Скачать

Особенности каталитического влияния меди на фазовый переход от BNк к BNг

ОСОБЕННОСТИ КАТАЛИТИЧЕСКОГО ВЛИЯНИЯ МЕДИ НА ФАЗОВЫЙ ПЕРЕХОД BNK→BNГ


Введение

Кубический нитрид бора (BNк), второй по твёрдости материал после алмаза, в последнее время получает всё большее распространение в инструментальной промышленности и микроэлектронике. Для более широкого и эффективного применения необходимо обладать информацией о его поведении при взаимодействии с другими веществами, в частности, с металлами.

В данной работе представлены результаты исследований дифференциально-термического, рентгенофазового и химического анализов образцов, полученных нагреванием в вакууме до температуры 12000С при концентрациях BNк от 10 до 90масс.%.

Данная система является интересной как с теоретической, так и с практической точки зрения. Так, до настоящего времени отсутствуют сведения о механизме обратного фазового перехода кубического нитрида бора в гексагональную структуру при взаимодействии с металлами. Медь, в частности, может быть использована в качестве контактного материала при применении BNк в электронике, а также в качестве компонента смеси при изготовлении композиционных материалов на его основе.

В литературных данных (1-3) указывалось, что кубический нитрид бора не взаимодействует с медью при температуре 13730К. Однако в данных работах исследовались лишь поверхностные взаимодействия, что не может объективно дать однозначный ответ о наличии либо отсутствии взаимодействия. Кроме того, следует отметить работу (4), где отмечено, что оксиды меди, которые неизменно присутствуют в самой меди, при взаимодействии с кубическим нитридом бора восстанавливаются до металлов. Из приведенного обзора следует, что имеющиеся источники информации по данной теме немногочисленны и проблема требует дополнительного изучения.


Методика эксперимента

Для исследования приготавливались смеси из порошков кубического нитрида бора и меди, с содержанием BNк 10, 20, 30, 40, 50, 60, 70, 80, 90% механическим смешением в спирте в течение двух часов. Порошок кубического нитрида бора фракции 5/2мкм, соответствующий ТУ РБ 03535138.002-98, проходил дополнительную очистку от примесей и гексагонального нитрида бора с целью избегания искажения результатов. Отношение самых интенсивных рефлексов гексагонального нитрида бора (I002) к кубическому (I111) равно 0,012. Данное соотношение соответствует содержанию кубического нитрида бора 99,8%. Порошок меди соответствовал марке ПМС-2У ГОСТ 4960-75. Полученные смеси загружали в сосудики из кварцевого стекла специальной формы (так называемые сосудики Степанова), из которых откачивали воздух до остаточного давления ~1×10-3 Па. Масса навески составляла ~1-1,5г. Далее проводили дифференциально-термический анализ полученных смесей на термографической установке повышенной чувствительности с записью зависимости ΔЕ=f (Е,mV) на двухкоординатном самописце. Для градуировки установки были произведены записи термограмм таких хорошо исследованных веществ, как NaCl ЧДА ГОСТ 4233-77 (Тпл=1074 К, ΔH=28,2кДж/моль), Cu ПМС-2У ГОСТ 4960-75 (Тпл=1356 К, ΔH=13кДж/моль) Na2SO4 ЧДА ГОСТ 4166-76 (Тпл=1157 K, ΔH=36,8кДж/моль), Mg марки МПФ-1 ГОСТ 6001-79 (Тпл=923К ΔH=8,5кДж/моль), NaNO3 Ч ГОСТ 4168-79 (Тпл=580К ΔH= 15кДж/моль).

Экспериментально определенные температуры фазовых переходов хорошо совпадали с известными из литературы значениями, точность определения температур фазовых переходов составляла ±20К, а величин тепловых эффектов составляла ±3-4%. Эталоном при записи служил прокаленный оксид алюминия ХЧ ТУ6-09-973-76, который загружали в аналогичный сосудик Степанова. Образец и эталон устанавливали в гнезда держателя из жаропрочной стали, которые размещали в силитовой печи или печи сопротивления. Измерение температуры производили с помощью комбинированной Pt-Pt/Rh термопары, подсоединенной к цифровому вольтметру В7-34. Измерения проводили в диапазоне температур от 2980К до 14930К. После охлаждения образцы смесей извлекались, и проводился рентгенофазовый анализ. Съемка профилей рентгеновских дифракционных рефлексов для уточнения структур проводилось на дифрактометре ДРОН-4 в CuKa монохроматическом излучении в автоматизированном режиме с шагом 0.01 (0.02) 0 в диапазоне углов 20 - 1400. Время экспозиции в одной точке составляло 10с. Отдельно, проводилось сканирование пика <331> в диапазоне 135-138˚. Управление автоматизированным комплексом производилось с помощью ПЭВМ.

Все расчеты проводились с помощью программы QUANTO. По модели рассчитывалась теоретическая дифрактограмма, которая сравнивалась с экспериментальной. Процедура, при которой уточнялось 36 параметров, проводилась путем постепенного добавления уточняемых параметров при постоянном графическом моделировании фона и профилей дифракционных линий до стабилизации значений Rp - фактора, который на заключительной стадии уточнения находился в пределах 8,2-8,5%.

Уточнение структуры проводилось по методу Ритвельда. Для расчетов в качестве функции профиля дифракционной линии была выбрана функция Пирсона VII. Фон дифрактограмм уточнялся в полиномиальном приближении (степень полинома равна 6). Полученные рефлексы сопоставлялись с идентификационными данными исходных компонентов и вероятных продуктов реакций.

Далее образцы подвергались травлению в азотной кислоте, с целью селективного удаления меди (5), после чего промывались, высушивались и взвешивались. В результате полученных операций были получены данные о массе меди и нитридов бора.

В дальнейшем, целью устранения гексагонального нитрида бора, образцы подвергались обработке по методике, приведенной в работе (6). Из разницы массы образца до и после травления определялась масса гексагонального нитрида бора.

При сопоставлении результатов рентгенофазового и химического анализов был определён фазовый и количественный состав смесей.

Результаты и их обсуждение

Полученные термограммы показали, что в смесях системы Cu-BNк в диапазоне температур от 2980К до 14930К наблюдается один тепловой эффект с температурой его начала, не зависящей от состава смеси. Данная температура соответствует началу плавления меди. Ввиду того, что температура начала теплового эффекта постоянна, коэффициент пропорциональности  равен 16,99481дж/см2 и данная величина постоянна для данных условий эксперимента. Однако, площадь пика, соответствующая тепловому эффекту, связанному с плавлением меди для различных соотношений медь-кубический нитрид бора, различна. Причём величина теплового эффекта не совпадает с величиной теплового эффекта, соответствующей количеству меди в смеси. Таким образом, при плавлении меди происходит дополнительный процесс, сопровождаемый тепловым эффектом, величина которого зависит от состава смеси.

Проведенный рентгенофазовый анализ смесей, выдержанных при температурах ниже точки плавления меди, показал отсутствие дополнительных рефлексов, что позволяет сделать вывод об отсутствии твёрдофазного взаимодействия между медью и кубическим нитридом бора. При рентгенофазовом исследовании смесей, выдержанных при температурах выше плавления меди, при концентрациях BNк до 70мас.%, наблюдался дополнительный к существующему рефлекс, соответствующий рефлексу гексагонального нитрида бора (I002), причём интенсивность уменьшалась при концентрациях BNк от 20 до 70 мас.%. Следов боридов и нитридов меди обнаружено не было.

Использование кремнезема в качестве наполнителя в матричном синтезе мембранных сорбентов обусловлено прежде всего его механической прочностью, а также возможностью варьировать, помимо текстуры и адсорбционных свойств материала, гидролитическую и термическую устойчивость, каталитическую активность и т.д. Улучшения трех последних из перечисленных свойств достигают среди прочих методов взаимодействием кремнезема с галогенидами различных элементов, включая галогениды Ge, V, Zr, Ti, Sn и т.д. С целью установления различий в формировании объемного геля кремнезема и гелевидного покрытия нами изучены текстурные и адсорбционные свойства монолитных аналогов кремнезема, модифицированных оксидом германия (IV).

В качестве источника кремния использовали стабильный разбавленный гидрозоль кремнезема (2,0 мас.% SiO2, рН 6,0), полученный нейтрализацией водного раствора щелочного силиката на катионите КУ-2, источника германия - хлорид германия (IV). Модифицирование кремнезема оксидом германия (IV) проводили при значении рН 5,0, добавляя при перемешивании концентрированный гидрат аммиака к смеси концентрированной серной кислоты, хлорида германия (IV) и силиказоля. Коагуляты отделяли, отмывали, высушивали и прокаливали в течение 4 ч на воздухе при 923 К.

Низкотемпературную физическую сорбцию азота изучали волюмометрическим методом на сорбционном анализаторе ASAP 2020 MP (Micromeritics, USA). Рентгенофазовый анализ образцов проводили на приборе ДРОН-7.

Согласно данным рентгенофазового анализа, несмотря на сходство кристаллических структур GeO2 и SiO2, оксиды не образуют непрерывных рядов твердых растворов, и их смеси после прокаливании при 923 К остаются рентгеноаморфными.

Рисунок 1 - Изотерма адсорбции-десорбции азота при 77К немодифицированным кремнеземом

Изотермы адсорбции азота для всех образцов относятся к типу IV изотерм физической сорбции и соответствуют мезопористым адсорбентам. Петля капиллярно-конденсационного гистерезиса на изотерме немодифицированного кремнезема имеет гибридную форму Н1+Н2 (рисунок 1), а на изотермах образцов SiO2 с инкорпорированным GeO2 форму Н2 (рисунок 3), по классификации ИЮПАК. Для исходного кремнезема не только форма петли существенно отличается, но и величина удельной поверхности, рассчитанная по БЭТ и по Ленгмюру и составляющая 516,6366 и 718,2123 м2/г соответственно, меньше аналогичных величин у модифицированных образцов на » 100-150 м2/г (таблица). Изотермы образцов с GeO2 характерны для высокопористых агрегатов с развитой сетью взаимно пересекающихся пор (рисунок 3). В отсутствие GeO2 кремнезем имеет более рыхлую текстуру по сравнению с образцами с инкорпорированным GeO2, что выражается в большей ширине пор и большем их объеме, отнесенным к единице массы адсорбента (таблица), а также в размытом распределении объема мезопор по их диаметрам (ср. рисунки 2,4).

Анализ кривых распределения на рисунках 2, 4 показал, что введение GeO2 в кремнезем способствует формированию более регулярной текстуры мезопор с четко определяемым преобладающим диаметром по сравнению с исходным кремнеземом. Его величина составляет 4,03, 4,23 и 4,14 нм для образцов 14, 17 и 18 соответственно. У исходного кремнезема на очень широком распределении мезопор по диаметрам определялись две моды: первая с координатами 4,57 нм и 0,078 см3/г×нм, вторая - 11,7 нм и 0,056 см3/г×нм (рисунок 2), - в соответствии с гистерезисом формы Н1 в области относительных давлений 0,42 <р/р0 < 0,90 и гистерезисом Н2 при р/р0 > 0,9.

Рисунок 2 - Кривая распределения объема пор кремнезема по диаметрам в отсутствие GeO2

Таблица - Текстурные и адсорбционные свойства образцов кремнезема с инкорпорированным оксидом германия (IV)

Номер образцаОтношение Si: Ge, моль/моль

Форма

гистерезиса

Удельная поверхность

Аs (БЭТ),

м2

Удельная поверхность

Аs (Ленгмюр),

м2

Объем пор

Vp (BJH),

см3

Средний диаметр пор

dp (BJH), нм

13 -Н1+Н2516,6366718,21230,9467868,6892
141: 0,006Н2607,5512843.71970,6104304,7071
171: 0,057Н2624,3038867.40740,5157164,1419
181: 0,151Н2605,8753838.35170,5449784,0409