О нелинейной динамике
Успехи механики в XVII-XIX веках были столь впечатляющими, что стало казаться возможным представить себе всю Вселенную как гигантскую динамическую систему. Эту позицию четко сформулировал Лаплас: «Состояние системы природы в настоящем есть, очевидно, следствие того, каким оно было в предыдущий момент, и, если мы представим себе разум, который в данное мгновение постиг все связи между объектами Вселенной, то он сможет установить соответствующие положения, движения и общие воздействия этик объектов в любое время в прошлом или будущем» (1776 г.).Эта доктрина, получившая название лапласовского детерминизма, выразила в концентрированном виде идеал научного познания, каким он виделся в те времена. Понадобился длительный путь развития науки и научного мировоззрения (термодинамика и статистическая физика, квантовая механика), чтобы убедиться в несостоятельности такого представления о мире. И все же лапласовский детерминизм совсем недавно казался незыблемым для простых моделей типа осциллятора.
Конец XX века привнес ощущение научной революции, сравнимой с возникновением собственно научного метода в эпоху Галилея. В центре внимания исследователей вновь оказались самые фундаментальные свойства окружающего мира: эволюция систем во времени и геометрия природы. Однако характер интереса к этим понятиям изменился. Картина мира стала переосмысляться, наполняясь новыми образами (катастрофы, бифуркации, хаос, фракталы). Весьма характерны в этом смысле слова нобелевского лауреата И.Пригожина: "Если в физике и химии где-то и существует простота, то заведомо не в микроскопических моделях. Она скорее кроется в идеализированных макроскопических представлениях, например, о простых движениях типа гармонического осциллятора". Модели в виде осцилляторов, различных одномерных отображений и др. оказались во многом центральными объектами интенсивно развивающихся синтетических научных дисциплин, к которым относятся теория колебаний, теория бифуркаций, теория динамических систем, теория динамического хаоса и др.
В 1963 г. американский метеоролог Э. Лоренц опубликовал статью "Детерминированное непериодическое течение", в которой обсуждались результаты численного исследования достаточной простой системы дифференциальных уравнений, моделирующих динамику жидкости при конвекциив подогреваемом снизу слое. Лоренц подверг полученные результаты тщательному и глубокому обсуждению, акцентируя внимание на связь между сложным поведением системы и присущей ей неустойчивости. Позднее это свойство пропагандировалось им как "эффект бабочки" (butterfly effect): в приложении к метеорологии взмах крыльев бабочки может через достаточно время повлечь существенное изменение погоды.Таким образом оказывается невозможно предсказать поведение даже простой системы.
К настоящему времени соответствующие представления развиты настолько глубоко, что можно говоритьо теории динамического хаоса – науке о "непредсказуемого" поведения простых динамических систем.
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Солнечное и лунное затмение
Затмения Солнца относятся к таким явлениям природы, о дне наступления которых заранее известно. Астрономы всегда тщательно готовятся к
- Интегральное исчисление. Исторический очерк
Понятие интеграл непосредственно связано с интегральным исчислением – разделом математики, занимающимся изучением интегралов, их сво
- Галактики: цепочки и пустоты
Галактики: цепочкиипустотыМногие, а может быть, и почти все галактики собраны в различные коллективы, которые называются группами, скоп
- Мнимые числа
“Помимо и даже против воли того или другого математика, мнимые числа снова и снова появляются на выкладках, и лишь постепенно по мере то
- Решение систем дифференциальных уравнений методом Рунге - Кутты 4 порядка
Обыкновенные дифференциальные уравнения (ОДУ) широко используются для математического моделирования процессов и явлений в различных о
- Золотое сечение в природе и искусстве
Автор: Седлинский Игорь НиколаевичГимназия № 1 г. Апатиты, Мурманская обл.Четвертая региональная научная и инженерная выставка «Будуще
- Решение систем линейных алгебраических уравнений
Решение систем линейных алгебраических уравнений – одна из основных задач вычислительной линейной алгебры. Хотя задача решения систем