Некоторые линейные операторы
Наиболее доступными для изучения среде операторов, действующих в линейных нормированных пространствах, являются линейные операторы. Они представляют собой достаточно важный класс операторов, так как среди них можно найти операторы алгебры и анализа.
Целью дипломной работы является показать некоторые из линейных операторов, исследовать их на непрерывность и ограниченность, найти норму ограниченного оператора, а также спектр оператора и его резольвенту.
В первом и втором параграфах приведены основные сведения теории операторов: определение линейного оператора, непрерывности и ограниченности линейного оператора, его нормы. Рассмотрены некоторые примеры.
В третьем параграфе даны определения обратного оператора, спектра оператора и его резольвенты. Рассмотрены примеры.
В четвертом параграфе исследуется оператор умножения на непрерывную функцию: Ах(t) = g(t)x(t).
В пятом параграфе приведен пример оператора интегрирования Аf(t)=.
В седьмом параграфе исследуется оператор сдвига Af(x) = f(x+a).
Показана линейность, непрерывность, ограниченность, найдена норма, точки спектра и резольвента всех трех операторов.
В шестом параграфе исследуется оператор дифференцирования Дf(x)=f/(x), в пространстве дифференцируемых функции D(a, b). Показана его линейность. Доказано, что Д не является непрерывным оператором, а также как из неограниченности оператора следует его разрывность.
§1. Определение линейного оператора. Примеры
Определение 1. Пусть Ex и Ey(1)– линейные пространства над полем комплексных (или действительных) чисел. Отображение А: Ex ® Ey называется линейным оператором, если для любых элементов х1 и х2 пространства Ex и любого комплексного (действительного) числа выполняются следующие равенства (2):
1. А(х1+х2) = Ах1 + Ах2;
2. А(х) = А(х);
Примеры линейных операторов:
1) Пусть Е = Е1 – линейное топологическое пространство. Оператор А задан формулой:
Ax = x для всех x Е.
Такой оператор, переводящий каждый элемент пространства в себя является линейным и называется единичным оператором.
2) Рассмотрим D(a,b) – пространство дифференцируемых функций, оператор дифференцирования Д в пространстве D(a,b) задан формулой:
Дf(x) = f/(x).
Где f(x) D(a, b), f/(x) C(a, b).
Оператор Д определен не на всем пространстве C(a, b), а лишь на множестве функций имеющих непрерывную производную. Его линейность, очевидно, следует из свойств производной.
3) Рассмотрим пространство С(-, +) – пространство непрерывных и ограниченных функций, оператор А сдвигает функцию на const a:
Аf(x) = f(x+a).
Проверим линейность оператора А:
1) А(f+g) = (f+g)(x+a) = f(x+a) + g(x+a) = А(f) + А(g).
Исходя из определения суммы функции, аксиома аддитивности выполняется.
2) A(kf(x)) = kf(x+a) = kA(f(x)).
Верна аксиома однородности.
Можно сделать вывод, что А – линейный оператор.
4) Пусть (пространство непрерывных функций на отрезке (0,1), и дано отображение 1, заданное формулой:
Так как интеграл с переменным верхним пределом от непрерывной функции является функцией дифференцируемой, а, следовательно, непрерывной, то . В силу линейности определенного интеграла данное отображение является линейным оператором.
§2. Непрерывные линейные операторы в нормированном
пространстве. Ограниченность и норма линейного оператора
Пусть , – нормированные пространства.
Определение 2 .Оператор А: Е Е1 называется непрерывнымв точке , если какова бы не была последовательность xn x0, А(xn) сходится к А(x0). То есть, при p (xn, x0) 0, p (А(xn), А(x0)) 0.
Известно и другое (равносильное) определение непрерывности линейного оператора.
Определение 3. Отображение А называется непрерывным в точке x0, если какова бы не была окрестность(3) U точки y0 = А (x0) можно указать окрестность V точки x0 такую, что А(V) U.
Иначе >0 >0, что как только p (x, x0) < , p (f(x), f(x0)) < .
Теорема 1.
Если линейный оператор непрерывен в точке х0 = 0, то он непрерывен и в любой другой точке этого пространства.
Доказательство. Линейный оператор А непрерывен в точке х0=0 тогда и только тогда, когда . Пусть оператор А непрерывен в точке х0=0. Возьмем последовательность точек пространства хn®х1, тогда хn–х1®0, отсюда А(хn–х1)®А(0)=0, т. е. А(хn–х1)®0.
Так как А – это линейный оператор, то А(хn–х1)®Ахn–Ах0, а тогда
Ахn-Ах0 ® 0, или Ахn®Ах0.
Таким образом, из того, что линейный оператор А непрерывен в точке х0=0, следует непрерывность в любой другой точке пространства.
т. д-на.
Пример.
Пусть задано отображение F(y) = y(1) пространства С(0, 1) в R. Проверим, является ли это отображение непрерывным.
Решение.
Пусть y(x) – произвольный элемент пространства С(0, 1) и yn(x) – произвольная сходящаяся к нему последовательность. Это означает:
p (yn, y) = |yn(x)- y(x))| = 0.
Рассмотрим последовательность образов: F(yn) = yn(1).
Расстояние в R определено следующим образом:
p (F(yn), F(y)) = |F(yn) - F(y))| = | yn(1) - y(1)| |yn(x)- y(x))|=p(yn,y),
то есть p (F(yn), F(y)) 0.
Таким образом, F непрерывно в любой точке пространства С(a, b), то есть непрерывно на всем пространстве.
С понятием непрерывности линейного оператора тесно связано понятие ограниченности.
Определение 4. Линейный оператор А: Е Е1 называется ограниченным, если можно указать число K>0 такое, что
||Аx|| K||x||. (1)
Теорема 2.
Среди всех констант K, удовлетворяющих (1), имеется наименьшее.
Доказательство:
Пусть множество S – множество всех констант K, удовлетворяющих (1), будучи ограниченным снизу (числом 0), имеет нижнюю грань k. Достаточно показать, что k S.
По свойству нижней грани в S можно указать последовательность (kn), сходящуюся к k. Так как kn S, то выполняется неравенство: |А(x)| kn||x||, (xE). Переходя в этом неравенстве к пределу
получаем |А(x)| k||x||, где (xE), (k S).
т. д-на.
Определение 5. Наименьшая из этих констант K, для которых выполняется неравенство (1), называется нормой оператора А и обозначается ||A||(4).
||А|| K, для K, подходящего для (1), то есть |А(x)| ||А||||x||, где
||А|| = xE.
Между ограниченностью и непрерывностью линейного оператора существует тесная связь, а именно справедлива следующая теорема.
Теорема 3.
Для того, чтобы линейный оператор А действующий из Ex в Ey был ограничен, необходимо и достаточно, чтобы оператор А был непрерывен.
Необходимость:
Дано: А – ограничен;
Доказать: А – непрерывен;
Доказательство:
Используя теорему 1 достаточно доказать непрерывность А в нуле.
Дано, что ||Аx|| K||x||.
Докажем, что А непрерывен в нуле, для этого должно выполняться >0, >0 что ||x||< ||Ax|| < .
Выберем так, чтобы K*||x|| < , ||x|| < , (К>0), значит = , тогда если ||x||< , то ||Аx|| K||x|| < K =
Непрерывность в нуле доказана, следовательно доказана непрерывность в точке.
Достаточность:
Дано: А – непрерывен;
Доказать А – ограничен;
Доказательство:
Допустим, что А не ограничен. Это значит, что числу 1 найдется хотя бы один соответственный вектор x1 такой, что ||A x1|| > 1|| x1||.
Числу 2 найдется вектор x2, что ||A x2|| > 2|| x2|| и т.д.
Числу n найдется вектор xn, что ||A xn|| > n|| xn||.
Теперь рассмотрим последовательность векторов yn = , где
||yn|| = .
Следовательно последовательность yn 0 при n .
Так как оператор А непрерывен в нуле, то Аyn 0, однако
||Аyn || = ||A|| = ||Axn || > n|| xn|| = 1, получаем противоречие с Аyn 0, то есть А – ограничен
Для линейных операторов ограниченность и непрерывность оператора эквивалентны.
Примеры.
1) Покажем, что норма функционала(5) F(y) = в C(a, b), где p(x) – непрерывная на (a,b) функция, равна .
По определению 5: ||F|| = |F(x)| = ||.
|| || = |y(x)||| |y(x)|||;
||F|| = (|y(x)|||) = ||y(x)|||| = || .
Таким образом, норма F(y) = будет ||F|| = ;
2) Найдем норму функционала, определенного на C(0, 2), где p(x)=(x-1)
F(y) = .
По выше доказанному ||F|| = = 1.
§3. Обратный оператор. Спектр оператора и резольвента
Пусть , – нормированные пространства, – линейный оператор, DA- область определения оператора, а RA – область значений.
Определение 6. Оператор А называется обратимым, если для любого элемента у, принадлежащего RA, уравнение Ах=у имеет единственное решение.
Если оператор А обратим, то каждому элементу у, принадлежащему RA, можно поставить в соответствие единственный элемент х, принадлежащий DA и являющийся решением уравнения Ах=у. Оператор, осуществляющий это соответствие, называется обратным оператором к оператору А и обозначается А-1.
Теорема 4.
Для того чтобы линейный оператор имел ограниченный обратный оператор необходимо и достаточно, чтобы выполнялось неравенство:
, (m>0).
Доказательство:
Достаточность.
Пусть выполняется данное неравенство. Тогда равенство Ax=0 возможно лишь тогда, когда x – нулевой вектор. Получим 0 m*||x||, отсюда ||x|| 0, но так как норма не может быть <0, то x=0. А обращается в ноль лишь на нулевом векторе. Итак, А-1 существует.
Докажем его ограниченность.
y=Ax.
x=A-1y, норма ||A-1y||=||x||, но ||x|| ||Ax||=||y||.
Отсюда ||A-1y|| ||y||, то есть обратный оператор существует и он ограничен.
Если за m возьмем наибольшую из возможных, то получим, что ||A-1||=.
Необходимость.
Пусть от А имеется ограниченный обратный А-1 на нормированном пространстве.
Итак, ||A-1y|| М||y||.
Подставляем значение y и значение A-1y,получим ||x|| M||Ax|| (М всегда можно считать положительным числом).
Отсюда ||Ax|| ||x||.
Положим =m, получим ||Ax|| m||x||.
т. д-на.
В теории операторов важную роль играет понятие спектра оператора. Рассмотрим это понятие сначала для конечномерного пространства.
Определение 7. Пусть А – линейный оператор в n-мерном пространстве Еn. Число λ называется собственным значением оператора А, если уравнение Ах=λх имеет ненулевые решения. Совокупность всех собственных значений называется спектромоператора А, а все остальные значения λ – регулярными. Иначе говоря, λ есть регулярная точка, если оператор , где I – единичный оператор, обратим, При этом оператор (А – λI)-1, как и всякий оператор в конечномерном пространстве, ограничен. Итак, в конечномерном пространстве существуют две возможности:
1) уравнение Ах=λх имеет ненулевое решение, то есть λ является собственным значением для оператора А; оператор (А – λI)-1 при этом не существует;
2) существует ограниченный оператор (А – λI)-1, то есть λ есть регулярная точка.
В бесконечном пространстве имеется еще и третья возможность, а именно:
3) оператор (А – λI)-1 существует, то есть уравнение Ах=λх имеет лишь нулевое решение, но этот оператор не ограничен.
Введем следующую терминологию. Число λ мы назовем регулярным для оператора А, действующего в линейном нормированном пространстве Е, если оператор (А – λI)-1, называемый резольвентой оператора А, определен на всем пространстве Е и непрерывен. Совокупность всех остальных значений λ называется спектром оператора А. Спектру принадлежат все собственные значения оператора А, так как, если (А – λI)х=0 при некотором х≠0, то оператор (А – λI)-1 не существует. Их совокупность называется точечным спектром. Остальная часть спектра, то есть совокупность тех λ, для которых (А – λI)-1 существует, но не непрерывен, называется непрерывным спектром. Итак, каждое значение λ является для оператора А или регулярным, или собственным значением, или точкой непрерывного спектра. Возможность наличия у оператора непрерывного спектра – существенное отличие теории операторов в бесконечномерном пространстве от конечномерного случая.
Определение 8. Оператор , где – регулярная точка оператора А, называется резольвентой(6)оператора А и обозначается (или ).
Теорема 5. Пусть – линейный непрерывный оператор, его регулярные числа. Тогда .
Доказательство. Умножим обе части равенства на : (==. С другой стороны получим . Так как числа – регулярные для оператора А, то оператор имеет обратный. Значит, из равенства следует, что . Значит, утверждение теоремы верно.
т. д-на.
Примеры.
1) Рассмотрим в пространстве C(0,1) оператор умножения на независимую переменную t: Ax = tx(t).
Уравнение Аx=x принимает в этом случае вид:
tx(t) - x(t) = y(t),
решение x(t) этого уравнения есть функция, тождественно ему удовлетворяющая.
Если лежит вне отрезка (0, 1), то уравнение Аx=x имеет при любом y(t) единственное непрерывное решение:
x(t) = y(t),
откуда следует, что все такие значения параметра являются регулярными, и резольвента есть оператор умножения на :
R(y) = y(t).
Все значения параметра, принадлежащие отрезку(0, 1), являются точками спектра. В самом деле, пусть 0 (0, 1). Возьмем в качестве y(t) какую-нибудь функцию, не обращающуюся в нуль в точке 0, y(0) = a 0. Для такой функции равенство (t - 0)x(t) = y(t), не может тождественно удовлетворяться ни при какой непрерывной на отрезке (0, 1) функции x(t), ибо в точке t = 0 левая часть его равна нулю, в то время как правая отлична от нуля. Следовательно, при = 0 уравнение Аx=x не имеет решения для произвольной правой части, что и доказывает принадлежность 0 спектру оператора A. Вместе с тем ни одна точка спектра не является собственным значением, так как решение однородного уравнения (t - )x(t) = 0, (0, 1), при любом t, отличном от , а следовательно, в силу непрерывности и при t = , обращается в нуль, т.е. тождественно равно нулю.
2) Пусть оператор А действующий из Е Е, задается матрицей А=.
Аx = = .
Введем обозначения:
= y1
= y2
x1, x2, y1, y2 E;
A - *I = , найдем определитель A - *I:
D(A - *I) = = (2-)*(-2-) – 3 = 2 – 7;
Если определитель отличен от нуля, то есть если не есть корень уравнения 2 – 7 = 0, следовательно, все такие значения параметра регулярные.
Корни уравнения 2 – 7 = 0 образуют спектр:
1 = ; 2 = -;
1, 2 – собственные значения.
Найдем собственные векторы для собственных значений :
при = получаем:
откуда x1 = (2+)x2; 1-й собственный вектор: ((2+)x, x);
при = - получаем:
откуда x1 = (2 - )x2 ; 2-й собственный вектор: ((2 - )x, x);
§4. Оператор умножения на непрерывную функцию
Рассмотрим пространство непрерывных на отрезке функций, и оператор А, заданный формулой:
Ах(t) = g(t) x(t).
g(t) - функция, непрерывная на (a, b); a,bR.
Проверим является ли оператора А линейным, то есть, по определению 1, должны выполняться аксиомы аддитивности и однородности.
1) Аксиома аддитивности: A(f+g) = A(f) + A(g).
A(f+g) = (g(t)+f(t))x(t) = g(t)x(t)+f(t)x(t) = A(f) + A(g).
2) Аксиома однородности: A(k*f) = k*A(f).
A(k*f) = A(k*x(t)) = k*g(t)x(t) = kA(x(t)) = k*A(f).
По средствам арифметических операции над функциями, аксиомы аддитивность и однородность выполняются. Оператор А является линейным по определению.
3) Проверим, является ли А непрерывным, для этого воспользуемся определением непрерывности:
p (fn(x), f0(x)) 0 p (A fn(x), Af0(x)) 0.
Оператор А, действует в пространстве C(), в котором расстояние между функциями определяется следующим образом:
p (fn(x), f0(x)) = | fn(x) - f0(x)|.
Решение:
p (A xn(t), Ax0(t)) = |Axn(t) - Ax0(t)| = |xn(t)g(t) - x0(t)g(t)| |g(t)| |xn(t) - x0(t)| = |g(t)|p (xn(t), x0(t)) 0.
Итак, p (A xn(t), Ax0(t)) 0. Следовательно по определению 2 оператор А является непрерывным, а по теореме 3 он ограничен.
4) Оператор А ограниченный, следовательно у него можно найти норму.
По определению 5: ||A||=|A(f)|.
Решение.
||A||=|A(f)|=|g(t)x(t)|.
|g(t)x(t)| |g(t) x(t)| = |g(t)| |x(t)| |x(t)| |g(t)|.
||A||=|x(t)| |g(t)| = ||x(t)|| |g(t)| |g(t)|.
Норма оператора А: ||A|| = |g(t)|.
5) Обратимость оператора А, его спектр и резольвента.
Возьмем произвольное число и составим оператор :
(А-lI) x(t) = (g(t) –l ) х(t).
Чтобы найти обратный оператор, нужно решить уравнение относительно функции . Это возможно, если для любого :
.
Если число не является значение функции g(t), то знаменатель не обращается в 0, и функция непрерывна на данном отрезке, а, значит, ограничена: существует такое число С, что на всем отрезке . Отсюда следует, что оператор является ограниченным.
Если же , то оператор не существует. Следовательно, спектр оператора состоит из всех l = g(t).
Резольвента оператора имеет вид .
Отметим, что точки спектра , , не являются собственными числами. Не существует такой непрерывной функции , для которой , или . Поэтому весь спектр данного оператора является непрерывным.
Вывод:
Оператор A, заданный формулой: Ах(t) = g(t)x(t), где g(t) - функция, непрерывная на (a, b), a,bR:
1. линейный;
2. непрерывный;
3. ограниченный, с нормой ||A|| = |g(t)|;
4. обратим при , для любого ;
5. спектр оператора состоит из всех l = g(t); спектр данного оператора является непрерывным;
6. резольвента имеет вид .
§5.Оператор интегрирования
Рассмотрим оператор интегрирования, действующий в пространстве непрерывных функций - C(a,b), определенных на отрезке (a,b), заданный следующим образом:
Аf(t) = .
f(t) – функция, непрерывная на (a, b),t (a,x); x (a,b); a,bR;
Поскольку - интеграл с переменным верхним пределом, есть функция от верхнего предела – F(x), a x b; Следовательно можно утверждать, что А – оператор.
Проверим оператор A на линейность. По определению 1:
1) Аксиома аддитивности: A(f+g) = A(f) + A(g).
A(f+g) = = + = A(f) + A(g).
2) Аксиома однородности: A(kf) = kA(f).
A(kf) = = k* = kA(f).
Исходя из свойств интеграла:
1. интеграл от суммы, есть сумма интегралов;
2. вынесение const за знак интеграла.
Можно сделать вывод: оператор А является линейным.
3) Проверим, является ли А непрерывным, для этого воспользуемся определением непрерывности:
p (fn(t), f0(t)) 0 p (A fn(t), Af0(t)) 0.
Оператор А, действует в пространстве C(a,b), в котором расстояние между функциями определяется следующим образом:
p (fn(t), f0(t)) = | fn(t) - f0(t)|.
Решение:
p (A fn(t), Af0(t)) = | - |.
| - | = || = p (fn(t), f0(t)) = p (fn(t), f0(t)) (x-a) 0
axb.
Таким образом p (A fn(t), Af0(t)) 0. следовательно по определению 2 оператор А непрерывен.
4) Непрерывный оператор является ограниченным (теорема 3):
|| || ||
|| = 0; || = |b-a|.
0 || |b-a|.
5) Оператор А ограниченный, следовательно у него можно найти норму. Найдем норму оператора А (используя определение ||A||=|A(f)|):
||A|| = |A(f)| = || = (x-a);
a x b;
Норма оператора А: ||A|| = (b-a);
6) Обратимость интегрального оператора и его спектр.
Возьмем пространство S = {f C(0,b) / f(0) = 0} с нормой ||f|| = |f(x)|.
В пространстве S рассмотрим оператор А:
Аf =
x (0,b), t (0,x);
Найдем оператор обратный к (A - *I), R;
(A - *I)*f = g
- *f(x) = g(x) (1)
Пусть функции f и g дифференцируемы;
Продифференцируем уравнение (1), получим:
f - *f/ = g/ (2)
Это уравнение (2) – дифференциальное неоднородное линейное уравнение. Решим это уравнение, используя метод Бернулли.
- f/ =
- + f/ = 0 (3)
Представим решение уравнения в виде: f(x) = U(x)*V(x), тогда уравнение (3) примет вид:
- *U*V + U/ *V + U*V/ = 0
U/ *V + U*V/ - *U*V = -
U/ *V + U*(V/ - *V) = - (4)
Решаем однородное линейное уравнение:
V/ - *V = 0
V/ = *V
= *V
=
LnV = + c
V = *, пусть = с1
V = с1*
Подставим частное решение однородного уравнения в уравнение (4) при условии, что V/ - *V = 0.
Получим уравнение:
U/ * с1* = -
= -
= - *
U = -*
Подставим U и V в f(x) = U(x)*V(x) и получим:
f(x) = с1**(-)*
найдем интеграл Y = , интегрируем по частям:
dz = g/(x)dx;
z = = g(x);
j = ;
dj = - *dx;
Y = g(x)* + *
Подставим полученное значение в выражение f(x), которое примет вид:
f(x) = - - **;
Получим оператор В:
Bg = - - **;
x (0,b), t (0,x), g(x) S, - произвольное число.
Оператор В не существует, если = 0;
Рассмотрим ограниченность оператора В для всех R, 0;
||Bg|| = ||f(x)|| = |f(x)| = |- - **| (|| + |**|) || + |**| || + |*|*|g(x)* |*|x| *|g(x)| + *|g(x)|* (||*|x|) |g(x)|*( + ***b);
При > 0
= ;
= 1;
При < 0
=1;
= ;
Эти оба случая можно записать в общем виде: {1, }, тогда
|g(x)|*( + *
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Нестандартные задачи по математике
Курсовая работа по математикеНестандартные задачи по математикеСтудент:Игнатьева Ольга Михайловнафизико – математический факультет
- Нестандартные методы решения задач по математике
1. Метод функциональной подстановки2. Метод тригонометрической подстановки3. Методы, основанные на применении численных неравенств4. Мет
- Нестандартные методы решения уравнений и неравенств
Не всякое уравнение или неравенство в результате преобразований или с помощью удачной замены переменной может быть сведено к уравнени
- Булевы функции
1.Основные понятия булевой алгебрыТехнические вопросы, связанные с составлением логических схем ЭВМ, можно решить с помощью математиче
- Евклідова і неевклідова геометрії
ЗмістВведенняГлава I. Розвиток геометрії1.1 Історія геометрії1.2 Постулати Евкліда1.3 Аксіоматика Гильберта1.4 Інші системи аксіом геометр
- Новый метод решения кубического уравнения
Автор: Фильчев Э.Г.Решение кубического уравнения в системе mn параметровРешение кубического уравнения на основе современных методов не
- Динамические системы в плоской области
ТЕМАДИНАМИЧЕСКИЕ СИСТЕМЫ В ПЛОСКОЙ ОБЛАСТИ1. ВведениеМы будем рассматривать системы дифференциальных уравнений вида