Методы измерения частоты
Министерство Образования РФ
Чебоксарский Филиал (институт) Московского Государственного Открытого Университета
РЕФЕРАТ
ПО ДИСЦИПЛИНЕ "МЕТРОЛОГИЯ И СТАНДАРТИЗАЦИЯ"
НА ТЕМУ: "МЕТОДЫ ИЗМЕРЕНИЯ ЧАСТОТЫ"
ЧЕБОКСАРЫ 2000
МЕТОДЫ ИЗМЕРЕНИЯ ЧАСТОТЫ
ОБЩИЕ СВЕДЕНИЯ
Частотой колебаний называют число полных колебаний в единицу времени:
f=n/t (1)
где t—время существования п колебаний.
Для гармонических колебаний частота f = 1/T, где Т — период колебаний.
Единица частоты герц определяется как одно колебание в одну секунду. Частота и время неразрывно связаны между собой, поэтому измерение той или другой величины диктуется удобством эксперимента и требуемой погрешностью измерения. В Международной системе единиц СИ время является одной из семи основных физических величин. Частота электромагнитных колебаний связана с периодом колебания Т и длиной однородной плоской волны в свободном пространстве следующими соотношениями: fT = 1 и f = с, где с—скорость света, равная 299 792,5 ± 0,3 км/с.
Спектр частот электромагнитных колебаний, используемых в радиотехнике, простирается от долей герца до тысяч гигагерц. Этот спектр вначале разделяют на два диапазона — низких и высоких частот. К низким частотам относят и нфра звуковые (ниже 20 Гц), звуковые (20— 20 000 Гц) и ультразвуковые (20—200 кГц). Высокочастотный диапазон, в свою очередь, разделяют на высокие частоты (20 кГц — 30 МГц), ультравысокне (30 — 300 МГц) и сверхвысокие (выше 300 МГц). Верхняя граница сверхвысоких частот непрерывно повышается и в настоящее время достигла 80 ГГц (без учета оптического диапазона). Такое разделение объясняется разными способами получения электрических колебаний и различием их физических свойств, а также особенностями распространения на расстояние. Однако четкой границы между отдельными участками спектра провести невозможно, поэтому такое деление в большой степени условно.
МЕТОД ПЕРЕЗАРЯДД КОНДЕНСАТОРА
Присоединим конденсатор, емкость которого С, к источнику напряжения U. Конденсатор зарядится, и в нем накопится количество электричества q = CU. Если конденсатор переключить на магнитоэлектрический измеритель тока, то через него пройдет количество электричества q, вызвав отклонение указателя. Если конденсатор поочередно присоединять к источнику напряжения для заряда и к измерителю тока для разряда с частотой переключения f раз в секунду, то количество электричества, проходящее через амперметр при разряде, будет в f раз больше: fq = fCU = I, где I —среднее значение тока разряда. Отсюда следует, что ток в такой схеме прямо пропорционален частоте переключения и при постоянном произведении CU шкалу амперметра можно градуировать в единицах частоты:
f=I/(CU) (2)
Рис. 1. Структурная схема конденсаторного
частотомера
Структурная схема конденсаторного частотомера, в котором использован этот метод (рис. 11), состоит из усилителя-ограничителя УО и Зарядно-разрядного устройства ЗРУ с магнитоэлектрическим индикатором. Кроме того, имеется генератор Гк для калибровки частотомера на одной фиксированной частоте. На вход частотомера поступает напряжение измеряемой частоты. В усилителе-ограничителе оно принимает форму меандра. Меандр управляет зарядно-разрядным устройством, схема которого приведена на рис. 2.Рис. 2. Схема счетного устройства конденсаторного частотомера
Транзистор Т работает в режиме ключа: когда он закрыт, один ii3 конденсаторов С заряжается через резистор R, а когда транзистор открыт, тот же конденсатор разряжается через транзистор. Зарядный ток протекает через магнитоэлектрический миллиамперметр, градуированный в единицах частоты. Конденсаторы С переключаются: минимальная и максимальная емкость определяет диапазон измеряемых частот, а число конденсаторов — число под-диапазонов.
Значение напряжения, до которого заряжается конденсатор данного поддиапазона, в зависимости от измеряемой частоты и значения емкости конденсатора изменяется, и градуировка шкалы частотомера нарушается. Для устранения этого явления в зарядно-разрядном устройстве предусмотрена стабилизация напряжения заряда, которая осуществляется стабилитроном Дз; напряжение питаниятакже стабилизируется с помощью стабилитронов Д1 и Д2 Нижний предел измеряемых частот составляет 10 Гц;
при более низких частотах подвижная часть магнитоэлектрического индикатора будет совершать механические колебания в такт с измеряемой частотой. Верхний предел зависит от постоянной времени цепи заряда, определяемой не только сопротивлением резистора R и минимальной емкостью конденсатора С, но и монтажными емкостями элементов зарядно-разрядного устройства, и не превышает 1 МГц. Погрешность измерения зависит от класса точности миллиамперметра, остаточной нестабильности напряжения заряда конденсатора и составляет 1-2 %.
РЕЗОНАНСНЫЙ МЕТОД
Р
fx
ЭСв
ИК
ЭСв
езонансный метод измерения частоты заключается в сравнении измеряемой частоты с собственной резонансной частотой градуированного измерительного колебательногоРис. 3. Структурная схема измерения частоты резонансным методом
Рис. 4. Схема резонансного частотомера
контура. Этот метод применяется в диапазоне высоких и сверхвысоких частот. Структурная схема его реализации приведена на рис. 3. Источник напряжения измеряемой частоты fx с помощью элемента связи ЭСв соединяется с прецизионным измерительным контуром ИК, который настраивается в резонанс с частотой fx Момент резонанса фиксируется по максимальному показанию индикатора, присоединенного к контуру через второй элемент связи. Измеряемая частота определяется по градуированной шкале микрометрического механизма настройки с большим числом отсчетных точек. Контур и индикатор конструктивно объединены в устройство, называемое резонансным частотомером. Если шкала механизма настройки градуирована в длинах волн, то такое устройство называют резонансным волномером.Схема резонансного частотомера (рис. 4) позволяет выявить источники погрешности измерения. Погрешность градуировки определяется качеством механизма настройки;
ее можно уменьшить путем предварительной градуировки шкалы частотомера с помощью образцовой меры. Нестабильность частоты измерительного контура возникает вследствие изменения его геометрических размеров под влиянием изменения температуры окружающей среды; ее можно вычислить по следующей формуле:
где f — отклонение частоты от резонансной под влиянием изменения температуры на T, К; — линейный температурный коэффициент расширения материала контура; k — конструктивный коэффициент. Нестабильность настройки контура возникает также при изменении вносимых реактивных сопротивлений со стороны источника fx и индикатора. Активные вносимые сопротивления уменьшают добротность контура.
Рис.5 резонансная кривая колебательного контура
Уменьшение влияния вносимых сопротивлений достигается ослаблением связи с источником fx и индикатором.
Неточность фиксации резонанса определяется значением добротности контура Q нагруженного измерительного контура и разрешающей способностью индикатора. Из уравнения резонансной кривой (рис. 5) можно получить формулу для расчета относительной погрешности от неточности фиксации резонанса:
(3)
где U0 — показание индикатора при резонансе; U — показание при расстройке измерительного контура наf.
Измерительный контур резонансного частотомера в зависимости от диапазона частот, для которого он предназначен, выполняется с сосредоточенными или распределенными параметрами. Резонансные частотомеры с сосредоточенными параметрами в настоящее время полностью вытеснены цифровыми частотомерами, а с распределенными параметрами широко применяются в диапазоне СВЧ.
Резонансные частотомеры характеризуются диапазоном измерения частот, погрешностью и чувствительностью, т.е. минимальной мощностью, поглощаемой от источника измеряемой частоты, необходимой для уверенного отсчета показаний индикатора при резонансе.
Резонансные частотомеры с распределенными параметрами. Колебательный контур частотомера выполняют либо в виде отрезка коаксиальной линии, либо в виде объемного резонатора. Настройка коаксиальной линии производится изменением ее длины, объемного резонатора — изменением его объема.
Частотомеры с распределенными параметрами связывают с источниками измеряемой частоты через штыревую или рупорную антенну или через элементы связи в виде
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Отчёт
В самом ближайшем будущем Internet в корне изменит экономические и социальные условия во всем мире. Internet станет очень важной частью жизни. Э
- ПЭВМ
Появление в 1975 г. в США первого серийного персонального компьютера (пресональной ЭВМ – ) вызвало революционный переворот во всех област
- Оптико-электронные системы
ОПТИКО-ЭЛЕКТРОННЫЕ (КВАНТОВЫЕ) СИСТЕМЫ И УСТРОЙСТВАСОДЕРЖАНИЕ1.Задачи, решаемые с помощью ОЭС22.Краткий исторический очерк43.Сравнение п
- Ремонт и регулировка мониторов для компьютеров
ЗмістВСТУП1. ТИПИ ВІДЕОМОНІТОРІВ ДЛЯ КОМП'ЮТЕРІВ2. ОСНОВНІ ПРИНЦИПИ ПОБУДОВИ СУЧАСНИХ ВМ3. ХАРАКТЕРИСТИКИ Й ОПИС ОКРЕМИХ ВУЗЛІВ3.1. ДЖЕРЕЛ
- Отчет по практике
1 Структура предприятия УППО Практика проводилась на базе предприятия УППО. Предприятие занимается производством РЭО для самолетов гра
- Информационная концепция эволюции нашего мира
Калашников Юрий ЯковлевичВ живых системах нет ничего более загадочного, чем молекулярная информация. Как ни странно, но первая закодиро
- Единство вещества, энергии и информации – основной принцип существования живой материи
Калашников Юрий Яковлевич Данная статья посвящена трем главным составляющим живой формы материи – веществу, энергии и информации. Здес
Copyright © https://referat-web.com/. All Rights Reserved