Модернізація апарату для ультразвукової терапії шляхом удосконалення блоку живлення
Зміст
Вступ
1. Загально-технічна частина
1.1 Призначення і технічна характеристика приладу
1.2 Критичний аналіз літературних джерел та існуючих для проектованого апарата аналогів
1.3 Фізичні основи роботи використаного в роботі підсилювача
2. Розрахунково-конструкторська частина
2.1 Структурна схема приладу
2.2 Електрична схема приладу і взаємозв’язок між її елементами
2.3 Принцип дії апарата
2.4 Розрахунок електронного блока
2.5 Особливості підготовки і роботи приладу
3. Спеціальна частина
3.1 Медична частина
4. Економічна частина
4.1 Попередній розрахунок річного економічного ефекту
5. Питання техніки безпеки при роботі з апаратом
6. Загальні висновки
Література
Вступ
Завдання роботи полягало у вдосконаленні блоку живлення апарату для ультразвукової терапії. Поряд з науково-дослідними роботами, які проводяться в даний час і мають на меті вивчення механізмів фізичної і біологічної дії ультразвуку, накопичуються дані про значення для терапії інтенсивності, тривалості опромінення та частоти. Все більш удосконалюється портативна ультразвукова терапевтична апаратура.
Лікування різних захворювань ультразвуком виявилося настільки ефективним, що сучасна фізіотерапія немислима без ультразвукової. При цілому ряді захворювань використання ультразвукової терапії забезпечує повне видужання.
Тому важливими є досконала конструкція джерела живлення даного апарату. Наукова новизна полягає у використанні принципово нового типу елементної бази, а саме мікросхеми КР142ЕН1А в стабілізаторі, замість транзистора КТ815М. Цим і визначається наукова новизна запропонованого рішення. Достовірність отриманих результатів пов’язана з використанням стандартних перевірочних методів розрахунку електронних мереж.
Проведеними дослідженнями і дослідами встановлено, що фізіологічні дії ультразвуку зумовлені наступними вторинними фізичними факторами:
1. Основна механічна дія викликає змінний звуковий тиск. При певних інтенсивностях ультразвукові коливання здійснюють мікромасаж опроміненої тканини.
2. Вторинний тепловий ефект. При ультразвуковому опроміненні цей ефект не є екзогенним, а виникає всередині тканини.
3. Ультразвук викликає комплексні фізико-хімічні дії.
Проектований прилад порівняно з його аналогами має наступні переваги: зниження споживання за рахунок застосування мікросхем; у зв’язку з тим, що зменшились розміри друкованої плати, зменшилися габаритні розміри проектованого приладу, а також зріс і термін експлуатації даного приладу.
Здійснено розрахунок річного економічного ефекту, який складає 4100гр.
1. Загально-технічна частина1.1 Призначення і технічна характеристика приладу
Апарат для ультразвукової терапії використовується для лікування низькочастотним ультразвуком хворих з гінекологічними захворюваннями. Апарат застосовується в гінекологічних відділеннях клінік і лікарень. Застосування апарата дає високий лікувальний ефект і не викликає хворобливих відчуттів у пацієнтки.
Апарат призначений для експлуатації при температурі навколишнього повітря від 10 до 35°С, відносної вологості 80 % при температурі 25°С и атмосферному тиску від 84 до 106,6кПа (від 630 до 800 мм рт. ст.).
ТЕХНІЧНІ ХАРАКТЕРИСТИКИ:
1. Робочі частоти апарата (221,65) кГц і (444,4) кГц.
2. Амплітуда ультразвукових коливань на робочих кінцях хвилеводів, що знаходяться в повітрі, (2 1) і (52) мкм.
3. Установка амплітуди здійснюється східчасто за допомогою перемикача.
4. Час установлення робочого режиму не перевищує 30с з моменту включення апарата.
5. Режим роботи повторно-короткочасний: експозиція 2 с, пауза 5с.
6. Час процедури установлюється від 10 з до 9 хв. із дискретністю 10с і витримується з точністю 5 % від встановленого значення.
7. Апарат працює від мережі змінного струму частотою (500,5) Гц із номінальною напругою 220 В при відхиленні напруги мережі на 10 % від номінального значення.
8. Підключення апарата до мережі - через розетку з контактом, що заземлює.
9. Потужність, споживана апаратом від мережі, не більш 230ВА.
10. Час безперервної роботи в повторно-короткочасному режимі - не більш 8 год.
11. Маса апарата в повному комплекті постачання без транспортного упакування - не більш 20 кг. Маса випромінювача - не більш 0,8 кг.
12. Габаритні розміри генератора 415х265х138мм, габаритні розміри перетворювачів ø 50x220 мм і ø 50х260 мм.
13. Середній термін служби апарата - не менш 5 років. Критерієм граничного стану, що визначає списання апарата, є неможливість його відновлення при поточному ремонті до відповідності вимогам.
14. Установлений безвідмовний наробіток апарата - не менш 4000 циклів. Критерієм відмовлення є невідповідність апарата вимогам.
1.2 Критичний аналіз літературних джерел та існуючих для проектованого апарата аналогівВ даний час застосовуються такі апарати для ультразвукової терапії.
"TUR US 6 - 1" (ФРН) - ультразвуковий фізіотерапевтичний апарат, може працювати як у безперервному, так і в імпульсному режимі.
"УЗТ 101" - прилад, застосовуваний для лікування периферичної нервової системи, опорно-рухового апарата.
"Лор - 3" - апарат для лікування тонзилітів, гайморитів, ринітів. Основні технічні дані: частота ультразвукових коливань 880 кГц +1%; інтенсивність ультразвукових коливань регулюється чотирма ступінями 0,2; 0,4; 0,6; 0,8 Вт/см2; ефективна площа випромінювача XT, Г-2 см2, кожного випромінювача Р-0,4 см2; є імпульсний режим коливань при тривалості імпульсів 10 мс і частоті проходження 50 Гц; тривалість процедури (експозиція) постійна 61 хв.; живлення від мережі змінного струму частотою 50 Гц, напругою 220 В 10%; по захисту від поразки електричним струмом апарат виконаний по класу 01; габаритні розміри 320208104 мм; маса не більше 5 кг.
Комплекс "Байкал" використовується для руйнування каменів при сечокам’яної хвороби.
"Узум" - апарат, використовуваний для розрізування тканин при хірургічних операціях і зупинки кровотечі.
"УТП - 1" - переносний апарат для ультразвукової терапії. Основні технічні дані апарата: частота ультразвукових коливань 880 кГц; максимальна потужність ультразвуку 8 - 10 Вт; максимальна інтенсивність 2 - 2,5 Вт/см2 (площа випромінювача 4 см2). Регулювання потужності здійснюється 10-ю ступінями. Апарат працює як у безперервному, так і в імпульсному режимах при тривалості імпульсів 10 ± 2; 4 ± 1; 2 ± 0,5 мсек. і частоті повторення імпульсів 50 Гц; живлення від мережі змінного струму частотою 50 Гц, напругою 127 і 220 В з відхиленнями від +5% до - 15% від номінального; максимальна споживана з мережі потужність 165 Вт. Маса апарата близько 13 кг.
"Ультразвук - Т5". Як п'єзоелектричний перетворювач використовується кераміка з титанату барію. Це дозволило понизити напругу живлення перетворювача. Замість компенсатора напруги живильної мережі в цьому апараті використовуються схеми стабілізації вихідної напруги й стабілізатора розжарення ламп. Незалежність вихідних параметрів апарата від напруги живлення спростило його експлуатацію і підвищило точність дозиметрії. Основні технічні дані апарата: частота ультразвукових коливань 880 кГц; максимальна потужність ультразвуку при роботі з випромінювачем з активною площею 4 см2 8 Вт, при роботі з випромінювачем з активною площею 1 см2 1 Вт; апарат працює як у безперервному, так і в імпульсному режимах при тривалості імпульсів 10 і 4 мсек. і частоті повторення імпульсів 50 кГц; живлення від мережі змінного струму напругою 110, 127 і 220 В, частотою 50 Гц із відхиленнями +5% - 10% від номіналу; потужність, споживана, споживана з мережі, не більш 130 Вт; маса апарата не більш 8 кг. Керування апаратом для проведення процедур не відрізняється від керування апаратом "УТП - 1", особливість - наявність клавішного переключення інтенсивності й роду роботи, а також звукової сигналізації про закінчення процедури.
"УТП - 3М" - портативний апарат для ультразвукової терапії. Призначений для впливу на поверхневі шари тканин і знаходять основне застосування в дерматології. Основні технічні дані апарата: частота ультразвукових коливань 2640 кГц; максимальна потужність ультразвуку при роботі з випромінювачем з активною площею 4 см2 12 Вт, при роботі з випромінювачем з активною площею 1 см2 3 Вт; апарат працює як у безперервному, так і в імпульсному режимах при тривалості імпульсів 10 мсек. і частоті повторення імпульсів 50 кГц; живлення від мережі змінного струму напругою 127 і 220 В, частотою 50 Гц із відхиленнями +5% - 15% від номіналу; потужність, споживана, споживана з мережі, не більш 130 Вт; маса апарата не більш 12 кг. Керування апаратом для проведення процедур: не відрізняється від керування апаратом "УТП - 1".
"УТС - 1" - стаціонарний апарат для ультразвукової терапії. Основні технічні дані апарата: частота ультразвукових коливань 880 кГц; максимальна потужність ультразвуку 20 Вт; регулювання потужності плавна; апарат працює як у безперервному, так і в імпульсному режимах при тривалості імпульсів 10, 4 і 2 мсек. і частоті повторення імпульсів 50 кГц; живлення від мережі змінного струму напругою 127 і 220 В, частотою 50 Гц із відхиленнями від +5% до - 15% від номіналу; потужність, споживана з мережі, не більш 280 Вт; маса апарата 23 кг.
Апарат для ультразвукової терапії УЗТ-31. Апарат призначений для лікування акушерсько-гінекологічних захворювань, але застосовується також в оториноларингології, стоматології дерматології й в інших областях медицини. Апарат розроблений ВНИИМП і випускається Московським заводом ЕМА.
Основні технічні дані апарата: частота ультразвукових коливань 2,64 МГц +0,1%; інтенсивність ультразвукових коливань регулюється чотирма ступінями 0,05; 0,2; 0,5 і 1,0 Вт/см2; ефективна площа великого випромінювача 2 см2 малого-0,5 см2; передбачений імпульсний режим роботи при тривалості імпульсів 2, 4 і 10 мс, частоті проходження 50 Гц; живлення від мережі змінного струму частотою 50 Гц напругою 220 В +10%; споживана потужність не більш 50 ВА; по захисту від ураження електричним струмом апарат виконаний по класу I; габаритні розміри 342274142 мм; маса (з комплектом) не більше 10 кг.
Використаний в даній роботі апарат є найбільш досконалим і сучасним апаратом, який використовується в гінекології. Він має такі технічні характеристики.
Використовується для лікування низькочастотним ультразвуком хворих з гінекологічними захворюваннями. Апарат застосовується в гінекологічних відділеннях клінік і лікарень. Застосування апарата дає високий лікувальний ефект.
Робочі частоти апарата (221,65) кГц і (444,4) кГц., амплітуда ультразвукових коливань на робочих кінцях хвилеводів, що знаходяться в повітрі, (2 1) і (52) мкм. Установка амплітуди здійснюється східчасто за допомогою перемикача. Апарат працює від мережі змінного струму частотою (500,5) Гц із номінальною напругою 220 В при відхиленні напруги мережі на 10 % від номінального значення. Підключення апарата до мережі - через розетку з контактом, що заземлює. Потужність, споживана апаратом від мережі, не більш 230ВА.
1.3 Фізичні основи роботи використаного в роботі підсилювачаСучасна техніка широко використовує принцип керування енергією, який дозволяє за допомогою затрати невеликої її кількості керувати енергією набагато більшою.
Керування енергією, при якому процес керування безперервний, плавний та однозначний, називають підсиленням; пристрій, який здійснює процес підсилення, називають підсилювачем.
Форма як керуючої, так і керованої енергії може бути різноманітною - електричною, механічною, світловою і т.д.; підсилювачі, в яких як керуюча, так і керована енергія є електричною енергією називають підсилювачами електричних сигналів.
Підсилення сигналів здійснюється в підсилювачі за допомогою підсилюючих елементів - особливих пристроїв, які володіють керуючими властивостями.
Керуюче джерело живлення, від якого сигнали, які потрібно підсилити, надходять на підсилювач, називають джерелом сигналу, а ланцюг підсилювача, в який ці сигнали вводять, - вхідним ланцюгом або входом підсилювача. Пристрій, який є споживачем підсилених сигналів, називають навантаженням підсилювача, а ланцюг підсилювача, до якого підключають навантаження, - вихідним ланцюгом або виходом підсилювача.
Потужність підсилених сигналів, яка віддається підсилювачем в навантаження, завжди більша потужності сигналів, яка підводиться до входу.
Джерело керованої енергії, яка перетворюється підсилювачем в енергію підсилюваних сигналів, називають джерелом живлення підсилювача або основним джерелом живлення. Крім основного, підсилювач нерідко має допоміжні джерела живлення, енергія яких не перетворюється в підсилювані сигнали, а використовується для приведення підсилюючих елементі в робочий стан.
Підсилювачі можна класифікувати за характером підсилюваних сигналів, за частотою підсилюваних частот, за призначенням підсилювача, за родом використаних підсилюючих елементів.
За характером підсилюваних сигналів розрізняють:
1. Підсилювачі гармонійних сигналів, або гармонійні підсилювачі, призначені для підсилення безперервних періодичних та квазіперіодичних електричних сигналів, гармонійні складові яких змінюються набагато повільніше тривалості нестаціонарних процесів в ланцюгах підсилювача.
2. Підсилювачі імпульсних сигналів, або імпульсні підсилювачі, призначені для підсилення електричних імпульсів різної форми і величини. Нестаціонарні процеси в ланцюгах таких підсилювачів повинні протікати настільки швидко, щоб форми підсилюваних сигналів цими процесами майже не спотворювалися.
За шириною смуги і абсолютними значеннями підсилюваних підсилювачем частот розрізняють:
1. Підсилювачі постійного струму (точніше, підсилювачі повільно змінюючихся напруг і струмів), які підсилюють електричні коливання любої частоти в межах від нижчої частоти fн®0 до вищої робочої частоти fв, тобто підсилюючий як змінні складові сигналу, так і його постійну складову.
2. Підсилювачі змінного струму, які підсилюють лише змінні складові сигналу в смузі частот від нижчої робочої частоти fн до вищої робочої частоти fв.
3. Підсилювачі високої частоти, призначені для підсилення електричних коливань модульованої високої частоти.
4. Підсилювачі проміжної частоти, призначені для підсилення електричних сигналів модульованої проміжної (перетвореної) частоти. Підсилювачі як високої, так і проміжної частоти характеризуються малою величиною відношення вищої робочої частоти до нижчої (звичайно fв/fн<1,1).
5. Підсилювачі низької частоти, призначені для підсилення неперетворених (преривчатих) електричних коливань.
Підсилювачі з вищою робочою частотою близько мегагерца і вище і нижчою робочою частотою близько кілогерца або менше мають дуже велике відношення вищої частоти до нижчої; такі підсилювачі називають широкосмуговими.
Вибірковими або селективними називають підсилювачі, які підсилюють сигнали в дуже вузькій смузі частот, підсилення яких різко падає за межами цієї смуги; їх поділяють на резонансні, частотна характеристика яких має вид резонансної кривої, та смугові, підсилення яких майже постійно в вузькій смузі частот і різко падає за її межами.
Підсилювачі, в яких сигнали підсилюються без перетворення їх частоти, називають підсилювачами прямого підсилення; підсилювачі, в яких частота підсилюваних сигналів перетворюється, називають підсилювачами з перетворенням.
За родом використаних в підсилювачі елементів розрізняють транзисторні, лампові, магнітні, діодні, молекулярні і т.д. підсилювачі.
Розглянемо призначення і структуру основних вузлів підсилюючого пристрою, зображених на рис.1.1.
Рис.1.1 Блок-схема підсилюючого пристрою.
Вхідний пристрій служить для передачі сигнала від джерела у вхідний ланцюг першого підсилюючого елемента. Його використовують, коли безпосереднє підключення джерела сигналу до входа підсилювача неможливе або недоцільне. Вхідний пристрій у виді симетруючого трансформатора широко використовують для перетворення несиметричного вхідного ланцюга підсилювача в симетричний. Вхідний пристрій у вигляді звичайного трансформатора широко використовують для узгодження (для отримання умов, близьких до узгодження) вихідного опору джерела сигналу і вхідного опору першого підсилюючого елемента, що іноді є необхідним для джерла сигнала, а також дозволяє отримати найбільшу напругу сигналу на вході підсилювача.
Вхідний пристрій використовують також для попередження проходження постійної складової струму або анпруги зміщення першого підсилюючого елемента в джерело сигналу і попадання постійної складової від джерела на вхід підсилюючого елемента, які перешкоджають правильному режиму роботи джерела сигналу і виводять робочу точку підсилюючого елемента з її правильного положення; якщо вхідний пристрій використовують тільки для розділення постійних складових джерела сигналу і вхідного ланцюга, його виконують простіше - у вигляді роздільчого конденсатора. При можливості безпосереднього включення джерела сигналу у вхідний ланцюг підсилювача вхідний пристрій не використовують.
Призначення попереднього підсилювача - підсилити напругу, струм і потужність сигналу до величини, необхідної для подачі на вхід потужного підсилювача. Попередній підсилювач може складатися з декількох каскадів попереднього підсилення; кількість останніх визначається необхідним підсиленням. Якщо напруга, струм і потужність, які віддаються джерелом сигналу достатні для підведення до входу потужного підсилювача, попередній підсилювач у складі пристрою відсутній.
Потужний підсилювач призначений для віддачи в навантаження необхідної потужності сигналу. Транзисторні підсилювачі з вихідною потужністю декілька ватт і вище звичайно мають 2-3 каскади потужності підсилення, так як останній каскад потребує подачі на вхід значної потужності сигналу, яку повинен віддавати попередній каскад, який є при цьому також каскадом потужного підсилення. Коли навантаженням підсилювача є невелика ємність, на навантаженні потрібно забезпечити лише напругу сигналу певної величини, а не задану вихідну потужність; а в цьому випадку потужний підсилювач не потрібний і вихідний каскад підсилюючого пристрою являє собою каскад попереднього підсилення.
Вихідний пристрій служить для передачі підсиленого сигналу з вихідного ланцюга останнього підсилюючого елемента в навантаження і використовується тоді, коли безпосереднє підключення навантаження до вихідного ланцюга неможливе або недоцільне. Вихідний пристрій у вигляді симетруючого трансформатора використовують при роботі несиметричного вихідного каскаду на симетричне навантаження, наприклад симетричну лінію зв’язку.
Вихідний пристрій у вигляді вихідного трансформатора дуже часто використовують для створення підсилюючому елементу вихідного каскаду найвигіднішого опору навантаження, при якому цей каскад віддасть необхідну потужність при високому коефіцієнті корисної дії і малих нелінійних спотвореннях, а іноді і при необхідності узгодження вихідного опору з опором навантаження.
Для розділення постійних складових струму і напруги вихідного ланцюга і навантаження використовують вихідний пристрій у вигляді роздільного конденсатора; при можливості безпосереднього включення навантаження у вихідний ланцюг кінцевого каскаду вихідний пристрій не використовують.
Основні технічні показники підсилювачів. Вхідні і вихідні дані.
При посиленні сигналів підсилювач трохи змінює їхню форму; відхилення форми вихідного сигналу від форми вхідного називають викривленнями. Дані, що характеризують властивості підсилювача і внесені їм викривлення, називають показниками. Основними показниками підсилювача є: вхідні і вихідні дані, коефіцієнти підсилення і корисної дії, частотна, фазова і перехідна характеристики, рівень внутрішніх перешкод, нелінійність, стабільність, надійність.
Вхідними даними підсилювача є: його вхідна напруга Uвх, вхідний струм Iвх і вхідна потужність сигналу Рвх, при яких підсилювач віддає в навантаження задану потужність, струм або напругу, а також вхідний опір підсилювача Zвх. Вхідний опір підсилювача в загальному випадку комплексно, але вхідну потужність, струм і напругу звичайно визначають в умовах, при яких вхідний опір можна вважати активному і рівним Rвх; у цьому випадку
Uвх=IвхRвх; Rвх=Uвх/Iвх; Рвх=UвхIвх.
Джерело сигналу, що підключається до входу підсилювача, характеризується електрорушійною силою Едж і внутрішнім опором Zдж.
До вихідних даних відносяться: розрахункова, тобто задана технічними вимогами, потужність сигналу Pнагр віддається підсилювачем у навантаження і називана вихідною потужністю підсилювача; вихідна напруга сигналу Uвих або вихідний струм сигналу Iвих, що віддаються підсилювачем при роботі його на розрахунковий опір навантаження Zнагр, а також вихідний опір підсилювача Zвих.
Опір навантаження підсилювача в загальному випадку комплексно, але вихідну потужність, струм і напругу також звичайно визначають в умовах, при яких навантаження можна вважати активної і рівної Rнагр; при цьому
Uвих=IвихRнагр; Рнагр=IвихUвих=I2вихRнагр=U2вих/Rнагр.
Вихідний опір підсилювача в загальному випадку також комплексно, однак воно рідко є істотним показником, а тому звичайно не вказується.
Коефіцієнти підсилення і коефіцієнти корисної дії.
Коефіцієнт підсилення напруги К, називаний звичайно просто коефіцієнтом підсилення підсилювача, являє собою відношення сталого значення напруги сигналу на виході до напруги сигналу на вході пристрою:
К=Uвих/Uвх (1)
Наскрізний коефіцієнт підсилення напруги К* являє собою відношення вихідної напруги до ЕРС джерела сигналу Едж:
К*=Uвих/Едж (2)
Відношення сталого значення струму сигналу на виході до струму сигналу на вході являє собою коефіцієнт підсилення струму Kт а відношення потужності сигналу в навантаженні підсилювача до потужності сигналу на вході - коефіцієнт підсилення потужності Км:
Кт=Iвих/Iвх; Км=Рнагр/Рвх
Коефіцієнти підсилення напруги і токи є комплексними величинами, тому що вихідна напруга і струм через наявність у навантаженні і ланцюгах підсилювача реактивних складові опори зрушені по фазі щодо вхідних значень.
У зв'язку з тим, що сприйняття органів почуттів людини підкоряється логарифмічному законові, абсолютну величину (модуль) коефіцієнтів підсилення нерідко виражають у логарифмічних одиницях - децибелах або неперах, для чого користуються співвідношеннями:
К (дб) =20lg; Кт (дб) =20lgKт; Км (дб) =20lgKм;
К (неп) =ln; Кт (неп) =lnKт; Км (неп) =lnKм; (3)
де е - основа натуральних логарифмів. З (3) випливає, що
(ДО; Кт; Км) (неп) =1,115 (ДО; Кт; Км) (дб) (4)
Коефіцієнт корисної дії вихідного ланцюга підсилювального каскаду η являє собою відношення потужності сигналу Р~, що віддається витівкою ланцюгом, до споживаній нею потужності Ро від джерела живлення вихідного ланцюга:
η=P~/P0 (5)
ККД вихідного ланцюга є важливим показником економічності роботи каскаду і використовується для оцінки властивостей різних режимів роботи підсилювальних елементів. Для оцінки економічності роботи могутніх підсилювачів використовують поняття коефіцієнта корисної дії підсилювача ηпідс, рівного відношенню віддається підсилювачем у навантаження потужності сигналу Рнагр до сумарної потужності ΣР, споживаної їм від усіх джерел харчування:
Ηпідс= Рнагр/ ΣР (6)
Частотна і фазова характеристики.
Форма складного гармонійного сигналу на виході лінійного чотириполюсника відрізняється від форми сигналу на його вході, якщо
1) гармонійні складового вхідного сигналу змінюються (підсилюються або послабляються) чотириполюсником неоднаково. Зміни форми сигналу, викликані цією причиною, називають частотними перекручуваннями;
2) внесені чотириполюсником фазові зрушення змінюють взаємне розташування гармонійних складових у вихідному сигналі. Викликувані цим зміни форми вихідного сигналу називають фазовими перекручуваннями.
Тому що частотні і фазові перекручування можуть виникати в лінійному електричному ланцюзі, що не містить нелінійних елементів, них називають лінійними перекручуваннями.
Представивши вихідну напругу підсилювача на частоті ω як вектор, зрушений на кут φω стосовно вектора вхідної напруги Uвх, на підставі (1) одержимо
К= (7)
відкіля видно, що коефіцієнт підсилення на будь-якій частоті також є вектором, який характеризується модулем Кω=Uвих. ω/Uвх і фазовим кутом φω, який являє собою кут зрушення фази між вихідною і вхідною напругами підсилювача
Якщо відкласти вектор коефіцієнта підсилення підсилювача Кω у площині комплексних чисел або полярній системі координат, то при зміні частоти сигналу ω від 0 до ∞ кінець вектора опише криву, називану частно-фазовой характеристикою підсилювача або його годографом коефіцієнта підсилення (рис 1.2). Частотнофазова характеристика містить повну інформацію як про залежності величини коефіцієнта підсилення від частоти, так і про зміну з частотою внесеного підсилювачем кута зрушення фази, характеристики такого типу (годографи) зручні для аналізу стійкості підсилювачів з негативним зворотним зв'язком і визначення деяких їхніх показників. Для судження про внесений підсилювачем лінійних викривлень частотнофазову характеристику не використовують тому що для цієї мети вона недостатньо наочна.
Рис.1.2 Частотнофазова характеристика підсилювача.
Рис.1.3 Частотна характеристика підсилювача
Оцінку внесених підсилювачем частотних спотворень роблять по його частотній характеристиці (називаною також амплітудно-частотною характеристикою), що представляє собою графік залежності модуля коефіцієнта підсилення До від частоти (мал.1.3), де по вертикальній осі відкладають К в лінійному або логарифмічному масштабі (або вихідна напруга Uвих, що відповідає незмінному значенню вхідної напруги Uвх) і по горизонтальній осі - частоту f у герцах (або кутову частоту ω=2πf) у логарифмічному масштабі. Необхідність застосування логарифмічного масштабу на осі частот диктується широким діапазоном робочих частот сучасних підсилювачів.
Діапазоном робочих частот підсилювача гармонійних сигналів називають смугу частот від нижчої робочої частоти fн до вищої робочої частоти fв, у межах якої абсолютна величина (модуль) коефіцієнта підсилення, а іноді і його фаза не повинні виходити за межі заданих допусків.
Діапазон робочих частот, а отже, і частоти fн і fв визначаються призначенням підсилювача; їх вибирають у відповідності зі спектральним складом посилюваних сигналів.
Амплітудна характеристика і динамічний діапазон.
Амплітудною характеристикою підсилювача називають залежність амплітуди (або діючого значення) напруги сигналу на виході, від амплітуди (або діючого значення) напруги сигналу на вході. Тому що коефіцієнт підсилення ідеального підсилювача надає собою постійну величину, що не залежить від величини вхідного сигналу, його амплітудна характеристика являє собою пряму. минаючу через початок координат; під кутом, обумовленим посиленням підсилювача (мал.1.4, пунктир).
Рис.1.4 Амплітудна характеристика підсилювача
Амплітудна характеристика реального підсилювача (мал.1.4, суцільна лінія) не проходить через початок координат, а згинається при малих вхідних напругах, перетинаючи вертикальну вісь у точці Uш, тому що при відсутності вхідного сигналу вихідна напруга підсилювача дорівнює напрузі власних шумів у його вихідному ланцюзі Uш. При занадто великих вхідних напругах реальна амплітудна характеристика також розходиться з ідеальної, згинаючи внаслідок перевантаження нелінійних елементів, що містяться в схемі підсилювача, в основному тому, що амплітуда сигналу на останньому (вихідному) підсилювальному елементі при цьому виходить за межі робочої ділянки його характеристики.
З мал.3 видно, що реальний підсилювач може підсилювати підведені до його входу сигнали з напругою не нижче Uвхмін тоді як більш слабкі сигнали будуть маскуватися (заглушатися) напругою власних шумів підсилювача Uш, і не вище Uвхмакс тому що інакше підсилювач буде вносити дуже великі нелінійні спотворення. Відношення Uвхмакс/Uвх. мін характеризує діапазон напруг сигналу, посилюваних даним підсилювачем без надмірних перешкод і перекручувань, і називається динамічним діапазоном підсилювача:
Ду=Uвхмакс/Uвхмін; Ду (дБ) =20lgДу=20lgUвх. макс/Uвх. мін (8)
У більшості випадків напруга сигналу, підведена до входу підсилювача, не є постійною величиною, а змінюється від найбільшого значення Uсигн. макс до найменшого Uсигн. мін. Відношення найбільшої напруги до найменшого характеризує робочий діапазон напруг даного джерела сигналу і називається динамічним діапазоном сигналу:
Дс=Uсигн. макс/Uсигн. мін; Дс (дБ) =20lgДс=20lgUсигн. макс/Uсигн. мін (9)
Щоб підсилювач міг підсилювати весь діапазон напруг джерела сигналу, динамічний діапазон підсилювача повинний бути більше або дорівнює динамічному діапазонові сигналу, тобто Ду=Дс. Якщо цю вимога задовольнити не вдається, то для посилення з припустимими спотвореннями і перешкодами сигналів, що надходять на підсилювач, динамічний діапазон сигналу стискають за допомогою автоматичного регулятора посилення; іноді для цієї мети використовують ручний регулятор.
Підсилювачі потужності.
Основною задачею підсилювача потужності є забезпечення на навантаженні заданої потужності корисного сигналу. Більшість електронних підсилювачів складається з декількох каскадів попереднього посилення напруги сигналу й одного або двох каскадів посилення потужності, називаних відповідно предоконечным і кінцевим каскадами.
Підсилювачі потужності мають ряд особливостей у порівнянні з підсилювачами напруги. Зовнішніми навантаженнями кінцевих каскадів звичайно служать обмотки електродвигунів, реле, динамічних гучномовців і т.д., опору яких у більшості випадків мають порядок одиниць і десятків омів. У той же час вихідні опори транзисторів і ламп, до яких підключається зовнішнє навантаження, складають тисячі омів і більш. А тому що максимальна потужність, виділювана в навантаженні, виникає за умови рівності внутрішнього опору джерела й опору навантаження, необхідно погодити ці опори один з одним. Ця задача вирішується за допомогою погоджуючого трансформатора погодить, називаного вихідним. Первинну обмотку вихідного трансформатора включають у колекторний ланцюг транзистора або анодний ланцюг лампи, а до вторинної обмотки підключають зовнішнє навантаження підсилювача потужності. Тоді опір зовнішнього навантаження Rн, приведений до первинної обмотки трансформатора, буде мати величину R'н, обумовлену коефіцієнтом трансформації трансформатора kт.
R'н= Rн kт2= Rн (ω1/ω2) 2, (10)
де ω1 і ω2 - відповідно число витків первинної і вторинної обмоток трансформатора.
Підбором коефіцієнта трансформації можна домогтися оптимального режиму роботи підсилювача потужності. При вихідному опорі підсилювача потужності Rвих= R'н формули (10) знаходимо
kт=ω1/ω2= (11)
Величина вихідної потужності Рвих узалежності від призначення підсилювача може складати від часток вата до десятків кіловатів і більш. Ця потужність передається навантаженню Rн підсилювача і дорівнює
Рвих= Uвих. т/Rн (12)
де Uвих. m=IнmRн - амплітуда перемінної напруги на навантаженні Rн.
Чим більше вихідна потужність підсилювача, тим більшого практичного значення набуває його коефіцієнт корисної дії (ККД), тому що споживання енергії від джерел живлення може виявитися досить значним. Тому в підсилювачах потужності часто використовують режим класу В, що забезпечує більш високий ККД, чим режим класу А. Але в режимі класу В виникають значні нелінійні перекручування. Для їхнього зменшення служать спеціальні двотактні підсилювачі потужності, а в однотактных підсилювачах потужності приходиться застосовувати тільки режим класу А.
Як правило, двотактні схеми підсилювачів потужності на лампах застосовують при вихідній потужності понад 2-6 Вт, а на транзисторах - уже при потужності більш 50-100 мВт. Для одержання значної вихідної потужності (порядку сотень ват і вище) застосовують потужні генераторні лампи.
Однотактные підсилювачі потужності.
На мал.1.5 представлена схема однотактного підсилювача потужності на транзисторі.
Рис.1.5 Схема однотактного підсилювача потужності.
Конденсатори Свх є вхідними розділовими, резистори Rб1 і Rб2 утворять дільник, що створює необхідний зсув на базу транзисторів, а резистор Rе і конденсатор Се є елементами температурної стабілізації режиму роботи каскаду.
Розрахунок основних величин, що характеризують режим роботи підсилювача потужності, проводять графоаналітичним методом по вихідних характеристиках транзистора або анодних характеристик лампи. При цьому граничні експлуатаційні величини підсилювальних приладів не повинні бути перевищені. Для транзистора цими величинами є максимальна напруга колектора Uкмакс максимальний струм колектора Iкмакс і максимальна потужність, що розсіюється на колекторі транзистора, Ркмакс.
Двотактні підсилювачі потужності.
Схема двотактного підсилювача потужності на транзисторах і часових діаграмах, що пояснюють принцип його роботи, дані на мал.1.6 а і б.
Двотактний підсилювач потужності складається з двох симетричних пліч на транзисторах VI і V2 з максимально близькими параметрами і працюючими в однакових режимах. Звичайно двотактні підсилювачі потужності працюють у режимі посилення класу В, тому що при цьому їхній КПД найбільший. Напруга зсуву на бази транзисторів у режимі класу У вибирають таким чином, щоб робоча крапка знаходилася на нижньому кінці лінії навантаження й обоє транзистора при відсутності сигналу були замкнені. У схемі мал.1.6 а, це досягається підбором співвідношення опору резисторів R
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Общетеоретические и организационные вопросы судебной медицины
Судебная медицина изучает и разрабатывает различные проблемы биологии применительно к требованиям юридической и медицинской науки, п
- Остеоартроз и сопутствующие заболевания
Клинический диагноз:Основной: Остеоартроз: полиузелковая форма, с преимущественным двухсторонним поражением коленных суставов, диста
- Расстройство здоровья и смерть от различных видов внешнего воздействия
Реферат на тему:Расстройство здоровья и смерть от различных видов внешнего воздействияСодержание1. Расстройства здоровья и смерть от д
- Реабилитация при нарушениях течения беременности
С момента внедрения оплодотворенной яйцеклетки в слизистую оболочку матки в организме женщины наступают значительные изменения в раз
- Тубулоинтерстициальный нефрит у детей
1. Тубулоинтерстициальный нефритТубулоинтерстициальный нефрит (ТИН) - это острое или хроническое абактериальное неспецифическое восп
- Управление и экономика фармации
Вопросы и типовые задачи к экзаменупо «Управлению и экономике фармации»на 5 курсе фармацевтического факультета ТМУ (очно)A. Вопросы к
- Фармакокинетика и фармакодинамика антибактериальных препаратов
Антибиотики - вещества, которые продуцируются микроорганизмами и подавляют рост других микроорганизмов или уничтожают их. Помимо анти