Некоторые уравнения математической физики в частных производных
Глава 1. Уравнения гиперболического типа
1.1 Задачи, приводящие к уравнениям гиперболического типа
1.2 Уравнение колебаний струны
1.3 Метод разделения переменных. Уравнение свободных колебаний струны
1.4 Решение уравнений
Глава 2. Уравнения параболического типа
2.1 Уравнение распространения тепла в стержне
2.2 Решение задач
Заключение
Литература
Введение
Изучением дифференциальных уравнений в частных производных занимается математическая физика. Основы теории этих уравнений впервые были изложены в знаменитом "Интегральном исчислении" Л. Эйлера.
Классические уравнения математической физики являются линейными. Особенность линейных уравнений состоит в том, что если U и V – два решения, то функция aU + bV при любых постоянных a и b снова является решением. Это обстоятельство позволяет построить общее решение линейного дифференциального уравнения из фиксированного набора его элементарных решений и упрощает теорию этих уравнений.
Современная общая теория дифференциальных уравнений занимается главным образом линейными уравнениями и специальными классами нелинейных уравнений. Основным методом решения нелинейных дифференциальных уравнений в частных производных выступает численное интегрирование.
Круг вопросов математической физики тесно связан с изучением различных физических процессов. Сюда относятся явления, изучаемые в гидродинамике, теории упругости, электродинамике и т.д. Возникающие при этом математические задачи содержат много общих элементов и составляют предмет математической физики.
Постановка задач математической физики, будучи тесно связанной с изучением физических проблем, имеет свои специфические черты. Так, например, начальная и конечная стадии процесса носят качественно различный характер и требуют применения различных математических методов.
Круг вопросов, относящихся к математической физике, чрезвычайно широк. В данной работе рассматриваются задачи математической физики, приводящие к уравнениям с частными производными.
Расположение материала соответствует основным типам уравнений. Изучение каждого типа уравнений начинается с простейших физических задач, приводящих к уравнениям рассматриваемого типа.
Глава 1. Уравнения гиперболического типа
1.1 Задачи, приводящие к уравнениям гиперболического типа
Уравнения с частными производными 2-го порядка гиперболического типа наиболее часто встречаются в физических задачах, связанных с процессами колебаний. Простейшее уравнение гиперболического типа
называется волновым уравнением. К исследованию этого уравнения приводит рассмотрение процессов поперечных колебаний струны, продольных колебаний стержня, электрических колебаний в проводе, крутильных колебаний вала, колебаний газа и т.д.
1.2 Уравнение колебаний струны
В математической физике под струной понимают гибкую, упругую нить. Напряжения, возникающие в струне в любой момент времени, направлены по касательной к ее профилю. Пусть струна длины в начальный момент направлена по отрезку оси Оx от 0 до . Предположим, что концы струны закреплены в точках . Если струну отклонить от ее первоначального положения, а потом предоставить самой себе или, не отклоняя струны, придать в начальный момент ее точкам некоторую скорость, или отклонить струну и придать ее точкам некоторую скорость, то точки струны будут совершать движения – говорят, что струна начнет колебаться. Задача заключается в определении формы струны в любой момент времени и определении закона движения каждой точки струны в зависимости от времени.
Будем рассматривать малые отклонения точек струны от начального положения. В силу этого можно предполагать, что движение точек струны происходит перпендикулярно оси Ox и в одной плоскости. При этом предположении процесс колебания струны описывается одной функцией , которая дает величину перемещения точки струны с абсциссой x в момент t.
Рис. 1.1.
Так как мы рассматриваем малые отклонения струны в плоскости , то будем предполагать, что длина элемента струны равняется ее проекции на ось Ox, т.е. Также будем предполагать, что натяжение во всех точках струны одинаковое; обозначим его через Т.
Рассмотрим элемент струны .
Рис. 1.2.
На концах этого элемента, по касательным к струне, действуют силы Т. Пусть касательные образуют с осью Ox углы . Тогда проекция на ось Ou сил, действующих на элемент , будет равна . Так как угол мал, то можно положить , и мы будем иметь:
(здесь мы применили теорему Лагранжа к выражению, стоящему в квадратных скобках).
Чтобы получить уравнение движения, нужно внешние силы, приложенные к элементу, приравнять силе инерции. Пусть - линейная плотность струны. Тогда масса элемента струны будет . Ускорение элемента равно . Следовательно, по принципу Даламбера будем иметь:
.
Сокращая на и обозначая , получаем уравнение движения
.(1)
Это и есть волновое уравнение – уравнение колебаний струны. Для полного определения движения струны одного уравнения (1) недостаточно. Искомая функция должна удовлетворять еще граничным условиям, указывающим, что делается на концах струны , и начальным условиям, описывающим состояние струны в начальный момент (t = 0). Совокупность граничных и начальных условий называется краевыми условиями.
Пусть, например, как мы предполагали, концы струны при неподвижны. Тогда при любом t должны выполнятся равенства:
(2’)
(2’’)
Эти равенства являются граничными условиями для нашей задачи.
В начальный момент t = 0 струна имеет определенную форму, которую мы ей придали. Пусть эта форма определяется функцией f (x). Таким образом, должно быть
(3’)
Далее, в начальный момент должна быть задана скорость в каждой точке струны, которая определяется функцией . Таким образом, должно быть
(3’’)
Условия (3’) и (3’’) являются начальными условиями.
Замечание. В частности, может быть или . Если же и , то струна будет находится в покое, следовательно, .
1.3 Метод разделения переменных. Уравнение свободных колебаний струны
Метод разделения переменных или метод Фурье, является одним из наиболее распространенных методов решения уравнений с частными производными. Изложение этого метода мы проведем для задачи о колебаниях струны, закрепленной на концах. Итак, будем искать решение уравнения
удовлетворяющее однородным граничным условиям
(9)
и начальным условиям
(10)
Уравнение (1) линейно и однородно, поэтому сумма частных решений также является решением этого уравнения. Имея достаточно большое число частных решений, можно попытаться при помощи суммирования их с некоторыми коэффициентами найти искомое решение.
Поставим основную вспомогательную задачу: найти решение уравнения
не равное тождественно нулю, удовлетворяющее однородным граничным условиям
(11)
и представимое в виде произведения
(12)
где X (x) – функция только переменного x, T (t) – функция только переменного t.
Подставляя предполагаемую форму решения (12) в уравнение (1), получим:
или, после деления на XT,
(13)
Чтобы функция (12) была решением уравнения (1), равенство (13) должно удовлетворяться тождественно, т. е. 0 ‹ х ‹ , t › 0. Правая часть равенства (13) является функцией только переменного t, а левая – только х. Фиксируя, например, некоторое значение х и меняя t (или наоборот), получим, что правая и левая части равенства (13) при изменении своих аргументов сохраняют постоянное значение
(14)
где – постоянная, которую для удобства последующих выкладок берем со знаком минус, ничего не предполагая при этом о ее знаке.
Из соотношения (14) получаем обыкновенные дифференциальные уравнения для определения функций X (x) и T (t)
(15)
(16)
Граничные условия (11) дают:
Отсюда следует, что функция X (x) должна удовлетворять дополнительным условиям:
X(0) = X() = 0, (17)
Так как иначе мы имели бы
в то время как задача состоит в нахождении нетривиального решения. Для функции T (t) в основной вспомогательной задаче никаких дополнительных условий нет.
Таким образом, в связи с нахождением функции X (x) мы приходим к простейшей задаче о собственных значениях: найти те значения параметра , при которых существуют нетривиальные решения задачи:
(18)
а также найти эти решения. Такие значения параметра называются собственными значениями, а соответствующие им нетривиальные решения – собственными функциями задачи (18). Сформулированную таким образом задачу часто называют задачей Штурма – Лиувилля.
Рассмотрим отдельно случаи, когда параметр отрицателен, равен нулю или положителен.
1. При ‹ 0 задача не имеет нетривиальных решений. Действительно, общее решение уравнения (15) имеет вид
Граничные условия дают:
Х (0) = С1 + С2 = 0;
т. е.
Но в рассматриваемом случае – действительно и положительно, так что . Поэтому
С1 =0, С2 = 0
и, следовательно,
Х (х)0.
2. При = 0 также не существует нетривиальных решений. Действительно, в этом случае общее решение уравнения (15) имеет вид
Х (х) = С1х + С2.
Граничные условия дают:
т. е. С1 = 0 и С2 = 0 и, следовательно,
Х (х)0.
3. При › 0 общее решение уравнения может быть записано в виде
Граничные условия дают:
Если Х(х) не равно тождественно нулю, то D20, поэтому
(19)
Или
где n- любое целое число. Следовательно, нетривиальные решения задачи (18) возможны лишь при значениях
Этим собственным значениям соответствуют собственные функции
где Dn – произвольная постоянная.
Итак, только при значениях , равных
(20)
существуют нетривиальные решения задачи (11)
(21)
определяемые с точностью до произвольного множителя, который мы положили равным единице. Этим же значениям n соответствуют решения уравнения (9)
(22)
где An и Bn – произвольные постоянные.
Возвращаясь к задаче (1), (9), (10), заключаем, что функции
(23)
являются частными решениями уравнения (1), удовлетворяющими граничным условиям (11) и представимыми в виде произведения (12) двух функций, одна из которых зависит только от х, другая – от t. Эти решения могут удовлетворить начальным условиям (10) нашей исходной задачи только для частных случаев начальных функций j(x) и y(x).
Обратимся к решению задачи (1), (9), (10) в общем случае. В силу линейности и однородности уравнения (1) сумма частных решений
(24)
также удовлетворяет этому уравнению и граничным условиям (9). Начальные условия позволяют определить An и Bn. Потребуем, чтобы функция (24) удовлетворяла условиям (10)
(25)
Из теории рядов Фурье известно, что произвольная кусочно-непрерывная и кусочно-дифференцируемая функция f(x), заданная в промежутке , разлагается в ряд Фурье
(26)
где
(27)
Если функции j(x) и y(x) удовлетворяют условиям разложения в ряд Фурье, то
(28)
(29)
Сравнение этих рядов с формулами (25) показывает, что для выполнения начальных условий надо положить
(30)
чем полностью определяется функция (24), дающая решение исследуемой задачи.
Итак, мы доказали, что ряд (24), где коэффициенты An и Bn определены по формуле (30), если он допускает двукратное почленное дифференцирование, представляет функцию u (x, t), которая является решением уравнения (1) и удовлетворяет граничным и начальным условиям (9) и (10).
Замечание. Решая рассмотренную задачу для волнового уравнения другим методом, можно доказать, что ряд (24) представляет решение и в том случае, когда он не допускает почленного дифференцирования. При этом функция должна быть дважды дифференцируемой, а - один раз дифференцируемой.
1.4 Решение уравнений
1. Найти решение уравнения:
, если , .
Решение:
Так как , а , то
,
где . Таким образом, , или .
2. Найти форму струны, определяемой уравнением в момент , если
3. , .
Решение:
Имеем
,
т.е.
, или .
Если , то , т.е. струна параллельна оси абсцисс.
4. Струна, закрепленная на концах и , имеет в начальный момент форму параболы .
5. Определить смещение точек струны от оси абсцисс, если начальные скорости отсутствуют.
Решение:
Здесь , . Находим коэффициенты ряда, определяющего решение уравнения колебания струны:
; .
Для нахождения коэффициента дважды интегрируем по частям:
, , , ;
,
т.е.
, , , ;
=
.
Подставляя выражения для и получим:
.
Если , то , а если , то ; поэтому окончательно имеем
Пусть начальные отклонения струны, закрепленной в точках и , равны нулю, а начальная скорость выражается формулой
Определить форму струны для любого момента времени t.
Решение:
Здесь , а в интервале , и вне этого интервала.
Следовательно, ;
Отсюда
Или
Глава 2. Уравнения параболического типа
2.1 Уравнение распространения тепла в стержне
Рассмотрим однородный стержень длины . Будем предполагать, что боковая поверхность стержня теплонепроницаема и что во всех точках поперечного сечения стержня температура одинакова. Изучим процесс распространения тепла в стержне.
Расположим ось Ох так, что один конец стержня будет совпадать с точкой х = 0, а другой – с точкой х = .
Рис. 2.1.
Пусть u (x, t) – температура в сечении стержня с абсциссой х в момент t. Опытным путем установлено, что скорость распространения тепла, т. е. количество тепла, протекающего через сечение с абсциссой х за единицу времени, определяется формулой
(1)
где S – площадь сечения рассматриваемого стержня, k – коэффициент теплопроводности.
Рассмотрим элемент стержня, заключенный между сечениями с абсциссами х1 и х2 (х2 – х1 = х). Количество тепла, прошедшего через сечение с абсциссой х1 за время t, будет равно
(2)
то же самое с абсциссой х2:
(3)
Приток Q1 - Q2 в элемент стержня за время t будет равняться:
(4)
Этот приток тепла за время t затратился на повышение температуры элемента стержня на величину u:
Или
(5)
где с – теплоемкость вещества стержня, – плотность вещества стержня (xS – масса элемента стержня).
Приравнивая выражения (4) и (5) одного и того же количества тепла , получим:
|