (ЛДС) - для переговоров локомотивного диспетчера с работниками отделения, занимающихся подготовкой локомотивного парка;
· линейно-путевая связь (ЛПС) - для оперативного руководства работой технического персонала дистанции пути, занятого обслуживанием и содержанием устройств и искусственных сооружений;
· постанционная связь (ПС) - для служебных переговоров работников промежуточных станций (разъездов и остановочных пунктов) между собой и с работниками участковых и отделенческих станций. Линия ПС включается в междугородние телефонные коммутаторы на станциях участка, что обеспечивает выход абонентов в сеть дальней дорожной телефонной связи. В неё могут включаться и АТС промежуточных станций для связи абонентов АТС с абонентами других промежуточных станций;
· поездная межстанционная связь (МЖС), предназначена для переговоров дежурных смежных раздельных пунктов по вопросам движения поездов. МЖС организуется смежными станциям, разъездами, обгонными пунктами, путевыми постами;
· перегонная связь (ПГС) - для переговоров работников служб (автоматики, телемеханики и связями пути, энергетики), находящиеся на перегоне, с дежурными по станциям (ДСП), ограничивающим перегон, поездным и энергодиспетчером, диспетчерами дистанции пути, сигнализации и связи. При отсутствии поездной радиосвязи на участке или при неисправности локомотивной радиостанции, ПГС служит для связи остановившегося в пути поезда с дежурным ближайших станций. Перегонная связь используется для организации связи с местом восстановительных работ на перегоне;
· связь охраняемого переезда (ОПС) - связь дежурного по охраняемому переезду с дежурными по ближайшей станции и поездным диспетчером для переговоров по обеспечению безопасности движения на железнодорожном переезде, а также для контроля внешнего состояния поездов.
· а также поездная радиосвязь (ПРС), обходная перегонная связь (ОПГС), телеуправление (ТУ), телесигнализация (ТС), связь для передачи сигналов диспетчерской це
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Проектирование зоны ЕО (ежедневное обслуживание)
Автомобильный транспорт в отличии от других видов транспортных средств является наиболее массовым и удобным для перевозки грузов и па
- Права и обязанности проводника в вагонах дальнего следования перевозки пассажиров
Содержание1. Введение2. Описание2.1. Обязанности проводника по подготовке и экипировке вагона перед рейсом2.2. Снабжение водой и углем пас
- Проблемы и перспективы развития транспорта России
Тема «Развитие логистики в России» является одной из важнейших тем в условиях становления в России рыночной экономики. Актуальность е
- Проект автомобильной дороги Елизово - Паратунка
АВТОМОБИЛЬНАЯ ДОРОГА, ТРАССА, ПРОДОЛЬНЫЙ ПРОФИЛЬ, ПОПЕРЕЧНЫЙ ПРОФИЛЬ, ПРИРОДНО-КЛИМАТИЧЕСКИЕ УСЛОВИЯ, ТЕХНИЧЕСКИЕ НОРМАТИВЫ, ТРАНСПОР
- Автомобильные дизельные топлива
Тема № 5/1. Автомобильные дизельные топливаВопросы темы:1. Характеристики дизельных топлив и их маркировка2. Эксплуатационные требов
- Анализ состояния и перспективы развития морского порта Сочи
Перевозки людей по воде относятся к наиболее древним видам путешествий с использованием транспортных средств. Первоначально это были
- Борьба крупнейших авиакомпаний мира за привлечение пассажиров
Министерство транспорта Российской Федерации (Минтранс России) Федеральное агентство воздушного транспорта (Росавиация) ФГОУ ВПО “ С