Скачать

Оптические квантовые генераторы

Успехи, достигнутые при разработке и исследовании кванто­вых усилителей и генераторов в радиодиапазоне, послужили базой для реализации предложения об усилении и генерации света на ос­нове индуцированного излучения и привели к созданию квантовых генераторов оптического диапазона. Оптические квантовые гене­раторы (ОКГ) или лазеры являются единственными источниками мощ­ного монохроматического света. Принцип усиления света с помощью атомных систем был впервые предложен в 1940 г. В.А. Фабри­кантом. Однако обоснование возможности создания оптического квантового генератора было дано лишь в 1958 г. Ч. Таунсом и А. Шавловым на основе достижений разработок квантовых приборов в радиодиапазоне. Первый оптический квантовый генератор был ре­ализован в I960 г. Это был ОКГ с кристаллом рубина в качестве рабочего вещества. Создание инверсии населенностей в нем осу­ществлялось методом трехуровневой накачки, применявшимся обыч­но в парамагнитных квантовых усилителях.

В настоящее время разработано множество разнообразных оп­тических квантовых генераторов, отличающихся рабочими вещест­вами (в этом качестве используются кристаллы, стекла, пласт­массы, жидкости, газы, полупроводники) и способами создания ин­версии населенностей (оптическая накачка, разряд в газах, химические реакции и т.д.).

Излучение существующих оптических квантовых генераторов охватывает диапазон длин волн от ультрафиолетовой до дальней инфракрасной области спектра, примыкающей к миллиметровым вол­нам. Аналогично квантовому генератору в радиодиапазоне оптический квантовый генератор состоит из двух основных частей: рабочего (активного) вещества, в котором тем или иным способом

создается инверсия населенностей, и резонансной системы (рис .62). В качестве последней в ОКГ используются открытые резонаторы ти­па интерферометра Фабри - Перо, образуемые системой из двух зеркал, удаленных друг от друга.

Рабочее вещество осуще­ствляет усиление оптического излучения благодаря индуциро­ванному испусканию активных частиц. Резонансная система, вызывая многократное прохо­ждение возникающего оптиче­ского индуцированного излуче­ния через активную среду, об­условливает эффективное вза­имодействие поля с ней. Если рассматривать ОКГ как автоколеба­тельную систему, то резонатор обеспечивает положительную обрат­ную связь в результате возвращения части распространяющегося между зеркалами излучения в активную среду. Дяя возникновения колебаний мощность в ОКГ, получаемая от активной среды, должна быть равна мощности потерь в резонаторе иди превышать ее. Это эквивалентно тому, что интенсивность волны генерации после про­хождения через усиливающую среду, отражения от зеркал -/ и 2 , возвращения в исходное сечение должна оставаться неизменной или превышать первоначальное значение.

При прохождении через активную среду интенсивность волны 1^ изменяется по экспоненциальному закону (при пренебрежении насыщением) L, ° 1^ ежр ( (ос,^ - b())-c ) , а при отражении от зеркала она изменяется в г раз ( т - коэффициент . отражения зеркала), поэтому условие возникновения генерации можно запи­сать как


где L - длина рабочей активной среды; r1 и r2 - коэффициенты отражения зеркал 1 и 2 ; - коэффициент усиления активной среды; 0 - постоянная затухания, учитывающая потери энергии в рабочем веществе в результате рассеяния на неоднородностях и дефектах.


I. Резонаторы оптических квантовых генераторов

Резонансные системы ОКГ, как отмечалось, представляют со­бой открытые резонаторы. В настоящее время наиболее широко при­меняются открытые резонаторы с плоскими и сферическими зерка­лами. Характерная особенность открытых резонаторов - их геоме­трические размеры во много раз превышают длину волны. Подобно объемным открытые резонаторы обладают набором собственных ти­пов колебаний, характеризующихся определенным распределением поля в них и собственными частотами. Собственные типы колеба­ний открытого резонатора представляют собой решения уравнений поля, удовлетворяющие граничным условиям на зеркалах.

Существует несколько методов расчета объемных резонаторов, позволяющих находить собственные типы колебаний. Строгая и наи­более полная теория открытых резонаторов дана в работах Л.А.Вайв-штейна.* Наглядный метод расчета типов колебаний в открытых резонаторах развит в работе А.Фокса и Т.Ли.

(113)

В ней используется. численный расчет, моделирующий процесс установления типов ко­лебаний в резонаторе в результате многократного отражения от зеркал. Первоначально задается произвольное распределение поля на поверхности одного из зеркал. Затем, применяя принцип Гюй­генса, вычисляют распределение поля на поверхности другого зер­кала. Подученное распределение принимают за исходное и вычис­ление повторяется. После многократных отражений распределение амплитуды и фазы поля на поверхности зеркала стремится к ста­ционарному значению, т.е. поле на каждом зеркале самовоспроиз­водится в неизменном виде. Полученное распределение поля пред­ставляет собой нормальный тип колебаний открытого резонатора.

Расчет А.Фокса и Т.Ли базируется на следующей формуле Кирх­гофа, являющейся математическим выражением принципа Гюйгенса, которая позволяет находить поде в точке наблюдения А по задан­ному полю на некоторой поверхности Sb

где Eb - поле в точке B на поверхности Sb; k- волновое чи­сло ; R - расстояние между точками А и В ; Q - угол между ли­нией, соединяющей точки А и В , и нормалью к поверхности Sb

(рис.63).

С увеличением числа проходов поде на зеркалах стремится к стационарному распределению, которое можно представить так:

где V(x,у) - функция распределения, зависящая от координат на поверхности зеркал, не меняющаяся от отражения к отражению;

у - комплексная постоянная, не зависящая от пространственных координат.

Подставив формулу (112) в выражение (III). получим инте­гральное уравнение

Оно имеет решение лишь при определенных значениях (Гамма) =(гамма миним.) назы­ваемых собственными значениями, Функции Vmn, удовлетворяющие интегральному уравнению, характеризуют структуру поля различ­ных типов колебаний резонатора, которые называют поперечными колебаниями и обозначают как колебания типа ТЕМmn Символ ТЕM указывает на то, что водны внутри резонатора близки к попереч­ным электромагнитным, т.е. не имеющим составляющих поля вдоль направления распространения волны. Индексы m и n обозначают число изменений направления поля вдоль сторон зеркала (для пря­моугольных зеркал) или по углу и вдоль радиуса (для круглых зеркал). На рис.64 показана конфигурация электрического поля для простейших поперечных типов колебаний открытых резонаторов с круглыми зеркалами. Собственные типы колебаний открытых резо­наторов характеризуются не только поперечник распределением поля, но и распределением его вдоль оси резонаторов, которое представляет собой стоячую волну и отличается числом полуволн, укладывающихся по длине резонатора. Для учета этого в обозна­чения типов колебаний вводится третий ивдекс а , характеризую­щий число полуволн, укладывающихся вдоль оси резонатора.

Оптические квантовые генераторы на твердом теле

В оптических квантовых генераторах на твердом теле, или твердотельных ОКГ, в качестве активной усиливающей среды ис­пользуются кристаллы или аморфные диэлектрики. Рабочими части­цами, переходы меяду энергетическими состояниями которых опре­деляют генерацию, как правило, являются ионы атомов переходных групп Периодической таблицы Менделеева, Наиболее часто используются ионы Na3+, Cr3+, Но3+, Pr3+ . Активные частицы состав­ляют доли или единицы процента от общего числа атомов рабочей среды, так что они как бы образуют "раствор" слабой концентра­ции и потому мало взаимодействуют друг с другом. Используемые энергетические уровни представляют собой уровни рабочих частиц, расщепленные и уширенные сильными неоднородными внутренними полями твердого вещества. В качестве основы активной усиливаю­щей среды используются наиболее часто кристаллы корунда (Al2O3), иттриево-алюминиевого граната YAG (Y3Al5O12), разные марки стекол и т.д.

Инверсия населенностей в рабочем веществе твердотельных ОКГ создается методом, анало­гичным используемому в парамаг­нитных усилителях. Она осуще­ствляется с помощью оптической накачки, т.е. воздействием на вещество светового излучения вы­сокой интенсивности.

Как показывают исследова­ния, большинство существующих в настоящее время активных сред, используемых- в твердотельных ОКГ, удовлетворительно описыва­ются двумя основными идеализи­рованными энергетическими схе­мами: трех- и четырехуровневой (рис.71).

Рассмотрим вначале метод создания инверсии населенностей в средах, описываемых трехуровневой схемой (см.рис.71,а). В нормальном состоянии заселен лишь нижний основной уровень 1 (энер­гетическое расстояние между уровнями значительно больше kT), так как переходы 1—>2, и 1—>3) принадлежат оптическому диапа­зону. Переход между уровнями 2 и 1 является рабочим. Уровень 3 вспомогательный и используется для создания инверсии рабо­чей пары уровней. Он в действительности занимает широкую поло­су допустимых значений энергии, обусловленную взаимодействием рабочих частиц с внутрикристаллическими полями.

Для создания инверсии рабочее вещество облучают интенсив­ным светом с частотным спектром, соответствующим переходу меж­ду уровнями 1—>3. С уровня 3 атомы переходят на уровень 2, . Этот переход, как правило, является безизлучательным. Энергия при этом идет на нагревание рабочего тела. При достаточной ин­тенсивности накачки на уровне 2. удается получить больше ато­мов, чем их остается на основном уровне, т.е. возникает инвер­сия населенностей для рабочей пары уровней.

В активных средах, описываемых четырехуровневой схемой (см .рис. 71,б), переход 3-2 является рабочим, верхний уро­вень так же, как в трехуровневой схеме, представляет собой широкую полосу. Второй уровень находится от основного на энер­гетическом расстоянии, значительно большем kT. Поэтому при тер­модинамическом равновесии он практически не заселен. Большинство частиц, попавших на уровень 4 , затем переходит безизлучательным путем на уровень 3 , что при соответствующих условиях приводит к инверсии населенностей для пары уровней 3-2.

В четырехуровневой системе по сравнению с трехуровневой легче создать инверсию населенностей, так как нижний рабочий уровень не заселен. Для этого необходимо перевести незначитель­ное количество частиц с основного уровня на верхний рабочий. В трехуровневой системе для получения инверсии требуется пере­бросить на верхний рабочий уровень с основного по крайней мере половину частиц.

На рис.72, а приведена схема ОКГ на твердом теле. Она вклю­чает оптический резонатор, рабочее тело 1 , лампу накачки 2 с отражателем 3 , систему ее питания и зажигания разряда. Опти­ческий резонатор образован зеркалами r1 и r2. Обычно в них ис­пользуются многослойные интерференционные диэлектрические отражающие покрытия, в которых показатель преломления переменно меняется от слоя к слою. Слои наносят вакуумным напылением или химическим путем, они имеют толщину, равную четверти длины вол­ны в диэлектрике на рабочей частоте. С увеличением количества слоев коэффициент отражения возрастает. При n=15 и больше он превышает 99%.

Иногда в качестве отражающих покрытий используются сереб­ряные пленки, но они позволяют получать коэффициент отражения не выше 95-96% и в отличие от интерференционных диэлектрических покрытий имеют большое поглощение, а потому часто выгорают в процессе работы. Одно из зеркал резонатора делается полупрозрачным для вывода энергии. Коэффициент пропускания выход­ного зеркала выбирается так, чтобы вывести из ОКГ максимальную энергию. При малом коэффициенте пропускания будет выводиться лишь незначительная доля энергии из резонатора. В случае боль­шого пропускания ухудшаются условия возбуждения колебаний. При некотором пропускании выходного зеркала генерация срывается, так как не выполняются пороговые условия. Оптимальный коэффи­циент пропускания, при котором выводится максимальная энергия генерации, зависят от качества кристалла, его длины, энергии накачки. Оптимальное пропускание выходного зеркала для боль­шинства твердотельных ОКГ составляет 20-60%.

Рабочее тело выполняют в форме стержня с хорошо обрабо­танными торцевыми поверхностями, имеющими плоскопараллельную или сферическую форму. Точность отклонения обработки торцевых поверхностей от заданной формы лежит в пределах десятых долей длины волны. Параллельность плоских торцов выдерживается с точ­ностью до нескольких угловых минут.

Иногда вместо внешних зеркал используются отражающие по­крытия, нанесенные непосредственно на торцы рабочего тела. Бо­ковая поверхность рабочих стержней частично или полностью де­лается матовой, чтобы предотвратить возбуждение типов колеба­ний, распространяющихся с отражением от боковых поверхностей.

Инверсия населенностей в рабочем теле создается методом оптической накачки. Как отмечено выше, пороговая мощность на­качки имеет величину до сотен ватт на кубический сантиметр ра­бочего вещества ОКГ. Столь высокая плотность мощности накачки приводит к сильному нагреванию рабочих тел ОКГ. Это вызывает трудности, часто непреодолимые, в реализации непрерывно­го режима накачки твердотельных ОКГ. Поэтому ОКГ на твердом теле, как правило, работают в режиме одиночных или периодиче­ски повторяющихся импульсов. Источником накачки служат газо­разрядные лампы. Наиболее часто используются импульсные ксено-новые лампы, обладающие наилучшей эффективностью преобразова­ния электрической энергии в световое излучение, спектральный состав которого соответствует линиям поглощения используемых активных сред.

Лампы конструктивно выполняются в виде прямой или свитой в спираль трубки с введенными на концах электродами. Для ини­циации разряда в лампах предусматривается специальный внутрен­ний или внешний поджигающий электрод. Лампы и рабочий стержень размещают внутри отражателя, обеспечивающего эффективность пе­редачи световой энергии накачки в активную среду. При исполь­зовании спиральных ламп рабочее тело помещается внутри них, а отражатель, выполняемый в виде кругового цилиндра, охватывает лампу.

Более эффективны системы с прямыми лампами и отражателями в виде эллиптического цилиндра (рис.72, б), обеспечивающего фокусировку излучения ламп на рабочий образец. Для этого рабо­чее тело и лампы размещаются вдоль фокусных осей цилиндра.(Рис. 72,в иллюстрирует систему, в которой содержатся несколько ламп и одно рабочее тело.) Столь же эффективной оказывается более простая система, в которой лампа и активное тело находятся ря­дом внутри узкого отражателя с круглым или овальным сечением. Отражатель выполняется из серебряной или алюминиевой фольги. В конструкциях систем накачки очень часто предусматриваются ох­лаждение рабочего тела и ламп путем обдува их воздухом ахи об­текания хладоагентом.

Питание ламп осуществляется от батареи конденсаторов Со(см.рис.72,а ), заряжаемых часто от сети переменного напряже­ния через повышающий трансформатор Тр. и выпрямительный эле­мент Д. . Нормальное напряжение заряда конденсаторов должно быть меньше напряжения самопробоя импульсной лампы накачки. За­жигание разряда в лампе осуществляется подачей на поджигапщий электрод высоковольтного инициирующего импульса от управляющей схемы. На рис.72,а последняя состоит из конденсатора С , за­ряжаемого от сети через диод Д2, тиратрона с холодным катодом и импульсного трансформатора Тр1. При замыкании кнопки К ти­ратрон зажигается, конденсатор с разряжается через первичную обмотку трансформатора и на вторичной обмотке появляется высо­ковольтный импульс.

Рубиновые ОКГ

Были первыми практически осу­ществленными оптическими квантовыми генераторами. В настоящее время ОКГ на рубине - наиболее распространенные и широко ис­пользуемые в практике. Это объясняется следующими достоинства­ми рубиновых ОКГ: излучение происходит в удобном спектральном диапазоне (в видимой области), обеспечивается большая Энергия генерации, рубиновые кристаллы легко получить высокого качест­ва, они имеют высокую прочность и не требуют охлаждения Рубив представляет собой кристалл корунда Аl203,в котором часть ио­нов Al3+ замещена трехвалентными ионами хрома Сг3- Активными частицами, определяющими генерацию, являются ионы хрома. В ОКГ используют кристаллы розового рубина о массовой концентрацией Сr2О3 относительно Al2O3 , примерно равной 0,05 массы что составляет 1,6*1019 ионов хрома в I см3.

На рис.73 приведена система нижних энергетических уровней ионов хрома. Она существенно отличается от системы уровней сво­бодных ионов, что связано со взаимодействием ионов с сильными

полями кристаллической решетки. Обозначения уровней, приведен­ные на рис.73, заимствованы из теории групп, которая использу­ется при расчете, и не связаны непосредственно с принятыми обо­значениями уровней свободных ионов. Рабочим является переход 2Е->4А2. Состояние 2Е является метастабильным. При комнатной температуре его время жизни составляет около 3 мс. Уровень 2E в действительности состоит из двух подуровней Е и 2А , раз­деленных промежутком 29 см-1. Переходы с этих подуровней в основное состояние 4А2 соответствуют линиям излучения света R1 и R2 с длиной волны 694,3 и 692,9 нм при температуре 300°С.

Уровень 4F2 состоит из шести подуровней, которые из-за неоднородности кристаллического поля настолько уширены, что пе­рекрывают друг друга, превращая его в полосу. Уровень 4F1 так­же представляет собой полосу (см.рис.73).

Обычно генерация происходит на R1 -линии, для которой легче реализуются пороговые условия. Это связано с тем, что между ионами, находящимися на подуровнях Е и 2-4 , ответствен­ных за линии ^ и Rn , существует интенсивный обмен. В результате населен­ности подуровней Е и устанавливаются в соответствии с законом Больцмана и нижний подуровень имеет большую насе­ленность. Возникновение генерации на частоте R1 - линии пред­отвращает возбуждение генерации на R2-линии, так как интен­сивные релаксационные процессы вызывают переход ионов с 2A на Е и населенность уровня не может достигнуть порогового значения.

Рубиновые ОКГ работают, как правило, в режиме разовых и периодических импульсов. Имеются лишь отдельные разработки ге­нераторов непрерывного действия. Для рубиновых ОКГ характерна длительность импульсов порядка миллисекунд, частота следова­ния обычно не превышает сотни герц. Ее ограничивает нагревание кристалла и ламп накачки.

Важной характеристикой импульсного твердотельного ОКГ яв­ляется пороговая энергия накачки. Под ней понимают минималь­ную величину энергии питания ламп за одну вспышку, при кото­рой возникает генерация. Пороговая энергия накачки зависит от размеров кристалла, его температуры, типа используемой лампы, конструкции системы накачки, добротности резонатора и т.д.

Обычно пороговая энергия рубиновых ОКГ составляет десятки и coтни джоулей. С увеличением энергии накачки энергия ОКГ ограни­чивается возможностями системы накачки, размерами кристалла, его качеством, световой прочностью зеркал и другими факторами.

В ОКГ с кристаллом диаметром 2 см и длиной 30 см генери­руемая за импульс энергия достигает десятков джоулей. При дли­тельности импульса ~ I мс пиковая мощность генерации составля­ет десятки киловатт. В ОКГ о модулированной добротностью (бу­дут рассмотрены далее) импульсная мощность достигает десятков и более мегаватт. Коэффициент полезного действия, определяемый как отношение излучаемой энергии ОКГ к потребляемой им элек­трической энергии, для рубиновых ОКГ равен единицам процентов. Малый КПД связан во многом с низкой эффективностью системы на­качки. Используемые в настоящее время импульсные газоразрядные лампы накачки преобразуют в свет около 50% потребляемой элек­трической энергии. Примерно 30% световой энергии ламп, т.е. 15% электрической энергии, соответствует полосам поглощения рубина. Оптическая часть системы накачки обеспечивает передачу в рубин приблизительно 00% полезной энергии. Так что реально всего не­сколько процентов расходуемой электрической энергии идет непо­средственно на накачку рубина.

И

Излучение рубиновых ОКГ в зависимости от времени имеет сложный "пичковый" характер. В пределах каждого импульса накач­ки обычно оно представ­ляет собой хаотический набор разных по ампли­туде пичков, всплесков интенсивности генерации с длительностью и ин­тервалом между ними по­рядка микросекунд.

На рис.75 приведе­ны осциллограммы интен-сивностей накачки (а) и выходного излучения (б).

На характер этого режима влия­ют многие факторы, в частности конфигурация резонатора, рас­пределение интенсивности накачки по объему кристалла, его тем­пература, однородность и т.д. Так, эксперимент показывает, что хаотичность пульсации излучения значительно уменьшается вплоть до регулярного следования пичков при использовании в ОКГ от­крытых резонаторов, характеризующихся большим числом высоко-добротных типов колебаний (например, резонатора с одинаковыми сферическими зеркалами, расположенными на расстоянии, меньшем их удвоенного радиуса кривизны). Получению режима регулярных пульсации излучения способствует также однородное распределе­ние интенсивности накачки в рабочем кристалле и понижение его

температуры.


Важной характеристикой работы ОКГ является картина рас­пределения поля по площади сечения выходного пучка. Она опре­деляет диаграмму направленности выходного излучения. Минималь­ная ширина диаграммы направленности соответствует основному поперечному ТЕМ00q типу колебаний. В случае использования пло­ских круглых зеркал ширина диаграммы направленности по уровню половинной мощности для ТЕМ00q типа равна Т = 0,63 Л/d рад ( d - диаметр пятна на зеркале; Л - длина волны). При d = I см, Л = 0,6943 мкм Т = 4«10~4 рад, т.е. примерно 1,5'. Практи­чески ширина диаграммы излучения для рубиновых ОКГ превышает величину, вычисленную по этой формуле, раз в десять .Столь срав­нительно большая ширина диаграммы направленности связана с воз­буждением высших типов колебаний, оптическим несовершенством реальных рубиновых кристаллов (наличием в них центров рассея­ния и градиентов преломления по площади сечения образца). Рас­пределение поля по площади зеркала часто имеет весьма сложную мозаичную картину, которая в процессе генерации меняется от пичка к пичку.

Излучение рубиновых ОКГ обычно частично иди полностью по­ляризовано. Поляризация излучения определяется анизотропией рубиновых кристаллов, и ее характер зависит от угла ориентации оптической оси кристалла относительно геометрической оси стер­жня, вдоль которой распространяется свет в резонаторе. Обычно используются рубиновые стержни с ориентацией оси 60 или 90°. Излучение в ОКГ с такими стержнями имеет линейную поляризацию с электрическим вектором, перпендикулярным плоскости, в кото­рой лежат оптическая ось ж ось стержня. В ОКГ с кристаллом 0-градусной ориентации излучение неполяризовано.

Оптические к вантовые генераторы на стекле


Активированном неодимом, находят такое же широкое распространение, как рубиновые.Это обусловлено до­стоинствами стекла: простотой изготовления образцов больших размеров (до нескольких сантиметров в диаметре и длиной до ме­тра и более), высокой оптической однородностью, возможностью введения рабочих частиц в необходимых концентрациях с равно­мерным распределением по объему.

Недостатком стекла является низкая теплопроводность, что затрудняет создание генераторов большой средней мощности и ограничивает его работу режимом одиночных импульсов.


Средняя мощность в импульсе генерации достигает единиц мега­ватт. Коэффициент полезного действия таких генераторов состав­ляет доли процента, их выходное излучение, так же как и у ру­биновых ОКГ, носит пичковый характер. Ширина спектра излучения при больших уровнях накачки достигает 20 нм. Излучение ОКГ на неодимовом стекле неполяризовано. Это связано с хаотической ориентацией ионов неодима и оптической однородностью стекла.

Угловая расходимость выходного луча ОКГ на неодимовом стек­ле достигает обычно единиц угловых минут, что значительно мень­ше величины расходимости излучения рубиновых ОКГ. Это обуслов­лено более высокой оптической однородностью стекла.


Газовые оптические квантовые генераторы

В газовых ОКГ, как следует из названия, активной усиливающей средой является газ. Рабочими частицами, переходы между энергетическими состояниями которых определяют генерацию, слу­жат атомы, ионы или молекулы. В соответствии с этим говорят об атомных, молекулярных и ионных ОКГ.

В настоящее время предложено множество методов создания инверсии населенвостей в газовых средах, использувдих электри­ческий разряд, энергию химических реакций, оптическую накачку и т.д.

Наиболее часто инверсия в газовых ОКГ осуществляется в ре­зультате электрического разряда, создаваемого непосредственно в самой рабочей среде. Основными механизмами, приводящими к из­быточной населенности верхних энергетических уровней в газоразрядных ОКГ, являются следующие процессы:

I. Неупругие столкновения электронов с частицами газа (со­ударения первого рода), сопровождаемые передачей кинетической энергии движения электронов частицам, которые переходят в воз­бужденное состояние. Символически такой процесс обозначают

Соударения первого рода приводят не только к прямому возбужде­нию, но и определяют ступенчатое возбуждение частиц. При не-yupyl'их столкновениях электрона е с возбужденной частицей А* последняя переводится в более высокое энергетическое состоя­ние А**:

Процессы возбуждения частиц путем электронных неупругих соуда­рений первого рода играют основную роль во всех газоразрядных ОКГ.

2. Соударения второго рода между разнородными атомами сме­си двух газов. При соударении атомов, один из которых - А* -находятся в возбужденном состоянии, а другой - В - в основ­ном, происходит передача возбуждения от первого атома ко вто­рому. При этом первоначально возбужденный атом переходит в ос­новное состояние, а партнер по соударению - в возбужденное со­стояние :