Математическое моделирование окружающей среды
ГОСКОМВУЗ
Красноярский Государственный Технический Университет
Кафедра: МО ЭВМРефератТема: Математическое моделирование окружающей среды.
Выполнил:
Студент группы ВТ26-5
Садовский М.В.
Проверил:
Белолипецкий В.М.
Красноярск’ 370 лет
Введение:
При изучении любого явления вначале получают качественное описание проблемы. На этапе моделирования качественное представление переходит в количественное. На этом этапе определяют функциональные зависимости между переменными для каждого варианта решения и входных данных выходные данные системы. Построение моделей – процедура неформальная и очень сильно зависит от опыта исследователя, всегда опирается на определённый опытный материал. Модель должна правильно отражать явления, однако этого мало – она должна быть удобной для использования. Поэтому степень детализации модели, форма её представления зависят от исследования.
Изучение и формализация опытного материала – не единственный способ построения математической модели. Важную роль играет получение моделей, описывающих частные явления, из моделей более общих. Сегодня математическое моделирование применяют в различных областях знаний, выработано немало принципов и подходов, носящих достаточно общий характер.
Основная задача научного анализа – выделить реальные движения из множества мысленно допустимых, сформулировать принципы их отбора. Здесь термин “движение” употребляется в широком смысле – изменения вообще, всякое взаимодействие материальных объектов. В различных областях знаний принципы отбора движений разные. Принято различать три уровня организации материи: неживая, живая и мыслящая. На самом нижнем уровне – неживой материи – основными принципами отбора являются законы сохранения вещества, импульса, энергии и т.п. Любое моделирование начинается с выбора основных (фазовых) переменных, с помощью которых записывают законы сохранения.
Законы сохранения не выделяют единственного решения и не исчерпывают всех принципов отбора. Очень важны различные условия (ограничения): граничные, начальные и др.
На уровне живой материи все принципы отбора движений, справедливые для неживой материи, сохраняют свою силу. Поэтому и здесь процесс моделирования начинается с записи законов сохранения. Однако основные переменные оказываются уже иными.
Преимущества математических моделей состоят в том, что они точны и абстрактны, передают информацию логически однозначным образом. Модели точны, поскольку позволяют осуществлять предсказания, которые можно сравнить с реальными данными, поставив эксперимент или проведя необходимые наблюдения.
Модели абстрактны, так как символическая логика математики извлекает те и только те элементы, которые важны для дедуктивной логики рассуждения, исключая все посторонние значения.
Недостатки математических моделей заключаются часто в сложности математического аппарата. Возникают трудности перевода результатов с языка математики на язык реальной жизни. Пожалуй, самый большой недостаток математической модели связан с тем искажением, которое можно привнести в саму проблему, упорно отстаивая конкретную модель, даже если в действительности она не соответствует фактам, а также с теми трудностями, которые возникают иногда при необходимости отказаться от модели, оказавшейся неперспективной. Математическое моделирование настолько увлекательное занятие, что “модельеру” очень легко отойти от реальности и увлечься применением математических языков к абстрактным явлениям. Именно поэтому следует помнить, что моделирование в прикладной математике – это лишь один из этапов широкой стратегии исследования.
Моделирование водных экосистем:
Научно-технический прогресс, развитие сельского хозяйства, урбанизация привели к загрязнению природных вод. Проблема загрязнения вод приобрела глобальный характер. В настоящее время выделяют химическое, физическое, биологическое, тепловое, радиоактивное типы загрязнений.
Загрязняющие вещества, в зависимости от типа источника загрязнения, разными путями попадают в водную среду. Они могут поступать из атмосферы; могут быть смыты склоновым стоком с сельскохозяйственных полей и угодий в подземные и речные воды; загрязнение также может быть бактериальным в результате развития и отмирания водной растительности. Поступление загрязняющих веществ в водоём может происходить непрерывно (по времени) или в результате массового сброса, в виде точечных или распределённых в пространстве источников.
При имитационном моделировании качества воды необходимо совместное описание гидрофизических и химико-биологических процессов. Задача моделирования заключается в том, чтобы научиться предвидеть, возможно, более отдалённые последствия вмешательства человека в установившийся в природе круговорот веществ и уметь нейтрализовать нежелательные результаты.
Под экосистемой понимают единый природно-антропогенный комплекс, образованный живыми организмами и средой их обитания, в котором экологические компоненты связаны между собой причинно-следственными связями, обменом веществ и распределением потока энергии. Водная экосистема является элементом системы более высокого порядка – биосферы. Водоём – открытая система, связанная с окружающей средой входными и выходными данными.
Остановимся на описании водных потоков и в качестве примера Упрощённое уравнение для расчёта температурного режима реки. Температурный режим водных потоков описывается уравнением теплопроводности Фурье –Кирхгофа:
,
где x, y, z – декартовы координаты, t – время, T – температура, - составляющие вектора скорости, с - удельная теплоёмкость воды, p - плотность среды, - коэффициенты теплопроводности, Sv - внутренние источники тепла. Для водных потоков в руслах рек и каналов обычно принимают x-овую и z-овую составляющие вектора скорости равными нулю и тоже равным нулю.
Математическое моделирование глобального развития:
В настоящее время проблема “Человек и среда его обитания” широко обсуждается во всём мире. Рост населения, истощение природных ресурсов, отрицательные воздействия человека на окружающую среду, нехватка продуктов питания в некоторых развивающихся странах – вот основные аспекты этой проблемы. В условиях научно-технической революции воздействие человека на окружающую его среду приобрело масштабы, которые можно сравнить с природными процессами. Возникла реальная угроза необратимых отрицательных последствий. Современные социально-экономические процессы взаимодействия человека и окружающей среды настолько сложны и масштабны, что нельзя пассивно надеяться на их стихийную адаптацию в желательном направлении. Возникает задача – изучить действие всех в совокупности факторов, обуславливающих развитие человечества, найти пути сознательного управления этим развитием.
В этих условиях важным инструментом анализа управления развитием сложных систем становятся методы математического моделирования. Методологической базой комплексного исследования наиболее важных сторон развития человеческого общества является системный анализ. Системный анализ – это прикладная дисциплина, занимающаяся решением конкретных проблем, возникающих в процессе проектирования и анализа сложных технических, биологических, экономических и прочих систем.
Глобальные модели Форрестера и Мидоуза.
Первая попытка формализовать описание экологических процессов была принята в 1971 г. американским исследователем Дж. Форрестером. В своей книге “Мировая динамика” Форрестер предложил некоторый вариант модели экономического развития, содержащий лишь два экологических параметра: численность населения и загрязнение среды. Модель позволила оценивать взаимное влияние этих параметров, с одной стороны, и темпов экономического развития – с другой. Хотя, как писал сам Форрестер, основная задача его книги была чисто методической, а модель носила учебный характер, роль его работы в развитии исследований глобального характера трудно переоценить. Впервые была продемонстрирована принципиальная возможность объединить производственные, социальные и экологические процессы одним формализмом. Через год после “Мировой динамики” вышла в свет книга “Пределы роста”, написанная группой ученых под руководством Д. Мидоуза. Модель Мидоуза – “Мир - 3” – представляет собой систему нелинейных дифференциальных уравнений, описывающих динамику взаимодействия таких секторов, как народонаселение, промышленность, сельское хозяйство, не возобновляемые природные процессы, загрязнение среды и др. Целью их работы было выявление общих качественных тенденций процесса взаимосвязанного изменения основных переменных системы, анализ чувствительности результатов по отношению к различным заложенным в модель предположениям.
Работы Форрестера и Мидоуза вызвали широкий отклик в мировой литературе. Принципиальным недостатком математических моделей “Мир-2” и “Мир-3” являлось то, что модели не отражали возможности сознательного воздействия человека на процесс развития. Но следует отметить определённое положительное значение указанных работ. Впервые были системно проанализированы некоторые глобальные экономические. Демографические и экологические процессы.
Проект “Стратегия выживания” Месаровича – Пестеля.
Следующим этапом в работах по глобальному моделированию явился проект “Стратегия выживания”, который возглавил М. Месарович (США) и Э. Пестель (ФРГ). Критикуя модель “Мир-3” как “механическую”, Месарович и Пестель выдвигают задачу построения “кибернетической” модели мира. Основные принципы её построения могут быть сформулированы в трёх тезисах:
- Модель, отражающая сложные процессы взаимодействия человека с окружающей средой, должна основываться на теории многоуровневых иерархических систем.
- Модель должна быть управляемой, т.е. включать в себя процесс принятия решений, что позволяет учесть возможность сознательного воздействия человека на развитие мировой системы. Для этого необходимо обеспечить работу в режиме диалога между исследователем модели и ЭВМ.
- Мир следует рассматривать не как единое однородное целое, а как систему взаимодействующих регионов, различающихся уровнем развития, населенностью и т.п.
В модели Месаровича – Пестеля (М-П-модель) все страны мира, в соответствии с их социально-экономическими структурами и уровнями развития, объединены в 10 регионов; каждый регион описывается системой региональных подмоделей, их структура – одна и та же для всех регионов, отличие – в начальных данных и значениях параметров. Связь регионов осуществляется через миграцию населения, импорт и экспорт продукции.
Латиноамериканская модель глобального развития.
В 1974 г. группа аргентинских учёных во главе с профессором А. Эррерой получила предварительные результаты работы над латиноамериканской моделью глобального развития. Предпосылки для выполнения работы при обсуждении модели “Мир-3” послужил тезис о том, что основные преграды на пути гармонического развития человечества заключаещися главным образом в неравномерном распределении богатства между различными странами.
В модели Эрреры за основную цель развития человеческого общества принято достижение удовлетворительных условий жизни всеми странами мира, а не просто рост материального потребления. Под удовлетворительными условиями понимаются некоторые достаточно высокие уровни медицинского обслуживания, образования, обеспеченности питанием и жильём.
Список литературы:
- Математическое моделирование в задачах охраны окружающей среды. Белолипецкий В.М. Шокин Ю.И.
- Дополнительные главы естествознания. Применения законов сохранения в математическом моделировании. Белолипецкий В.М., Дулов В.Г.
- Математическое моделирование окружающей среды. Белолипецкий В.М.
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Математическое моделирование полета лыжника
Министерство Общего и Профессионального Образования РФПермский государственный технический университет Кафедра математического мод
- Математическое моделирование системных элементов
Математическое моделирование системных элементов Выдающийся итальянский физик и астроном, один из основателей точног
- Математическое программирование
Математическое программированиеОбщая задача линейного программирования (ЗЛП):Здесь (1) называется системой ограничений , ее матрица им
- Матричный анализ
МАТРИЧНЫЙ АНАЛИЗ. Функции от матриц Определение функции. Df. Пусть – функция скалярного аргумента. Требуется определить, что понимать по
- Метод Гаусса
МЕТОД ГАУССАОГЛАВЛЕНИЕ Историческая справка Краткая теория Методические рекомендации по выполнению заданий. Примеры выполнения задан
- Метод Гаусса с выбором главного элемента
МЕТОД ГАУССА С ВЫБОРОМ ГЛАВНОГО ЭЛЕМЕНТА.Основная идея метода. Может оказаться, что система Ax=f (1)имеет единс
- Метод Зойтендейка
ГК и ВО РоссииНГТУКафедра АСУРеферат на тему:Метод ЗойтендейкаФакультет: АВТГруппа: АС-513Студент: Ефименко Д.В.Преподаватель