Оборудование участка железной дороги перегонными устройствами автоматики и телемеханики
Непрерывный рост объема перевозок на железных дорогах сопровождается повышением скорости, веса и интенсивности движения поездов. В связи с этим особое значение приобретает комплексная автоматизация и механизация процессов перевозок, применение новых устройств автоматики, телемеханики и связи .
Мощным средством увеличения пропускной способности железнодорожной линии, повышения безопасности движения поездов является автоблокировка в комплексе с автоматической локомотивной сигнализацией и диспетчерским контролем автоблокировки позволяет организовать движение поездов попутного следования с малыми интервалами и значительно увеличить пропускную способность. За счет сокращения потерь времени при обгоне поездов на станциях при автоблокировке возрастает участковая скорость движения. Кроме того,
Автоблокировка повышает производительность труда эксплутационного штата работников, сокращает эксплутационные расходы и обеспечивает высокую безопасность движения поездов.
Значительная часть действующей аппаратуры АБ,ЭЦ,ДЦ отличается громоздкостью, ресурсоемкостью и трудоемкостью в эксплуатации. Поэтому принята концепция развития средств железнодорожной автоматики и телемеханики, которая позволяет не только оздоровить техническую базу хозяйства, но и поднять ее на новый качественный уровень, обеспечивающий безопасность движения поездов при улучшении экономических показателей отрасли в целом. Программы обновления предлагают следующее:
1. Создание на базе средств железнодорожной автоматики необходимой инфраструктуры для обеспечения централизации управления перевозочным процессом;
2. Переход на новую элементную базу, обеспечивающую качественное изменение показателей хозяйства в сторону снижения материало-, энерго- и трудоемкости;
3. Повсеместное внедрение средств контроля и диагностики для перехода на прогрессивные ремонтно-восстановительные методы обслуживания аппаратуры;
4. Приведение технической оснащенности каждой линии в соответствие с ее категорийностью и требуемыми объемами перевозок.
Особое внимание уделяется сроку службы электромагнитных реле. В настоящее время проводится работа по продлению ресурса этих приборов в зависимости от числа срабатываний, стабильности электрических параметров, магнитных свойств сердечника.
Кроме этого, срок действия систем продлевается благодаря замене части релейного оборудования (кодовых реле) с низким ресурсом электронными устройствами
4. Выбор и характеристика систем электропитания АБ и переездной сигнализации
Устройства АБ и переездной сигнализации по надежности обеспечения электроэнергией относятся к электроприемникам 1 категории и должны запитываться от двух независимых источников.
По условиям курсового проекта электроснабжение АБ на участке с электротягой переменного тока осуществляется от тяговых подстанций. Таким образом, можно сказать, что электроснабжение данного участка дороги относится к надежному. Основным источником питания служит ВВЛ АБ-10кВ. При надежном электроснабжении, характерном для электрифицированных участков ж.д., проектируется безбатарейная система питания. На этих участках в качестве резервного источника используется, как правило, линия продольного электроснабжения. При электротяге переменного тока такими линиями являются системы ДПР (два провода-рельс) 27кВ. Провода этих линий прокладываются на опорах контактной сети и поэтому ВВЛ АБ сооружаются одно-цепными.
В качестве линейных трансформаторов применяются понижающие трансформаторы типа ОМ. Рельсовые цепи, двигатель кодового трансмиттера, лампы светофора и дешифраторная ячейка питаются переменным током.
От перегрузок и коротких замыканий приборы защищаются автоматическими выключателями АВМ и плавкими предохранителями на 20 А. Приборы рельсовой цепи защищаются от воздействий коротких замыканий в контактной сети и грозовых разрядов установкой разрядников типа РВН-250, РКВН-250 на питающем и релейном концах. Земляные клеммы разрядников соединяют с корпусом шкафа, а последний – со средней точкой дроссель трансформатора.
Резервное питание устройств автоблокировки.
При электротяге переменного тока применяется система ДПР. Такая линия является надежным источником резервного питания устройств автоблокировки при прекращении подачи энергии от высоковольтно-сигнальной линии. Питание к этой линии поступает от тяговых подстанций.
Нормально устройства автоблокировки питаются через фронтовые контакты аварийного реле от основного линейного трансформатора, включенного в высоковольтную линию. При перерыве подачи напряжения в эту линию устройства автоблокировки питаются от резервного трансформатора.
Электропитание переездной сигнализации.
Устройства переездной сигнализации питаются по схеме питания автоблокировки, но независимо от числа питающих фидеров применяются местные элементы питания (аккумуляторные батареи) для повышения надежности. Такой режим питания относится к участкам, оборудованным автоблокировкой или диспетчерской централизацией.
Фидер основного питания подается от трансформатора типа ОМ, подключенного к высоковольтной линии автоблокировки, в релейный шкаф переездной сигнализации ПС. Резервное питание подается в тот же шкаф от системы ДПР. Электропитание переездных сигналов дополнено аккумуляторной батареей, размещенной в бетонном шкафу.
5. Выбор системы автоблокировки и АЛСН
По заданию курсового проекта путевое развитие перегона – двухпутное. На перегоне будем применять двухпутную, двухстороннюю автоблокировку, т.к. возможен капитальный ремонт одного из путей.
На данном участке преобладающее движение грузового транспорта, а следовательно скорость движения несколько ниже, чем при движении пассажирского транспорта. Поэтому на участке применяем трехзначная сигнализация.
По способу организации связи между светофорами – применяем беспроводную (кодовою) связь.
Так как, на участке электрическая тяга переменного тока то рельсовые цепи на перегоне питаются переменным током частотой 25 Гц.
Итак, применяем двухпутную, двухсторонюю автоблокировку переменного тока (25 Гц) с числовым кодом. Данный выбор объясняется тем, что такая система автоблокировки позволяет работать при электротяге переменного тока, при двухпутном движении и посылать коды в рельсовую цепь на частоте сигнального тока 25 Гц, что не окажет сильного влияния на сигнальный ток со стороны обратного тягового тока.
Кодовые сигналы вырабатываются кодовыми трансмиттерами типа КПТШ и передаются в цепь контактами трансмиттерного реле воспринимаются путевыми приемниками и приемными катушками локомотива.
Для организации движения поездов в неправильном направлении на перегоне во время работ с закрытием одного из путей перегона в схеме двухпутной кодовой автоблокировки с двусторонним движением имеется реле направления Н, которое, при переходе на неправильное направление движения включает реле ПН, которое своими контактами отключает цепи разрешающих огней светофоров и цепи кодирования кодами Ж и З для правильного направления движения и замыкает цепь кодирования всех блок-участков кодом КЖ в сторону правильного направления движения. При приеме и дешифрации кодов КЖ на каждой сигнальной установке возбуждаются реле Ж, Ж1 и Ж2, чем контролируется свободность всех блок-участков.
Цепи кодирования для неправильного направления движения включаются фронтовым контактом реле ПН. Полное замыкание этих цепей происходит с момента вступления поезда на блок-участок и замыкания фронтового контакта реле ОИ. Это реле включено по схеме обратного повторителя через тыловые контакты реле И и Ж1. Выбор значности кодов происходит с помощью известительного реле ИП и его повторителя ИП1. Движение поездов по неправильному направлению осуществляется по показаниям локомотивных светофоров.
6. Выбор автоматических ограждающих устройств на переезде
Так как переезд по условиям курсового проекта является неохраняемым, то заградительная сигнализация не устанавливается.
При техническом ремонте на одном из путей в неправильном направлении используется принцип движения, как и при полуавтоматической блокировке. Более подробно это показано в описании схем перегонных и переездных сигнальных установок.
Так как по заданию переезд является третьей категории (пересечение с автомобильными дорогами, не подходящими под характеристики переездов I и II категорий, если интенсивность движения по переезду при удовлетворительной видимости превышает 10000 поездо-экипажей в сутки, а при неудовлетворительной (плохой) – 1000 поездо-экипажей в сутки), то он оборудуется системами автоматической переездной светофорной сигнализации без автоматического шлагбаума.
7. Путевой план перегона
Путевой план перегона является основным документом проекта автоматической блокировки. Он разрабатывается на основе выбранной системы автоблокировки и представляет собой немасштабный чертеж (см. рис 1.)
На путевом плане перегона указанны пути в двухниточном изображении. Применяем перегонные светофоры (линзовые) и тут же указываем их номера и ординаты установки (согласно исходным данным);
Показываем переезд с его ординатами и указанием мест подачи сигналов извещения о приближении к ним поездов
Рельсовые цепи с указанием их длины, типа кодового путевого трансмиттера (КПТШ-515 или КПТШ-715), мест размещения изолирующих стыков, обозначением релейных (Р) и питающих (Т) концов, расстановкой путевых дроссель-трансформаторов (ДТ) .
Так же указываем :релейные шкафы с указанием типа сигнальной установки;
высоковольтные линии автоблокировки и ЛЭП резервного электроснабжения с учетом сторонности их расположения, указанием мест и типов линейных трансформаторов; сигнальные провода магистрального кабеля связи; кабельная сеть сигнальных установок с указанием длины и жильности кабеля; кабельные ящики с указанием их типов.
В проекте участка используются следующие типы сигнальных установок:
- ОМ – одиночная предвходная сигнальная установка с дополнительным сигнальным показанием – желтым мигающим огнем, устанавливается на сигнальных точках 1 и 2, которые являются предвходными светофорами;
- ОП1 – одиночная сигнальная установка перед переездом со схемой извещения к нему за один участок приближения, устанавливается на сигнальной точке 3;
- ОП2 – одиночная сигнальная установка перед переездом, извещение на который подается за два участка приближения, устанавливается на сигнальной точке 6 .
- О - одиночная сигнальная установка, устанавливается на сигнальной точке 4, 5 .
В связи с тем, что на современном этапе проектирования применяется магистральный кабель, то прокладка линии связи осуществляется магистральным кабелем.
8. Путевой план переезда
На чертеже путевого плана переезда (см. рис. 1.)по заданию курсового проекта показано:
1. Железнодорожные пути в двухниточном изображении с указанием ширины междупутья;
2. Переезд, его ордината и ширина проезжей части;
3. Релейные шкафы с указанием типа переездной установки и схемы шкафа;
4. Изолирующие стыки и путевые приборы рельсовой цепи;
5. Переездные светофоры с указанием их удаления от крайнего рельса;
6. Высоковольтные линии основного и резервного электроснабжения с указанием типов устанавливаемых силовых трансформаторов;
7. Батарейные шкафы с установленными в них аккумуляторами;
8. Сигнально-линейные цепи, организуемые по магистральному кабелю связи, с указанием назначения поводов, необходимых их резервов или отпаев для ввода в релейный шкаф переезда;
9. Кабельная сеть переезда, включая длину и жильность кабелей, тип кабельных ящиков.
По исходным данным и расчетам, приведенным в п.9., следуют сведения, необходимые для построения путевого плана переезда.
Скорости движения поездов при приближении к переезду:
- в четном направлении 110 км/ч;
- в нечетном направлении 110 км/ч.
Длина участка приближения:
- в четном направлении 1391 м;
- в нечетном направлении 1391 м.
Время задержки на закрытие переезда:
- в четном направлении 0,45с;
- в нечетном направлении 6,78с.
Переезд оборудуется автоматической светофорной сигнализацией без автоматического шлагбаума, и извещение в нечетном направлении движения осуществляется за один участок приближения, а в четном – за два.
Т.к. переезд расположен между проходными светофорами с извещением о приближении поезда за один и за два участка приближения, то устанавливается шкаф типа ПС. А так как на переезде применяется автоматическая светофорная заградительная сигнализация, то второй шкаф имеет тип 2С.
Расчет числа аккумуляторов в батарейном шкафу
Так как питание с батарейного шкафа подается на два переездных светофора, будем производить расчеты следующим образом.
При новом строительстве на переездных светофорах применяется по две лампы красного огня, итого – четыре лампы включенных параллельно к источнику 12В. Т.к. один аккумулятор выдает напряжение 2,2 В, то необходимо для резервного питания переездной сигнализации 6 аккумуляторов.
9. Расчет длин участков приближения и времени задержки закрытия переезда
Расчетная длина участка приближения к переезду и задержка времени определяются следующим образом.
Расчетная длина участка приближения к переезду , м, определяется по формуле:
, (1)
где: - максимальная скорость движения поездов на участке местонахождения переезда, км/ч;
- время извещения о приближении поезда к переезду, с.
При автоматической светофорной сигнализации с автошлагбаумами, время извещения должно быть не менее 40 с и рассчитывается по следующей формуле:
, (2)
где: - время прохода автомобиля через переезд, с;
- время срабатывания приборов извещения и включения переездной сигнализации (составляет 4 с);
- гарантийное время (принимается равным 10 с).
Время, необходимое для проследования автомашины через переезд, определяется по формуле:
, (3)
где: – длина переезда м;
- расчетная длина автомашины (автопоезда), м (принимается равной 24 м);
- расстояние от места остановки автомашины до светофора, при котором обеспечивается видимость показания светофора (равно 5 м);
- расчетная скорость движения автомобиля через переезд (в соответствии с правилами дорожного движения составляет 5 км/ч).
Длина переезда , м, на двухпутном участке составляет:
, (4)
где: – расстояние от крайнего рельса до наиболее удаленного переездного светофора, м;
- ширина рельсовой колеи, м (по ПТЭ составляет 1520 мм);
- ширина междупутья (4.1 м)
- габарит от крайнего рельса, необходимый для безопасной остановки автомашины после проследования переезда, м (составляет 2,5 м).
Длина переезда в нашем случае равна:
ln =6,5+ 1,52+4,1+2,5=14,62м.
Время необходимое для проследования автомашины через переезд равно:
Vм=5 км/ч = 1,4 м/с
=(14,62+24+5)/1,4=31,16 с.
Время извещения равно:
=31,16+4+10=45,16 с.
Расчетная длина участка приближения к переезду в четном и нечетном направлениях = равна:
=0,28*110*45,16=1391 м.
Фактическая длина участка приближения к переезду в нечетном направлении равна 1600 м.
Для компенсации излишней длины участка приближения предусматривается задержка закрытия переезда. Время задержки определяется разностью фактического и расчетного времени извещения:
. (5)
В нечетном направлении время задержки равно
tзн=(1600-1391)/0,28*80= 6,78с.
Фактическая длина участка приближения к переезду в четном направлении равна 1405 м (извещение за два блок-участка от Вх Н).
В нечетном направлении время задержки равно
tзч=(1405-1391)/0,28*110=0,45 с.
10. Электрические схемы перегонных сигнальных установок
На участках с электротягой на постоянном и переменном токе нельзя применять импульсные рельсовые цепи постоянного тока, так как в рельсовой цепи, кроме сигнального тока, будет протекать тяговый ток, который может создавать мешающие и опасные влияния на аппаратуру рельсовой цепи. Для защиты от мешающих влияний тягового тока необходимо, чтобы вид сигнального тока отличался от вида тягового тока. В устройствах автоблокировки для участков с электротягой на переменном токе применяют рельсовые цепи частотой 25 Гц. Чтобы исключить влияние тягового тока, путевые реле включают через защитные фильтры, которые пропускают сигнальный ток и подавляют тяговый ток и его гармоники.
Кроме мешающих влияний, нужно учитывать и опасные влияния тягового тока. Так, например, при повреждении фильтра путевое реле может возбудиться от тягового тока при занятой рельсовой цепи, чем создается опасная ситуация. Чтобы исключить опасные влияния тягового тока, следует применять рельсовые цепи не с непрерывным, а с импульсным питанием. Если путевое реле работает в импульсном режиме, то это означает, что тяговый ток не оказывает опасное влияние; если оно получает непрерывное питание, то это является признаком опасного влияния тягового тока.
На участках с электротягой переменного и постоянного тока используют автоблокировку в комплексе с автоматической локомотивной сигнализацией АЛС. При применении устройств АЛС необходимо передавать сигнальные показания путевых светофоров на локомотив. Наиболее удобно и экономично это сделать, если рельсовую цепь использовать не только для контроля состояния блок-участка, но и как канал связи для устройств автоблокировки и АЛС. По этому каналу можно передавать различные сигнальные приказы для работы автоблокировки без применения линейных проводов. Наиболее просто, оказалось, использовать рельсовые цепи не с импульсным, а с кодовым питанием. Для кодирования был выбран числовой код, основным признаком которого является число импульсов, передаваемых в кодовом цикле.
С использованием этого кода была разработана и широко применена комплексная система числовой кодовой автоблокировки и АЛСН. Числовая кодовая автоблокировка построена с использованием числовых кодовых сигналов 3, Ж и КЖ.
На каждой сигнальной установке применены дешифраторы типа ДА, блоки которых показаны в раскрытом виде и увязаны с кодирующими цепями (рис. 2). В эти цепи включены трансмиттеры КПТШ-5 и КПТШ-7 и трансмиттерные реле Т. На выходах блока БС-ДА дешифратора включены сигнальные реле Ж и 3, управляющие огнями светофора и формирующие цепи кодирования. Показано также включение сигнального реле Ж1, которое является повторителем реле Ж и счетчика 1. С помощью реле Ж1 ускоряется включение кодов АЛС в рельсовую цепь с момента занятия ее поездом.
Трансмиттерное реле Т включено в цепи кодирования так, что при посылке кода 3 оно работает непосредственно через контакт 3 (КПТШ), а при посылке кодов Ж и КЖ оно включается через контакт Ж или КЖ (КПТШ) и контакт реле ПТ блока БИ-ДА как повторитель этого реле.
Рельсовые цепи автоблокировки получают питание переменным током частотой 25 или 50 Гц в зависимости от рода тяги на участке. При автономной тяге и электротяге на постоянном токе применяют рельсовые цепи 50 Гц, при электротяге переменного тока — 25 Гц. На приведенной схеме показаны рельсовые цепи 25 Гц. Питание рельсовой цепи 25 Гц осуществляется от преобразователя частоты ПЧ через изолирующий путевой трансформатор П (ПРТ-А).
Защита контакта реле Т от искрообразования выполнена с помощью контура R-C. Импульсное путевое реле И (ИМВШ-110) включено в рельсовую цепь через изолирующий трансформатор Р (ПРТ-Д) и путевой фильтр Ф (ПФ-25).
Работа цепей автоблокировки применительно к сигнальным установкам 3 и 5 при движении поезда по участку протекает следующим образом. В случае нахождения поезда на блок-участке ЗП у светофора 3 прекращается прием кода из рельсовой цепи, не работают реле И и дешифратор. Выключаются сигнальные реле Ж и 3, через тыловой контакт реле Ж последовательно с огневым реле О включается лампа красного огня и на светофоре 3 загорается красный огонь. Образуется цепь кодирования кодом КЖ рельсовой цепи 5П:
При замыкании контакта КЖ (КПТ) в первый момент срабатывает реле ПТ и, замыкая фронтовой контакт, включает реле Т. Через фронтовой контакт реле Т
в рельсовую цепь 5П подается код КЖ, у которого длительность импульса составляет 0,23 с, а длинного интервала — 0,57 с.
У сигнальной установки светофора 5 от каждого импульса кода КЖ срабатывает реле И и, замыкая фронтовой контакт, включает цепи блока дешифратора:
По цепи 1 включается питание реле-счетчика 1, который имеет замедление на притяжение равное 0,15 с. На время этого замедления по цепи 2 проходит заряд конденсатора С1. До момента срабатывания реле Ж цепь 2 проходит через тыловые контакты реле Ж и ПТ, а после срабатывания реле Ж — через фронтовой контакт Ж и тыловой контакт реле Т смежной рельсовой цепи.
Путем последовательного соединения фронтового контакта реле И и тылового контакта реле Т в цепях 1 и 2 проверяется асинхронное прохождение импульсов тока в смежных рельсовых цепях, что необходимо для контроля отсутствия короткого замыкания изолирующих стыков. По цепи 3 срабатывает реле В с контролем отсутствия импульса тока в смежной рельсовой цепи, что проверяется тыловым контактом реле ПТ, и присутствия импульса тока в собственной рельсовой цепи; что проверяется фронтовым контактом реле И. По окончании замедления счетчик 1 притягивает якорь и самоблокируется. Своим тыловым контактом он размыкает цепь 2 заряда конденсатора С1, а фронтовым контактом замыкает цепь 4, по которой конденсатор С1 разряжается на обмотку реле Ж и конденсатор С2. Реле Ж, притягивая якорь, фронтовым контактом включает лампу желтого огня и на светофоре 5 загорается желтый огонь. Вторым фронтовым контактом реле Ж последовательно с лампой красного огня включается высокоомная обмотка огневого реле О, которое контролирует целость нити лампы красного огня в холодном состоянии.
С момента прекращения импульса кода КЖ в длинном интервале (0,57 с) реле И отпускает якорь и выключает счетчик 1 и реле В. Выдержав замедление 0,3 с, эти реле отпускают свои якоря. Реле Ж продолжает получать питание за счет разряда конденсатора С2 и удерживает якорь притянутым.
При поступлении следующих импульсов кода КЖ работа цепей дешифратора повторяется. Происходит срабатывание счетчика 1 и периодический подзаряд конденсаторов С1 и С2. Реле Ж за счет разряда конденсаторов С1 и С2 получает непрерывное питание и на все время приема кода КЖ удерживает якорь притянутым. На светофоре 5 продолжает гореть желтый огонь.
Емкость конденсатора С2 подобрана так, чтобы обеспечить у реле Ж по возможности минимальное замедление на отпускание, достаточное для удержания якоря в длинном интервале и не создающее большой задержки на закрытие светофора с момента занятия рельсовой цепи поездом. Время замедления на отпускание реле Ж при номинальных значениях емкостей С1 и С2 и напряжения питания составляет 1,8—2,2 с.
В схеме предусмотрен перенос красного огня на позади стоящий светофор в случае перегорания лампы красного огня. Если на светофоре 3 перегорает лампа красного огня, то фронтовым контактом реле О размыкается цепь кодирования КЖ, в которую включено реле Т. Реле Т перестает работать, кодирование рельсовой цепи 5П прекращается и на светофоре 5 загорается красный огонь. Перегорание ламп разрешающих огней в приведенной схеме не контролируется.
При горении на светофоре 5 желтого огня замыкается цепь кодирования кодом Ж рельсовой цепи 7П:
Реле Т, работая в режиме кода Ж и переключая свой контакт в цепи трансформатора П, передает два импульса в каждом кодовом цикле в рельсовую цепь 7П. Длительность импульсов кода равна 0,35 и 0,6 с, длинного интервала — 0,79 с, короткого интервала — 0,12 с.
В случае свободности блок-участка ЗП и при поступлении из рельсовой цепи ЗП кода Ж на сигнальной установке светофора 3 в режиме этого кода работает реле И и замыкает следующие цепи дешифратора:
По цепи 1 с замедлением на притяжение 0,15 с срабатывает счетчик 1; по цепи 2 проходит заряд емкости С1; в цепи 2 тыловым контактом реле Т проверяется асинхронное прохождение импульсов тока в смежной рельсовой цепи П; по цепи 3 срабатывает реле В с контролем отсутствия импульсов тока в смежной рельсовой цепи 5П, что проверяется тыловым контактом реле ПТ, и контролируется поступление кодового импульса из собственной рельсовой цепи ЗП фронтовым контактом реле И. Притягивая якорь, реле-счетчик 1 самоблокируется, отключает. цепь 2 и включает цепь 4, по которой конденсатор С1 разряжается на реле Ж и заряжает конденсатор С2.
В малом кодовом интервале реле И отпускает якорь, реле-счетчик 1 и реле В, обладая большим замедлением, чем время интервала (0,12 с), удерживают якори притянутыми. Создается цепь 5 для возбуждения интервального реле-счетчика 1А ( цепь а).
До момента включения на светофоре 3 зеленого огня цепь 5 проходит через тыловой контакт реле 3. После возбуждения этого реле цепь 5 проходит через тыловой контакт реле И собственной рельсовой цепи и фронтовой контакт реле Т смежной рельсовой цепи. Путем такого включения контактов проверяется наличие кодового импульса в смежной рельсовой цепи при отсутствии кодового импульса в собственной рельсовой цепи, т. е. асинхронное прохождение кодовых импульсов в смежных рельсовых цепях, что необходимо для контроля короткого замыкания изолирующих стыков.
От второго импульса кода Ж притягивает якорь реле И и замыкает цепь 6 для возбуждения реле 3 и заряда конденсатора СЗ ( цепь б).
При возбужденном состоянии реле Ж и 3 через их фронтовые контакты на светофоре 3 включается зеленый огонь. По окончании приема двух импульсов кода Ж в длинном интервале кодового цикла с замедлением 0,3 с отпускают якоря реле-счетчик 1 и реле В. Реле В выключает реле-счетчик 1А, который с замедлением 0,25 с также отпускает якорь по окончании длинного интервала. При включенных реле-счетчиках 1 и 1А реле Ж получает питание от конденсатора С1, а после выключения этих счетчиков — от конденсатора С2.
Реле 3 возбуждается только при поступлении кода, имеющего не менее двух импульсов в кодовом цикле, что проверяется возбуждением двух реле-счетчиков 1 и 1А. Срабатыванием реле-счетчика 1 фиксируется поступление первого импульса в кодовом цикле, а срабатыванием реле-счетчиках 1А — короткого интервала между импульсами. Вторичным срабатыванием реле И при возбужденных счетчиках 1 и 1А фиксируется поступление второго импульса в кодовом цикле.
При приеме кода с одним импульсом в кодовом цикле (код КЖ) цепь срабатывания реле 3 не замыкается, так как при поступлении первого импульса срабатывает реле-счетчик 1, в длинном интервале срабатывает реле-счетчик 1А, реле И вторично не срабатывает и цепь реле 3 остается разомкнутой фронтовым контактом реле И. В длинном интервале реле-счетчики 1 и 1А отпускают свои якори, поэтому к моменту срабатывания реле И от кодового импульса следующего кодового цикла цепь реле 3 продолжает оставаться разомкнутой.
На все время приема кода Ж у светофора 3 реле 3 возбуждено по цепи, проходящей через фронтовые контакты реле-счетчиков 1 , 1А и реле И, или при выключенных счетчиках за счет разряда конденсатора СЗ. Таким образом, на все время поступления кодовых импульсов кода Ж реле Ж и 3 находятся в возбужденном состоянии и на светофоре 3 горит зеленый огонь.
На время горения на светофоре 3 зеленого огня замыкается цепь кодирования кодом 3 рельсовой цепи 5П:
Реле Т работает в режиме кода 3 и посылает этот код в рельсовую цепь 5П. Код 3 состоит из трех кодовых импульсов в кодовом цикле (0,35 с — первый импульс, 0,22 с — второй, 0,22 с — третий). Кодовые импульсы разделены двумя короткими интервалами длительностью 0,12 с каждый; длинный интервал между циклами составляет 0,57 с.
При приеме кода 3 из рельсовой цепи 5П в сигнальной установке светофора 5 в режиме кода 3 работает реле И и своим контактом включает дешифратор.
Дешифратор ДА построен таким образом, что не различает коды Ж и 3, поэтому при приеме кода 3 дешифратор работает так же, как и при приеме кода Ж. От первого импульса кода 3 по кратковременной цепи заряжается конденсатор С1, затем срабатывают реле-счетчик 1 и реле В, С этого момента конденсатор С1 начинает разряжаться на реле Ж и конденсатор С2, В первом коротком интервале возбуждается реле-счетчик 1А. От второго импульса кода возбуждается реле 3 и заряжается конденсатор СЗ. Во втором коротком интервале реле-счетчики не изменяют свое состояние. В третьем импульсе" повторяется заряд конденсатора СЗ и подается питание на реле 3 непосредственно от источника питания. Таким образом, при трехзначной сигнализации код 3 равноценен коду Ж. Через фронтовые контакты реле 3 и Ж на светофоре 5 включается лампа зеленого огня. Одновременно вклчается цепь кодирования рельсовой цепи 7П кодом 3.
Работа автоблокировки при установленном правильной направлении движения.
Состояние цепей, приведенных на схеме(Рис 3), соответствует одностороннему движению поездов в правильном направлении и нахождению поезда на участке ЗП. На сигнальной установке 3 прекратилось поступление кодов, не работает реле И и дешифратор.
Выключаются реле 3, Ж, Ж1, Ж2 и ЖЗ. Через тыловой контакт реле Ж2 образуется цепь включения лампы красного огня на светофоре 3 по основной нити накала с контролем горения лампы огневым реле О. При выключенном
реле Ж2 цепь тока накала красной лампы проходит через нижнюю низкоомную обмотку реле О, что обеспечивает горение лампы. Цепь тока дополнительной нити накаливания лампы проходит через верхнюю высокоомную обмотку реле ОД, чем контролируется целость нити лампы в холодном состоянии.
После включения красного огня на светофоре 3 образуется цепь кодирования кодом КЖ рельсовой цепи 5П:
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Обслуживание вылетающих пассажиров в агентстве и аэропорту
Министерство транспорта Российской ФедерацииСанкт-Петербургский государственный университет гражданской авиацииКонтрольная работа
- Обслуживание локомотивов
Транспорт — одно из необходимых общих условий производства. Осуществляя перевозки внутри предприятий, между предприятиями, районами с
- Общая характеристика предприятия "Альянс-Моторс". Техническая эксплуатация автомобилей
Содержание1. Общая характеристика предприятия «Альянс-Моторс»2. Производственная и организационная структура управления предприятием3
- Общая характеристика технологических процессов работы судов, портов
Реферат на тему:Общая характеристика технологических процессов работы судов, портовПонятие и классификация технологических процессов
- Общее устройство коробки передач автомобиля
Автомобилю приходится двигаться со скоростями от очень маленькой до сотни-другой километров в час – а потому диапазон, в котором изменя
- Определение неисправностей тормозной системы автомобиля с помощью стенда диагностики тормозной системы
Дипломная работаНа тему: Определение неисправностей тормозной системы автомобиля с помощью стенда диагностики тормозной системы.Огла
- Определение основных параметров и компоновка оборудования автономного локомотива
I. Выбор основных параметров силовой установки и вспомогательного оборудования локомотива1.1 Выбор основных параметров силовой установ
Copyright © https://referat-web.com/. All Rights Reserved