Об энтропийной оценке сверхпластичности
Я. И. Рудаев, Е. Н. Шестаева
Кыргызско-Российский Славянский Университет, Бишкек
Рассматривается задача соответствия модели сверхпластичности процессу деформации с размытым фазовым переходом. Показано, что в оптимальных термодинамических режимах сверхпластичности минимизируется производство энтропии, которому соответствует формирование равноосной ультрамелкозернистой структуры.
Эффект сверхпластичности металлов и сплавов внешне проявляется в форме аномального квазиоднородного удлинения при малых значениях напряжений пластического течения. Металловедческими исследованиями установлено (1,2), что специфика подобной аномалии заключается в превалировании механизма зернограничного проскальзывания над другими формами массопереноса. Реализации указанного механизма способствует формирование ультрамелкозернистой структуры на предварительном этапе (структурная или микрозеренная сверхпластичность) или в процессе нагрева и деформации (динамическая сверхпластичность). Очевидно, что динамическая сверхпластичность имеет место в промышленных металлических материалах, которые реагируют на изменение температурных и кинематических условий в виде различной природы структурных превращений (3). В частности, промышленные алюминиевые сплавы в исходном литом и деформированном состояниях проявляют сверхпластические свойства в термомеханических режимах структурного фазового перехода – динамической рекристаллизации (3 … 8). В процессе последней в материале возникает равновесная структура с очень мелким зерном, примерно совпадающим по размерам с субзернами. Так создается структурная ситуация, способствующая осуществлению зернограничного проскальзывания. Наличие ультрамелкого зерна можно считать необходимым, но недостаточным условием развития эффекта. К микрозернистости следует добавить требование равноосности и несклонности к росту зерна при нагреве и деформации (2). Важным структурным элементом считаются также границы зерен (9).
Отмеченный факт был использован при формулировке модели (10, 11), адекватно с позиций механики деформируемого твердого тела отражающей накопленные экспериментальные данные. Модель описывает поведение алюминиевых сплавов не только при сверхпластичности, но и в пограничных областях термопластичности и высокотемпературной ползучести.
Естественно оценить модель (10, 11), с точки зрения определения представляющих реальный интерес физических величин и получения дополнительной информации. Очевидно, что динамической сверхпластичности соответствует размытый фазовый переход (12) и поэтому целесообразно проследить за поведением функций отклика, которые сравнительно легко определяются при известном аналитическом выражении плотности термодинамического потенциала. К указанным функциям можно, прежде всего, отнести энтропию.
Исследование функции энтропии позволяет рассматривать процесс деформации с позиций самоорганизации диссипативных структур возрастающей сложности в неравновесных открытых системах (13).
При формулировке модели энергетическая функция состояния была принята в форме термодинамического потенциала Ландау с учетом внешнего поля
. (1)
Здесь; - параметр порядка; - напряжение пластического течения; - скорость деформации; - управляющий параметр; - нормированная температура; - постоянная материала; причем, - внутренние альтернативные параметры состояния; - абсолютная температура; - нижняя и верхняя границы термического диапазона сверхпластичности.
Легко видеть аналогию функции (1) с явным выражением потенциала катастрофы сборки (14). Очевидно теперь, что если, то изменений структурного характера в деформируемом материале не происходит. Условие соответствует структурно неустойчивому состоянию среды. Значение отвечает переходным состояниям.
На параметр порядка накладываются следующие ограничения
на область структурных превращений
; (2)
на диапазон развития сверхпластичности
. (3)
Кинетическое уравнение для управляющего параметра имеет вид
, (4)
где - скорость возрастания нормированной температуры, - функция чувствительности среды к структурным превращениям, определяемая следующим образом
, (5)
причем - степень полноты развития фазового перехода, равная
; (6)
- постоянные материала.
Для внутренних параметров состояния получены эволюционные уравнения
, (7)
, (8)
где - постоянная материала;, - начальное значение нормированной температуры.
Уравнение состояния в соответствие (1) записывается так
. (9)
При анализе возможностей модели воспользуемся принятым в необратимой термодинамике принципом локального равновесия. В рамках этого принципа образец деформируемого материала будем, следуя (15), рассматривать как сложную систему, в каждом элементе которой имеют место известные процессы – диффузионный массоперенос, движение дислокаций и зернограничное скольжение. При сверхпластичности добавляется и становится преимущественным смена соседей зерен (1,2,4) с последующими аккомодационными процессами. Возникновение сверхпластичности не происходит во всем объеме однородно деформируемого образца одновременно. Поэтому естественно предположить, что наступлению сверхпластичности предшествует метастабильное состояние, в режимах которого формируется становление механизма зернограничного проскальзывания. Зарождение указанного механизма происходит в диссипативной среде (15) и поэтому в качестве эффективного инструмента осмысление на макроуровне эффекта сверхпластичности могут быть приняты положения нелинейной неравновесной термодинамики. Заметим, что в процессе неравновесных фазовых переходов формирование новых структур не накладывается извне. Следовательно, неравновесные открытые системы могут анализироваться как термодинамически самосогласованные структуры, в которых локализован квазиравновесный термодинамический процесс. Кинетика таких структур рассматривается как переход через ряд термодинамически равновесных состояний, а зависимость системы от времени описывается через внутренние параметры состояния.
Модель (1) … (9), при формулировке которой использованы отмеченные положения нелинейной неравновесной термодинамики, апробирована на группе промышленных алюминиевых сплавов в исходном литом и деформированном состояниях, причем сопоставление теории и эксперимента приведено в (11).
В соответствие сказанному будем считать сверхпластичность особым состоянием деформируемого материала в иерархии состояний в меняющихся термических и кинематических условиях. Иными словами, полагаем, что имеет место процесс последовательных переходов диссипативных структур. Самоорганизация таких структур связана со стремлением открытых систем в условиях, далеких от термодинамического равновесия, к минимуму энтропии.
Функция энтропии при известной свободной энергии F определяется так
. (10)
Если учесть, что плотность термодинамического потенциала и свободная энергия связаны зависимостью (k-постоянная Больцмана), для энтропии с использованием соотношений (1)…(9) можем записать
, (11)
где
. (12)
Можно показать, что в середине скоростного диапазона сверхпластичности энтропия обращается в нуль. При этом, как очевидно из анализа (11), функция энтропии имеет минимум при выполнении условия
. (13)
В середине термического диапазона сверхпластичности и. Поскольку, то значению параметра порядка соответствует наименьшее значение функции энтропии не только по скоростям деформации, но и по температурам.
Полученные данные подтверждаются формированием в оптимальных термических и кинематических режимах упорядоченной равновесной ультрамелкозернистой структуры (4).
Самоорганизация, вообще говоря, может быть вызвана различными способами (16). Но в конкретных случаях одновременного нагрева и статического нагружения можно считать, что реализуется медленное изменение воздействия окружающей среды, при котором открытая диссипативная система переходит в новое состояние. Этот способ относится к самоорганизации через изменение управляющих параметров (16). Взаимодействие элементов открытой системы неизбежно переносится на макро эффекты, порождаемые структурными изменениями называемые синергетическими.
Идея связать сверхпластичность с синергетикой интуитивно высказана в (17). Подход к объяснению сверхпластичности с позиций синергетики, принятый в (18), не выходит за рамки только констатации факта формирования диссипативной структуры. Но не только в (18), но и в подавляющем большинстве оригинальных исследований сверхпластичность рассматривается отдельно, вне связи с предшествующими состояниями. Определенную негативную роль при этом играет оценка сверхпластичности по величине физически необоснованного коэффициента скоростной чувствительности, а также недостаток систематических экспериментальных данных механических исследований. Иными словами, история наступления и окончания эффекта оказывается забытой.
Полученные данные позволяют в принципе количественно оценить соответствие исследуемого явления самоорганизации диссипативных структур – синергетике.
Кайбышев О.А. Сверхпластичность промышленных сплавов. - М.: Металлургия, 1984. – 264с.
Новиков И. И., Портной В. К. Сверхпластичность сплавов с ультрамелким зерном. – М.: Металллургия,1981. – 264с.
Гуляев А. И. Сверхпластичность стали. – М.: Металллургия,1982. – 56с.
Вайнблат Ю.М., Шаршагин Н.А. Динамическая рекристаллизация алюминиевых сплавов // Цветные металлы. – 1984.- №2. – с.67-70.
Потапова Л. Л. Оценка сверхпластичности сплавов // Технология легких сплавов. – 1982. - №9. – с. 60-61.
Сверхпластичность некоторых алюминиевых сплавов / Ю.С.Золотаревский, В.А.Паняев, Я.И.Рудаев и др. // Судостроительная промышленность, серия материаловедение. – 1990. – вып.16. – с.21-26.
Температурно-скоростная деформация литого алюминиевого сплава 1561 / Н. В. Жданов, В. А. Паняев, Я. И. Рудаев, Д. И. Чашников // Судостроительная промышленность, серия материаловедение – 1990. Вып. 15. – с.45-49.
Паняев В. А., Рудаев Я. И., Чашников Д. И. О сверхпластичности алюминиевых сплавов 1980 и В95 // Вопросы материаловедения. – 1996. – вып.1. – с.34-38.
Кайбышев О. А., Валиев Р. З. Границы зерен и свойства металлов. – М.: Металлургия, 1987. – 214с.
Рудаев Я.И., Чашников Д.И. К вопросу о математическом моделировании сверхпластического одноосного растяжения // Судостроительная промышленность, серия материаловедение. – 1989. – вып.12. – с.41-48.
Зотов В.В., Рудаев Я.И. О динамической сверхпластичности // Конверсионный потенциал Кыргызстана и проекты МНТЦ. ч.II. – Бишкек, 1999.-с.186-195.
Ролов Б.Н., Юркевич В.Э. Физика размытых фазовых переходов. – Ростов: РГУ, 1983. – 320с.
Гленсдорф П., Пригожин И. Термодинамическая теория структуры, устойчивости, флуктуаций. – М.: Мир, 1973. – 280 с.
Гилмор Р. Прикладная теория катастроф. ч.I. – М.: Мир, 1984. – 285с.
Николис Г., Пригожин И. Познание сложного. Введение. – М.: Мир, 1990. - 344с.
Хакен Г. Синергетика: иерархия неустойчивостей в самоорганизующихся системах и устройствах. – М.: Мир, 1985. – 423с.
Громов В. Г. О макроскопическом описании явления сверхпластичности // IV Всесоюзная конф. “Сверхпластичность” (Уфа, сентябрь,1989). Тез. Докл., ч. I. – Уфа: Б.Н., 1989. – с.20.
Механические свойства металлов и сплавов с позиций синергетики / В. С. Иванова, Г. В. Вставский // Итоги науки и техники, материаловедение и термическая обработка. – М.Ж ВИНИТИ, 1990. – т. 24. С.43-98.
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Определение размерности Хаусдорфа фракталов с циклически повторяющимися структурами
С.С. КубринИнститут “Гипроуглеавтоматизация”, КемеровоКлассически, в литературе описание фракталов начинается с примера триадной кри
- Фрактальная теория пространственно-временных размерностей
Ф.Н.Рянский Нижневартовский государственный педагогический университетФрактальная теория пространственно-временных размерностей: ес
- Принцип Дирихле
При решении многих задач используется логический метод рассуждения — "от противного". В данной брошюре рассмотрена одна из его форм — п
- Настоящая теория чисел
Работа, представленная вниманию читателя, за годы своих блужданий, вызвала немало разногласных откликов. Кто-то говорил, что это "детски
- Векторы
Упорядоченную совокупность ( x1, x2, ... , xn ) n вещественных чисел называют n-мерным вектором, а числа xi ( i = ) - компонентами, или координатами, в
- Геометрический материал на уроках математики
Наглядная геометрия: ее роль и место, история возникновения. Необходимость и возможность введения в начальный школе пропедевтического (
- Изучение функций в курсе математики VII-VIII классов
Данная курсовая работа посвящена изучению функций в курсе математики VII-VIII классов. В ней даётся исторический экскурс определения понят