№7
1 Вычисление
площади плоской области
с помощью 2ного интеграла
Если Д правильная в направлении оу a<=x<=b, y1(x)<=y<=y2(x), то
Если Д огр линиями в полярных координатах, то
2 Признаки Даламбера и Коши
Т(Признак Далембера)
Пущай для ряда un с положит членами существует предел:
, то
1 Если k<1, то ряд сходится
2 Если k>1 ряд расходится
Т(Признак Коши)
Пусть для того же самого ряда (т. е. положительного) существует предел:, тогда
1 Если k<1, то ряд сходится
2 Если k>1 ряд расходится
А вот если эти все пределы по Коши и дедушке Даламберу равны 1, то о сходимости или расходимости ряда ничего сказать низзя. Вот низзя и все тут. Вот.
№8
1 Вычисление объема
с помощью 2ного интеграла
Рассматривая в пространстве тело Р, огр снизу плоскостью оху, сверху z = f(x,y), кот проектируется в Д, сбоку границей области Д, называемое криволинейным цилиндром. Объем этого тела вычисляют по формуле:
если f(x,y)<=0 в Д тор тело находится под плоскостью оху. Его объем равен объему цилиндрического тела. огр сверху ф-цией:
z = |f(x,y)|>=0.
тогда
если в Д ф-ция меняет знак, то область разбивается на 2. Область Д1, f(x,y)>=0; Д2, f(x,y)<=0, тогда:
2 Знакочередующиеся ряды. Признак Лейбница.
Ряд называется знакочередующимся если каждая пара соседних членов имеет разные знаки (один ♀, другой ♂), если считать каждый член сего ряда положительным то его можно записать в виде:
Т (Признак Лейбница)
Если для знакочередующегося ряды выполняются условия:
1) u1>=u2>=u3…>=un>=un+1…
2)
то ряд сходится, а его сумма и остаток rn удовлетворяют неравенствам: 0<=S<=un и |rn|<=un+1
Ряд удовлетворяющий условиям теоремы наз. рядом Лейбница.
Если условие чередования знаков выполняется не с первого члена, а с какого-нибудь исчо, то при существовании равного 0 предела ряд будет также сходится.
№9
1 Вычисление
площади поверхности
с помощью двойного интеграла.
Пусть дана кривая поверхность Р, заданная ур-ями z = f(x,y) и имеющая границу Г, проецирующуюся на плоскость оху в область Д. Если в этой области ф-ция f×(x,y) непрерывна и имеет непрерывные частные производные: тогда площадь поверхности Р вычисляется:
для ф-ций вида x = m (y,z) или y = j(x,z) там будут тока букыв в частных производных менятца ну и dxdy.
2 Знакопеременные ряды.
Абсолютная и условная
сходимость рядов.
Ряд называют знакопеременным, если его членами являются действительные числа, а знаки его членов могут меняться как кому в голову взбредет. Пусть дан ряд:
u1+u2…+un=(1), где un – может быть как положительным, так и отрицательным. Рассмотрим ряд состоящий из абсолютных значений этого ряда:
|u1|+|u2|…+|un|=(2),
Если сходится ряд (2), то ряд (1) называют абсолютно сходящимся, а вот если ряд (1) сходится, а ряд (2) расходится. то ряд (1) наз сходящимся условно.
Т. Признак абсолютной сходимости:
Если знакочередующийся ряд сходится условно. то он и просто так сходится, при этом:
<=
Доквы:
т. к. 0<=|un|+un<=2|un|, то по признаку сравнения сходится ряд |un|+un, тогда сходится ряд: (|un|+un)-|un|=un. Далее, т. к. по св-ву абсолютной величины |Sn|=|u1+u2+…+un|<=|un| " n Î N, то переходя к пределу получим:
<=
Т2 Если ряд (1) абсолютно сходится, то и любой ряд составленный из тех же членов, но в любом другом порядке тоже абсолютно сходится и его сумма равна сумме ряда un – Sn. А вот с условно сходящимися рядами все гораздо запущенней.
Т(Римана)
Если знакопеременный ряд с действительными членами сходится условно, то каким бы ни было дейст. число S можно так переставить члены ряда, что его сумма станет равна S, т. е. сумма неабсолютно сходящегося ряда зависит от порядка слагаемых
№10
1 Вычисление массы,
координат центра масс,
моментов инерции плоской
материальной пластины с
помощью 2ного интеграла.
Масса плоской пластины вычисляется по ф-ле:
, где r(х, у) – поверхностная плотность.
Координаты центра масс выч по ф-ле:
если пластина однородная, т. е. r(х, у) – const, то ф-лы упрощаются:
Статические моменты плоскостей фигуры Д относит осей оу и ох
Момент инерции плоской пластины относительно осей ох, оу, начала координат:
J0=Jx+Jy
если пластина однородная, то ро вышвыривается на фиг и считается равной 1.
2 Сходимость функциональных последовательностей и рядов
Функциональной последовательностью заданной на множестве Е, наз. последовательность ф-ций {fn(x)} (1)определенных на Е и принимающих числовые действительные значения.
Пусть задана поледовательность числовых ф-ций {un(x)} Формальнг написанную сумму: (2) называют функциональным рядом на множестве Е, а ф-цию un(x) – его членами. Аналогично случаю числовых рядов сумма: Sn(x) = u1(x)+u2(x)+…+un(x) называется частичной суммой ряда n порядка, а ряд: un+1? un+2… - его n-ным остатком. при каждом фиксированном х = х0 Î Е получим из (1) числовую последовательность {fn(x0)}, а из (2) – числовой ряд, которые могут сходится или расходится. если кто-нибудь из оных сходится, то сходится и функциональная посл (1) в т х0, и сия точка наз. точкой сходимости.
Если посл(1) сход на м-ж Е, то ф-ция f, определенная при " x Î E f(x) = назывется пределом посл (1), если ряд(2) сходится на м-ж Е, то ф-ция S(x) определенная при " x Î Е равенством
S(x)=
называется суммой ряда (2).
Остаток ряда сходится только когда на этом же м-ж сходится сам ряд., если обозначить сумму остатка ряда через rn(ч), то S(x) = Sn(x)+rn(x)
Если ряд (2) сходится абсолютно, то он наз абсолютно сходящимся на м-ж Е. Множество всех точек сходимости функционального ряда наз областью сходимости. Для определения области сходимости можно использовать признак Даламбера и Коши. С ихнею помашшю ф-ц ряд исследуется на абсолютную сходимость Например, если существует
и
, то ряд (2) абсолютно сходится при k(x)<1 и расходится при k(x)>1.
№11
1 Тройные интегралы
Пусть на некоторой ограниченной замкнутой области V трехмерного пространства задана ограниченная ф-ция f (x,y,z). Разобьем область V на n произвольных частичных областей, не имеющих общих внутренних точек, с объемами DV1… DVn В каждой частичной области возбмем произв. точку М с кооорд Mi(xi,hi,ci) составим сумму: f(xi,hi,ci)×DVi, кот наз интегральной суммой для ф-ции f(x,y,z). Обозначим за l максимальный диаметр частичной области. Если интегральная сумма при l à 0 имеет конечный предел, то сей предел и называется тройным интегралом от ф-ции f(x,y,z) по области V И обозначается:
2 Равномерная
сходимость функциональных
последовательностей и рядов.
Признак Вейерштрасса.
Ф-циональную последовательность {fn)x)} x Î E наз. равномерно сходящейся ф-цией f на м-ж Е, если для Î e >0, сущ номер N, такой, что для " т х Î E и " n >N выполняется ¹-во: |fn(x)-f(x)|наз. равномерно сходящимся рядом, если на м-ж Е равномерно сходится последовательность его частичной суммы. , т. ен. равномерная сходимость ряда означает:Sn(x) à f(x) Не всякий сходящийся ряд является равномерно сходящимся, но всякий равномерно сходящийся – есть сходящийся (не, вот это наверное лет 500 выдумывали.)
Т. (Признак Вейерштрасса равномерной сходимости ряда)
Если числовой ряд: (7),
где a >=0 сходится и для " x Î E и " n = 1,2… если выполняется нер-во |un(x)|<=an(8), ряд (9) наз абсолютно и равномерно сходящимся на м-ж Е.
Док-вы:
Абсолютная сходимость в каждой т. х следует из неравенства (8) и сходимости ряда (7). Пусть S(x) – сумма ряда (9), а Sn(x) – его частичная сумма.
Зафиксируем произвольное e >0 В силу сходимости ряда (7) сущ. номера N, " n >N и вып. нерво
Следовательно: |S(x)-Sn(x)| =
Это означает, что Sn(x) à S(x) что означает равномерную сходимость ряда..
№12
1 Замена переменных
в тройном интеграле.
Если ограниченная замкнутая область пространства V = f(x,y,z) взаимно однозначно отображается на область V’ пространства = (u,v,w) Если непрерывно дифференцируемы функции: x=x(u,v,w), y=y(u,v,w), z=z(u,v,w) и существует якобиан
то справедлива формула:
При переходе к цилиндрическим координатам, с вязанными с x,y,z формулами: x=rcosj, y=rsinj, z=z (0<=r<=+¥, 0<=j <= 2p, -¥<=z<=+¥)
Якобиан преобразования:
И поэтому в цилиндрических координатах переход осуществляется так:
При переходе к сферическим координатам: r? j q, связанными с z,y,z формулами x=rsinq×cosj,
y=r sinqsinj, z=rcosq.
(0<=r<=+¥, 0<=j <= 2p,
0<=q <=2p)
Якобиан преобразования:
Т. е. |J|=r2×sinq.
Итак, в сферических координатах сие будет:
2 Свойства равномерно
сходящихся рядов
Т1 Если ф-ция un(x), где х Î Е непрерывна в т. х0 Î E и ряд (1) равномерно сходится на Е, то его сумма S(x) = также непрерывна в т. х0.
Т2 (Об поюленном интегрировании ряда)
Пусть сущ. ф-ция un(x) Î R и непрерывная на отр. (a,b) и ряд (3) равномерно сходится на этом отрезке, тогда какова бы ни была т. х0 Î (a, b) (4) тоже равномерно сходится на (a,b). В частности: при x0 = a, х = b: т. е. ряд (3) можно почленно интегрировать.
Т3 (о почленном дифференцировании ряда)
Пусть сущ. ф-ция un(x) Î R и непрерывная на отр. (a,b) и ряд её производных (6) равномерно сходящийся на отр (a,b) тогда, если ряд сходится хотя бы в одной точке x0 Î (a,b) то он сходится равномерно на всем отрезке (a,b), его сумма S(x) = является непрерывно дифференцируемой ф-цией и
S’(x)= (9)
В силу ф-л ы (8) последнее равенство можно записать:
()’ =
So ряд (7) можно почленно дифференцировать
№13
1 Приложения
тройных интегралов
Объем тела
Масса тела: , где r(М) = r(x,y,z) - плотность.
Моменты инерции тела относительно осей координат:
Момент инерции относительно начала координат:
Координаты центра масс:
m – масса.
Интегралы, стоящие в числителях выражают статические моменты тела: Myz, Mxz, Mxy относит коорд плоскостей oyz, oxz, oxy. Если тело однородное: r(М) = const, то из формул она убирается и оне упрощаются как в 2ных интегралах.
2 Степенные ряды. Теорема Абеля
Степенным рядом наз функциональный ряд вида: a0+a1x+a2x2+… + anxn = (1) x Î R членами которого являются степенные ф-ции. Числа an Î R, наз коэффициентами ряда(1). Степенным рядом наз также ряд:
a0+a1(x-x0)+a2(x-x0)2… + an(x-x0)n = (2)
Степенной ряд (1) сходится абсолютно по крайней мере в т. х = 0, а ряд (2) в т х = х0, т .е в этих случаях все лены кроме 1 равны 0. Ряд (2) сводится к ряду (1) по ф-ле у = х-х0.
Т Абеля
1Если степенной ряд (1) сходится в т. х0 ¹ 0, то он сходится абсолютно при любом х, для которого |x|<|x0|.
2Если степеннгой ряд (1) расходится в т. х0, то он расходится в любой т. х, для которой |x|>|x0|
№14
1 Определение криволинейных
интегралов 1 и 2 рода
Криволинейный интеграл по длине дуги (1 рода)
Пусть ф-ция f(x,y) определена и непрерывна в точках дуги АВ гладкой кривой К. Произвольно разобъем дугу на n элементарных дуг точками t0..tn пусть Dlk длина k частной дуги. Возьмем на каждой элементарной дуге произвольную точку N(xk,hk) и умножив сию точку на соотв. длину дуги составим три интегральную суммы:
d1 = f(xk,hk)×Dlk
d2 = Р(xk,hk)×Dхk
d3 = Q(xk,hk)×Dyk,
где Dхk = xk-xk-1, Dyk = yk-yk-1
Криволинейным интегралом 1 рода по длине дуги будет называться предел интегральной суммы d1 при условии, что max(Dlk) à 0
Если предел интегральной суммы d2 или d3 при l à 0, то этот предел наз. криволинейным интегралом 2 рода, функции P(x,y) или Q(x,y) по кривой l = AB и обозначается:
или
сумму: + принято называть общим криволинейным интегралом 2 рода и обозначать символом:
в этом случае ф-ции f(x,y), P(x,y), Q(x,y) – называются интегрируемыми вдоль кривой l = AB. Сама кривая l наз контуром или путем интегрирования А – начальной, В – конечной точками интегрирования, dl – дифференциал длины дуги, поэтому криволинейный интеграл 1 рода наз. криволинейным интегралом по дуге кривой, а второго рода – по функции..
Из определения криволинейных интегралов следует, что интегралы 1 рода не зависят от того в каком направлении от А и В или от В и А пробегается кривая l. Криволинейный интеграл 1 рода по АВ:
, для криволинейных интегралов 2 рода изменение направления пробегания кривой ведет к изменению знака:
В случае, когда l – замкнутая кривая т. е. т. В совпадает с т. А, то из двух возможных направлений обхода замкнутого контура l называют положительным то направление, при котором область лежащая внутри контура остается слева по отношению к ??? совершающей обход, т. е. направление движения против часовой стрелки. Противоположное направление обхода наз – отрицательным. Криволинейный интеграл АВ по замкнутому контуру l пробегаемому в положит направлении будем обозначать символом:
Для пространственной кривой аналогично вводятся 1 интеграл 1 рода:
и три интеграла 2 рода:
сумму трех последних интегралов наз. общим криволинейным интегралом 2 рода.
2 Радиус сходимости и интервал сходимости степенного ряда.
Рассмотрим степенной ряд:
(1) Число (конечное или бесконечное) R>=0 наз радиусом сходимости ряда (1) если для любого х такого, что |x|R ряд расходится Интервал на числовой оси состоящий из т. х для которых |x|Т1 Для всякого степенного ряда (1) существует радиус сходимости R 0<=R<=+¥ при этом, если |x|Если вместо х взять у = х-х0, то получится: интервал сходимости: |x-x0Т2 Если для степенного ряда (1) существует предел (конечный или бесконечный): , то радиус сходимости будет равен этому пределу.
Док-вы: Рассмотрим ряд из абсолютных величин и по Даламберу исследуем его на сходимость:
(5)
1)Рассмотрим случай, когда конечен и отличен от 0. Обозначив его через R запишем (5) в виде При числовом значении х степенной ряд становится числовым рядом, поэтому по Даламберу ряд (1) сходится если |x|/R<1, т. е. |x|2)Пусть = ¥ тогда из(5) следует, что для любого х Î R Итак ряд (1) сходится при любом х причем абсолютно.
3) Пусть =0 тогда из (5) следует, что и ряд расходится для любого х. Он сходится только при х = 0 В этом сл-е R = 0.
Т3 Если существует предел конечный или бесконечный , то (10)
№15
1 условия
существования и вычисления
криволинейных интегралов.
Кривая L наз. гладкой, если ф-ции j(t), y(t) из определяющих её параметрических уравнений:
(1)
имеет на отрезке (a,b) непрерывные производные: j’(t), y’(t).Точки кривой L наз особыми точками, если они соответствуют значению параметра t Î (a,b) для которых (j’(t))2+(y’(t))2 = 0 т. е. обе производные обращаются в 0. Те точки для которых сие условие не выполняется наз. обычными (ВАУ!).
Если кривая L=AB задана ф-лами (1), является гладкой и нет имеет обычных точек, а ф-ции f(x,y), P(x,y), Q(x,y) непрерывны вдоль этой кривой, то криволинейные интегралы всех видов существуют (можно даже ихние формулы нарисовать для наглядности) и могут быть вычислены по следующим формулам сводящим эти интегралы к обычным:
Отседова жа вытекаает штаа:
В частности, если кривая АВ задана уравнением y = y(x), a<=x<=b , где у(х) непрерывно дифференцируемая ф-ция, то принимая х за параметр t получим:
ну и сумма там тожжа упростица.
ну и наоборот тожжа так будит, если х = х(у)
Если АВ задана в криволинейных координатах a <= j <= b где ф-ция r(j) непрерывно дифференцируема на отрезке (a, b) то имеет место частный случай, где в качестве параметра выступает полярный угол j. x = r(j)×cos(j),
y= r(j)×sin(j).
и у второго рода так же.
Прямая L наз кусочно-гладкой, если она непрерывна и распадается на конечное число не имеющих общих внутренних точек кусков, каждый из которых представляет собой гладкую кривую. В этом случает криволинейные интегралы по этой кривое определяются как сумма криволинейных интегралов по гладким кривым составляющим сию кусочно-гладкую кривую. все выше сказанное справедливо и для пространственной кривой (с буквой зю).
2 Свойства степенных рядов
Т1 Если степенной ряд (1) имеет радиус сходимости R>0, то на любом отрезке действительной оси вида |x|<=r, 0Для ряда отрезком равномерной сходимости будет отрезок |x-x0|<=r или ((x0-r,x0+r))
Т2 На любом отрезке |x-x0|<=r сумма степенного ряда является непрерывной ф-цией.
Т3 Радиусы сходимости R, R1, R2 соответственно рядов× (5), (6), (7) равны: R1=R2=R3. Итак ряды (6) и (7) полученные с помощью формального интегрирования и дифференцирования имеют те же радиусы сходимости, что и исходный ряд.
Пусть ф-ция f(x) является суммой степенного ряда (9)
Т4 Дифференцирование степенного ряда
Если ф-ция f(x) на интервале (x0-R, x0+R) является суммой ряда (9), то она дифференцируема на этом интервале и её производная f’(x) находится дифференцированием ряда (9):
f’(x)= При этом радиус сходимости полученного ряда = R
Т5 О интегрировании степенного ряда
Степенной ряд (9) можно почленно интегрировать на любом отрезке целиком принадлежащем интервалу сходимости при этом полученный степенной ряд имеет тот же радиус сходимости что и исходный ряд.
Последовательное применение Т4 приводит к утверждению, что ф-ция f имеет на интервале сходимости производные всех порядков, которые могут быть найдены из ряда (9) почленным дифференцированием. При интегрировании и дифференцировании степенного ряда внутри интервала сходимости радиус сходимости R не меняется, однако на концах интервала может изменяться.
№16
1 Свойства
криволинейных интегралов
Св-ва криволинейных интегралов 1 рода:
1.Константа выносится за знак интеграла, а интеграл суммы можно представить в виде суммы интегралов:
2. Если дуга АВ состоит из двух дуг Ас и Св не имеющих общих внутренних точек и если для ф-ции f(x,y) сущ криволинейный интеграл по АВ, то для для сей ф-ции сущ криволинейные интегралы по АС и по ВС причем:
3.
4.Ф-ла среднего значения
если ф-ция f(x,y) непрерывна вдоль кривой АВ, то на этой кривой найдется точка М, такая, что:
, где l – длина кривой
Криволинейный интеграл 2 рода обладает всеми свойствами интегралов 1 рода, и исчо при изменении направления прохождения кривой он меняет знак. .И вапще все сказанное выше справедливо и для пространственной кривой (этта та которая с буквой зю)
2 Разложение ф-ций в степенные ряды. Ряды Тейлора и Маклорена.
Пусть(1) сходится при |x-x0|(2) В этом случае говорят, что ф-ция f(x) разложена в степенной ряд. (1) .
Т1 Если ф-ция f распространяется в некоторой окрестности т. х0 f(x)= , то
и справедлива формула: (15) Если в некоторой окрестности заданной точки ф-ция распадается в степенной ряд, то это разложение единственно.
Пусть дествит. ф-ция f определена в некоторой окрестности т. х0 и имеет в этой точке производные всех порядков, тогда ряд:(6) наз рядом Тейлора ф-ции f в т, х0
При х0=0 ряд Тейлора принимает вид:
(6’) и называется ряд Маклорена.
Ряд Тейлора может:
1 Расходится всюду, кроме х=х0
2 Сходится, но не к исходной ф-ции f(x), а к какой-нибудь другой.
3 Сходится к исходной ф-ции f(x)
Бесконечная дифференцируемость ф-ции f(x) в какой-то т. х0 является необходимым условием разложимости ф-ции в ряд Тейлора, но не является достаточным. Для введения дополнительных условий треб. ф-ла Тейлора.
Т2 Если ф-ция f(x) (n+1) раз дифференцируема на интервале (x0-h, x0+h) h>0, то для всех x Î (x0-h, x0+h) имеет место ф-ла Тейлора:
где остаток rn(x) можно записать:
(8)
(9) Формула (8) наз остаточным членом ф-лы Тейлора в интегральной форме. Ф-ла (9) – формулой Лагранжа.
Преобразуя ф-лу Тейлора при х0 = 0 получаем ф-лу Маклорена.
Т3 Если ф-ция f(x) имеет в окрестности т х0 производные любого порядка и все они ограниченны одним и тем же числом С, т е " x Î U(x0) |f(n)(x)|<=C, то ряд Тейлора этой ф-ции сходится в ф-ции f(x) для всех х из этой окрестности.
№17
1 Формула Грина
Сия очень полезная в сельском хозяйстве формула устанавливает связь между криволинейными и двойными интегралами.
Пусть имеется некоторая правильная замкнутая область Д, ограниченная контуром L и пущая ф-ции P(x,y) и Q(x,y) непрерывны вместе со своими частными производными: в данной области. тогда имеет место ф-ла:
И вот вся эта фигулина и есть формула Грина.
Контур L определяющий область д может быть задан показательными уравнениями х = х1(у), х=х2(у) с<=y<=d x1(y)<=x2(y) или
y = y1(x), y=y2(x) a<=x<=b y1(x)<=y2(x).
Рассмотрим область Д ограниченную неравенствами: a<=x<=b и y1(x)<=y2(x). и преобразуем двойной интеграл к криволинейным для чего сведем его к повторному и ф-ле Невтона-Лыебница выполним интегрирование по у и получим:
каждый из 2 определенны