Скачать

Неорганические теплоизоляционные материалы

Министерство общего и профессионального образования

Российской Федерации


Кафедра Автомобильных дорог


РЕФЕРАТ

На тему:

“Минеральные теплоизоляционные материалы”

Выполнил: студент группы

Проверил: преподаватель


Содержание

Минеральная вата и изделия из неё

Стеклянная вата и изделия из нее

Пеностекло

Теплоизоляционные материалы из вспученных горных пород и изделия на их основе

Асбестосодержащие теплоизоляционные материалы и изделия


Неорганические теплоизоляционные материалы и изделия изготовляют на основе минерального сырья (горных пород, шлака, стекла, асбеста). К этой группе относят: минеральную, стеклянную вату и изделия из них, некоторые виды легких бетонов на пористых заполнителях (вспученном перлите и вермикулите), ячеистые теп­лоизоляционные бетоны, пеностекло, асбестовые и асбестосодержащие материалы, керамические и др. Эти материалы малогигроскопичные, огнестойки, не подвергаются загниванию. Их используют как для утепления строительных конструкций, так и для изоляции горячих поверхностей промышленного оборудования и трубопро­водов.

1. Минеральная вата и изделия из нее по объему производства занимает первое место среди всех теплоизоляционных материалов. Этому способствует наличие неограниченных сырьевых ресурсов для их получения в виде горных пород (доломита, известняка, мергелей и др.) и шлаков, простота технологического процесса и небольшие капиталовложения при организации производства.

Минеральная вата состоит из искусственных минеральных воло­кон.

Производство минеральной ваты включает две основные техно­логические операции — получение расплава и превращение его в тончайшие волокна. Для получения расплава применяют, как правило, шахтные плавильные печи — вагранки или ванные печи. Превращение расплава в минеральное волокно производят дутьевым или центробежным способами.

При дутьевом способе выходящий из печи расплав разбивается на мелкие капельки струей пара или воздуха, которые вдуваются в специальную камеру и в полете сильно вытягиваются, превра­щаясь в тонкие волокна диаметром от 2 до 20 мкм.

При центробежном способе струя жидкого расплава поступает на быстровращающийся диск центрифуги и под действием большой окружной скорости сбрасывается с него и вытягивается в волокна. Объемная масса минеральной ваты — 75—150 кг/м3, теплопровод­ность 0,042—0,046 Вт/ (м • К). Вата не горит, не гниет, ее не портят грызуны, она малогигроскопична, морозостойка и температуростойка. Минеральную вату применяют для теплоизоляции как хо­лодных (до —200 °С), так и горячих (до +600 °С) поверхностей, чаще в виде изделий: войлока, матов, полужестких и жестких плит, скорлуп, сегментов. Иногда вату используют в качестве теплоизо­ляционной засыпки пустотелых стен и перекрытий, для чего ее гра­нулируют, т. е. превращают в рыхлые комочки во вращающемся дырчатом барабане.

Минеральный войлок выпускают в виде листов и рулонов из ми­неральной ваты, слегка пропитанной дисперсиями синтетических смол и спрессованной (рис. 1, а). Объемная масса войлока — 100—150 кг/м3, теплопроводность — 0,046—0,052 Вт/ (м- К). Листы и полотнища минерального войлока длиной 100—300 см, шириной 275_125 см, толщиной 3—6 см применяют для утепления стен перекрытий в кирпичных, бетонных и деревянных домах.

Минераловатные маты представляют собой минераловатный ковер, заключенный между битуминизированной бумагой, стекло­тканью или металлической сеткой, прошитый прочными нитями или тонкой проволокой (рис. 1, г). Длина матов— от 60—120 но 500 см, ширина — от 30—100 до 150 см, толщина — от 3 до 10 см. Объемная масса матов— 100—200 кг/м3, теплопроводность — от 0,046 до 0,058 Вт/(м-К).

Маты применяют для теплоизоляции ограждающих конструкций жилых и общественных зданий, их используют также для утепления свежеуложенных бетонов и растворов при строительстве в холодное время года.

Минераловатные полужесткие плиты (рис. 1 б) изготов­ляют из минерального волокна путем нанесения на него распылением связующего (синтетических смол или битума) с последующим прес­сованием и термообработкой для сушки или полимеризации. Объем­ная масса плит в зависимости от вида связующего и уплотнения — 75—300 кг/м3, теплопроводность — 0,046—0,069 Вт/(м-К).

Полужесткие изделия применяют для теплоизоляции огражда­ющих конструкций зданий и горячих поверхностей оборудования при температуре до 200—300 °С, если изделия изготовлены на син­тетическом связующем, и до 60 °С— на бутумном связующем.

Минераловатные жесткие изделия получают смешиванием ми­неральной ваты с битумной эмульсией или синтетическими смолами с последующим формованием, прессованием и прогреванием отфор­мованных изделий для их сушки или полимеризации. Минераловат­ные жесткие плиты изготовляют длиной 1 м, шириной 0,5 и толщиной 4, 5, 6 см. Жесткие плиты делят на марки от 150 до 400 кг/м3. Теп­лопроводность плит находится в пределах 0,051—0,087 Вт/ (м-К).

Минераловатные жесткие плиты применяют для утепления стен, покрытий и перекрытий жилых и промышленных зданий и. холо­дильников. Жесткие плиты и фасонные изделия — сегменты, скор­лупы (рис. 1, б) на синтетическом и бентонитоколлоидном свя­зующих применяют для теплоизоляции горячих поверхностей.

Промышленность выпускает также Минераловатные плиты по­вышенной жесткости и твердые плиты на синтетических связующих, которые характеризуются более высокой прочностью и большими размерами, чем обычные жесткие плиты. Такие плиты размером 180x120 см, а при определенных параметрах уплотнения до 360 X 120 см экономически целесообразно применять для утепления стен, перекрытий и покрытий зданий. Например, 1 м2 покрытия с использованием твердых минераловатных плит (рис. 2) в 5—7 раз легче и на 25—40 % дешевле по сравнению с железобетонным покрытием, утепленным пенобетоном (рис. 3).

2. Стеклянная вата и изделия из нее.

Стеклянная вата является разновидностью искусственного минерального волокна. Для изго­товления ваты используют стеклянный бой или те же сырьевые материалы, что и для оконного стекла: кварцевый песок, известняк или мел, соду или сульфат натрия. Тонкое стеклянное волокно для текстильных материалов получают вытягиванием из расплав­ленной стекломассы (фильерный и штабиковый способы). Более грубое волокно, применяемое для тепловой изоляции, изготовляют дутьевым или центробежным способами. Такое волокно обычно называют стеклянной ватой.

Объемная масса стеклянной ваты обычно не превышает 125 кг/м3, i теплопроводность — 0,052 Вт/ (м-К). Промышленность выпускает также супертонкое стекловолокно с объемной массой до 25 кг/м3 и теплопроводностью около 0,03 Вт/(м-К).

Стеклянная вата практически не дает усадки в конструкциях, волокна ее не разрушаются при длительных сотрясениях и вибрации. Она плохо проводит и хорошо поглощает звук, малогигроскопична, морозостойка. Слой стеклянной ваты толщиной 5 см соответствует по термическому сопротивлению кирпичной стене толщиной в 1 м.

Стекловатные маты длиной до 300 см, шириной до 100 см и толщиной 2—6 см и полужесткие и жесткие плиты размером 100 X (50—150) X (3—5 см), а также фасонные изделия на свя­зующих из синтетических смол применяют в качестве теплоизоля­ционного и акустического материала при температуре не выше 200 оС, а прошивные маты и полосы — при температуре до 450 °С.

3. Пеностекло (ячеистое стекло) выпускают в виде блоков или плит размером 50 X 40 X (8—14) см путем спекания порошка стеколь­ного боя или некоторых горных пород вулканического происхожде­ния (трахиты, сиениты, нефелины, обсидианы и др.) с газообразователями, например с известняком или антрацитом. При температуре 800—900 °С частицы стекольного боя начинают сплавляться, а вы­деляющиеся из газообразователя газы образуют большое количество пор (пористость от 80 до 95 %). При этом в стекловидном материале межпоровых стенок содержатся мельчайшие микропоры. Двоякий характер пористости обеспечивает высокую теплоизоляционную способность пеностекла.

Теплопроводность у плит из пеностекла при объемной массе 150—300 кг/м3 колеблется от 0,053 до 0,12 Вт/(м-К), а предел прочности при сжатии от 2,0 до 6,0 МПа, при этом они хорошо обрабатываются' (пилятся, сверлятся, шлифуются). Изделия из пеностекла обладают высокой водостойкостью, морозостойкостью и температуростойкостью. Для стекол обычного состава температуростойкость равна 300—400 °С, для бесщелочного стекла — до 1000 оС.

Пеностекло применяют как утеплитель стен, перекрытий, полов и кровель промышленных и гражданских зданий, в том числе железобетонных панелей в сборных крупнопанельных домах, в конструкциях холодильников, а также для изоляции тепловых установок и сетей.

4. Теплоизоляционные материалы из вспученных горных пород и изделия на их основе. Некоторые горные породы, содержащие в своем составе связанную воду, при нагреве теряют ее. Вода превращается в пар, вспучивает предварительно дробленую породу, в результате Чего образуются пористые зерна (вспученный перлит) или че­шуйки (вспученный вермикулит).

Вспученный вермикулит представляет собой сыпучий пористый материал в виде чешуйчатых частиц золотистого цвета, получаемых ускоренным обжигом до вспучивания вермикулита — гидрослюды, содержащей между элементарными слоями связанную воду. Пар, образующийся из этой воды, действует перпендикулярно плоскостям спайности и раздвигает пластинки слюды, увеличивая первоначаль­ный объем зерен в 15—20 раз и более. Объемная масса вспученного вермикулита при крупности зерен от 5 до 15 мм составляет 80— 150 кг/м3, при более мелких зернах она увеличивается до 400 кг/м3. Теплопроводность при температуре до 100 °С составляет 0,048-0,10 Вт/ (м-К), а с увеличением температур до 400 °С повышается до 0,14—0,18 Вт/(м-К).

Вспученный перлит получают путем измельчения и обжига перлита, обсидиана и других вулканических горных пород стекло­видного строения, содержащих небольшое количество гидратной воды (3—5 %). При быстром нагреве до температуры 900—1200 оС вода переходит в пар и вспучивает размягченную породу; она распа­дается на отдельные шарообразные зерна с увеличением в объеме в 5—10 раз и более (пористость зерен 80—90 %). Объемная насыпная масса перлитового песка колеблется от 100 до 250 кг/м3, щебня до 500 кг/м3. Теплопроводность при 25 °С находится в пределах 0,046—0,071 Вт/(м-К).

Вспученные вермикулит и перлит используют в виде теплоизо­ляционных засыпок при температуре изолируемых поверхностей соответственно до 1100 и 800 °С. На их основе в смеси с вяжущим веществом получают растворные и бетонные смеси, из которых формуют теплоизоляционные изделия (плиты, скорлупы, сегменты, кирпич) или выполняют теплоизоляционные, звукопоглощающие и декоративные штукатурки, а на основе перлитового песка и щебня также конструктивно-теплоизоляционные конструкции. Например, цементный бетон на вспученном перлите при объемной массе 900— 1000 кг/м3 имеет прочность при сжатии до 10 МПа, а теплопро­водность — около 0,26 Вт/ (м • К).

Безобжиговые перлитовые и вермикулитовые теплоизоляционные изделия изготовляют на портландцементе, жидком стекле, синте­тических смолах, битуме, различных клеях. Обжиговые изделия получают на связке из огнеупорной глины, диатомита. Свойства изделий зависят от вида вяжущего. Объемная масса колеблется от 200 до 500 кг/м3, а теплопроводность при 25 °С от 0,06 до 0,1 Вт/(м • К). Изделия на битумной связке применяют при температуре эксплуа­тации до 60 °С, на цементном связующем и жидком стекле — до 600 оС, а на керамической связке — до 900—1200 °С.

5. Асбестосодержащие теплоизоляционные материалы и изделия разделяют на асбестовые, состоящие только из асбестового волокна (асбестовая бумага, картон и изделия из них), и асбестосодержащие, изготовляемые из смеси асбестовых волокон с неорганическими вяжущими веществами (магнезиальные вяжущие, известь, цемент) или с трепелом (диатомитом). Порошкообразные смеси этих материа­лов перед применением затворяют водой и полученную пластическую массу наносят на изолируемую поверхность. В заводских условиях из таких же масс формуют изделия — плиты, сегменты и скорлупы.

Асбестовую бумагу изготовляют в виде листов и рулонов из асбес­тового волокна 5—6-го сортов с небольшим количеством (до 5 %) склеивающих веществ (крахмал, казеин). Толщина бумаги —

0,3—1,5 мм, объемная масса — 450—950 кг/м3, а теплопроводность при 100 °С— от 0,14 до 0,198 Вт/ (м-К); предельная температура применения 500 °С. Кроме гладкой выпускают гофрированную бумагу. Гладкую бумагу используют в качестве теплоизоляционной прокладки при изоляции трубопроводов, а гофрированную — для изготовления одной из разновидностей асбестового картона (ячеис­тый асбестовый картон).

Асбестовый картон изготовляют из асбеста 4—5-го сорта с на­полнителем (каолин) и склеивающим веществом (крахмал) в виде листов толщиной от 2 до 10 мм. Объемная масса листов — 900— 1000 кг/м3, теплопроводность при 100 °С — 0,182 Вт/ (м-К). Асбес­товый картон применяют для изоляции трубопроводов (до 500 °С), а также для покрытий деревянных конструкций и дверей, чтобы повысить их огнестойкость.

Асбестовый картон ячеистого строения изготовляют путем склеи­вания жидким стеклом или клеем чередующихся слоев гладкой и гофрированной асбестовой бумаги. Благодаря пористому строению такой картон легок и мало теплопроводен (теплопроводность при 50°С и объемной массе 200—600 кг/м3 составляет 0,052—0,093 Вт/(м-К). В виде плит его применяют для теплоизоляции плоских поверхнос­тей, в виде цилиндрических и полуцилиндрических покрышек — для изоляции трубопроводов.

Асбестодиатомовые (асбестотрепельные) теплоизоляционные ма­териалы представляют собой порошки, состоящие из смеси ас­беста (15 %) и молотого трепела или диатомита (асбозурит), иногда с добавками других веществ — слюдяных чешуек, отходов асбестоцементных заводов (асбослюда, асботермит). Порошки затворяют водой и в виде тестообразной массы наносят на изолируемую по­верхность. Объемная масса изделий из асбозурита в сухом состоя­нии — 500—800 кг/м3, а теплопроводность при 100 °С — от 0,093 до 0,21 Вт/(м-К); температуростойкость — до 600 °С.

Из асбестоизвестковотрепельных теплоизоляционных изделий наибольшее применение нашли вулканитовые изделия. Их изго­товляют из смеси диатомита (60 %), асбеста (20 %), извести (20 %) и воды. Изделия в виде плоских или лекальных плит небольших размеров после формования пропаривают в автоклаве, где проис­ходит образование гидросиликатов кальция, обеспечивающих проч­ность вулканита.

Объемная масса вулканитовых плит — до 400 кг/м3, теплопровод­ность при 50 СС —не выше 0,091 Вт/(м-К), предел прочности при изгибе — не менее 0,3 МПа, максимальная температура примене­ния — 600 °С.

Асбестомагнезиальные и асбестодоломитовые теплоизоляцион­ные материалы и изделия изготовляют из смесей асбеста 5—6-го сорта с легкой водной углекислой солью магния (ньювель) или ас­беста с водной углекислой солью магния и углекислого кальция (совелит), получаемых соответственно при переработке магнезита и доломита. Ньювель и совелит в виде порошков используют для засыпной или мастичной теплоизоляции, а также для изготовления плит, скорлуп и сегментов. Совелит дешевле и не менее эффективен, чем ньювель.

Объемная масса совелитовых изделий — не более 400 .кг/м8, теплопроводность при 100 °С— не выше 0,093 Вт/ (м-К), предель­ная температура применения — 500 °С.