Лекарственное растительное сырье, содержащее сапонины
1. Описание сапонинов
1.1 Определение и классификация
1.2 Характеристика групп сапонинов
1.3 Физические свойства
1.4 Химические свойства
1.5 Распространение в природе
1.6 Медицинское использование
1.7 Анализ лекарственного растительного сырья
2. Растительное сырье, содержащее стероидные сапонины
2.1 Диоскорея ниппонская
2.2 Диоскорея дельтовидная
2.3 Якорцы стелющиеся
2.4 Юкка славная
3. Лекарственное сырье, содержащее тритерпеновые сапонины
3.1 Солодка голая
3.2 Синюха голубая
3.3 Аралия маньчжурская
3.4 Конский каштан
3.5 Ортосифон тычиночный
3.6 Истод тонколистый
3.7 Астрагал шерстистоцветковый
3.8 Женьшень
4. Лекарственное сырье, содержащее стероидные гликоалкалоиды
4.1 Паслен дольчатый
4.2 Чемерица Лобеля
4.3 Сабадилла лекарственная
Выводы
Список использованной литературы
1. Описание сапонинов
1.1 Определение и классификация
Сапонины – это гетерозиды, производные стероидов и тритерпеноидов, обладающие гемолитической активностью и токсичностью для холоднокровных животных.
Слово "сапонины" происходит от латинского названия растения Saponaria officinalis – мыльнянка лекарственная, из которой впервые в 1811 году было выделено вещество, обладающее указанными выше свойствами. Термин "сапонины" был предложен в 1819 г. Melon.
В зависимости от химической природы агликона сапонины делят на три группы:
1. Стероидные сапонины.
2. Стероидные гликоалкалоиды.
3. Тритерпеновые сапонины.
1.2 Характеристика групп сапонинов
Стероидные алкалоиды представляют собой стероидные соединения, в которых сочетаются свойства как алкалоидов, так и стероидных сапонинов. Подобно сапонинам, гидролизуются на сахар и агликон, обладают поверхносной и гемолитической активностью. Стероидные алкалоиды - это гликозиды, в которых агликонами являются азотсодержащие стероидные соединения с 27 углеродными атомами, представляющие собой производные циклопентанпергидрофенантрена. По строению они аналоги стероидных сапонинов и отличаются от них содержанием в агликоне (сапогенине) атома азота в пятом или шестом (Е, F) кольце. Благодаря наличию атома азота в агликоне обладают основными свойствами. Стероидные алкалоиды широко распространены в растениях семейства пасленовых, у различных видов паслена, особенно дольчатого, содержащего стероидные гликоалкалоиды. Близкие стероидные гликоалкалоиды найдены в ботве картофеля, помидоров, баклажанов, красного перца, в паслене черном и паслене сладко-горьком. Эти травы при переработке могут дать агликон соласодин и другие стероиды, пригодные для синтеза кортизона. Стероидные алкалоиды характерны также для рода чемерицы. Стероидные алкалоиды, подобно стероидным сапонинам, обладают поверхностно-активными и гемолитическими свойствами и образуют молекулярные соединения с холестерином и близкими стеринами.
Некоторые стероидные алкалоиды обладают гипотензивным, спазмолитическим, бронхорасширяющим, противовоспалительным, противогрибковым действием.
Стероидные алкалоиды могут быть нескольких типов.
Оба вида дико произрастают в Австралии, Новой Зеландии и субтропической зоне. В умеренной зоне культивируются как однолетники.
Часто различают четыре группы стероидных алкалоидов, которые выделяют из растений родов паслен (Solanum), чемерица (Veratrum), голаррена (Holarrhena), фунтумиа (Funtumia), самшит (Buxus). Наибольшее значение имеют алкалоиды чемерицы и паслена. Первые иногда делят на две группы в зависимости от числа атомов кислорода в их молекулах. Алкалоиды одной группы содержат 1-4 атома О и обычно присутствуют в растениях в виде свободных аминов или моно-D-гликозидов. Типичный представитель этого класса стероидных алкалоидов - иервин.
Молекулы алкалоидов второй группы содержат 7-9 атомов кислорода и находятся в растениях в виде сложных эфиров. Примерами могут служить протовератрины А (R = Н) и В (R = ОН), используемые в фармакологии.
При внутривенном введении они вызывают брадикардию и снижают кровяное давление. Основные недостатки их как лекарственных средств - небольшая разница между терапевтическими и токсическими дозами и наличие побочных эффектов.
Алкалоиды паслена представляют интерес как потенциальные источники стероидов. Некоторые из них проявляют фунгистатическую активность. Внутри этой группы различают алкалоида типа томатидина из диких томатов (Solanum lycoperisicum)
и алкалоиды типа соланидина (VI), выделенные из нескольких растений рода паслен.
Томатидин и соланидин получены также синтетически. Биогенетические предшественники стероидных алкалоидов - уксусная и мевалоновая кислоты. Гликозиды соланидина токсичны.
Стероидные сапонины являются производными циклопентапергидрофенантрена, относятся к С27-стеролам, которые в положении С16-С17 имеют спиростановую (I) или фуростановую (II) группу.
I) Диосгенин (спиростановый тип)
II) Диосгенин (фуростановый тип)
Агликоны (сапогенины) всегда имеют гидроксигруппу у С3, иногда у С1, С2, С5, С12. У многих в положении С5-С6 имеется двоная связь.
Наличие в стероидных сапогенинах спирокеталъных группировок указывает на их тесную генетическую связь со стеринами. По-видимому, "скваленовая" гипотеза применима и в отношении биогенеза стероидных сапогенинов.
Стероидные сапонины типичны для представителей семейств лилейных, амариллисовых, диоскорейных, норичниковых; они обнаружены также в растениях других семейств: бобовых, парнолистниковых, лютиковых, пасленовых. Они нетоксичны для теплокровных, но убивают холоднокровных, например рыб. Последнее свойство использовалось первобытными народами при рыбной ловле. Стероидные сапонины имеют важное значение как дешевые исходные продукты для синтеза стероидных гормонов.
Тритерпеновые сапонины являются производными изопрена – (С5Н8)6. В зависимости от количества сконденсированных колец делят на 2 группы: пентациклические и тетрациклические.
Пентациклические сапонины в свою очередь подразделяются на несколько групп:
а) группа a-амирина (урсана) – I
б) группа b-амирина (олеанана) – II
в) группа лупеола – III и др.
I C28- COOH (урсоловая кислота)
II С28-СООН (олеаноловая кислота)
III
К группе a-амирина относятся сапонины почечного чая; b-амирина – сапонины солодок, каштана конского, сенеги, синюхи голубой, аралии маньчжурской.Пентациклические чаще всего имеют гидроксигруппу в положениях С3, С16, С21, С22, С24; карбоксильную группу у С28, С29 (глицирризиновая кислота), карбонильную – у С3, С11 и др. группы. Гидроксигруппы могут быть этерифицированы органическими кислотами. Двойная связь чаще всего находится в положении С12-С13.
Тетрациклические делят на две группы:
а) группа даммарана (1) и циклоартрана (II).
I C3, С12 – ОН = протопанаксдиол, С3, С6, С12 – ОН = протопанакстриол
II
К группе даммарана относятся сапонины женьшеня (панаксозиды), а к группе циклоартрана – астрагала шерстистоцветкового (дазиантогенин).
Углеводные компоненты, представленные D-глюкозой, D-ксилозой, L-рамнозой, L-арабинозой, уроновыми кислотами и др., могут присоединяться к агликону в разных положениях: по гидроксигруппе (О-гликозидная связь), а также карбоксильной группе (ацильная связь), образуя прямые (солодки) или разветвленные цепи (диоскорея, каштан конский, сенега и др.).
Как видно из вышеизложенного, сапонины имеют разнообразное и сложное строение, что затрудняет их изучение и разработку методов анализа.
1.3 Физические свойства
Сапонины – бесцветные или желтоватые гигроскопические кристаллические (чаще стероидные) или аморфные вещества с высокой температурой плавления (с разложением).
Растворяются в воде; водные растворы при встряхивании образуют устойчивую пену за счет снижения сапонинами поверхностного натяжения жидкости. Растворимость в полярных растворителях (воде, спирте) увеличивается с возрастанием количества углеводных остатков в молекуле сапонина. Не растворяются в неполярных органических растворителях. Агликоны сапонинов не растворяются в воде, хорошо растворяются в спирте и других органических растворителях.
Водныерастворы сапонинов могут иметь кислую или нейтральную реакцию. Кислотные свойства могут быть обусловлены наличием карбоксильной группы у агликона и углеводного компонента.
Необходимо иметь ввиду, что некоторые сапонины могут не давать устойчивой пены (глицирризин), а гемолиз крови вызывают и другие вещества.
1.4 Химические свойства
1. Сапонины образуют (в том числе и в растениях) не растворимые в воде молекулярные комплексы со стеринами, липидами, дубильными веществами, белками. Эти комплексы разрушаются при нагревании с хлороформом. Поэтому перед экстракцией сапонинов из сырья, его рекомендуют предварительно обработать хлороформом в аппарате Сокслета в течение 2 часов.
2. Сапонины гидролизуются ферментами и кислотами.
3. С кислотными реагентами (конц. Кислота серная, кремневольфрамовая, уксусный ангидрид, сурьма трехвалентная и др.) сапонины образуют окрашенные продукты за счет образования ненасыщенных (полиеновых) сопряженных структур.
4. Кислые сапонины, производные олеаноловой, урсоловой, глицирризиновой и др. кислот взаимодействуют со щелочами, а также солями тяжелых металлов (свинец, барий и др.), образуя не растворимые в воде осадки.
5. Стероидные сапонины спиростанового типа дают осадки с холестерином.
На физических, биологических и химических свойствах сапонинов основаны методы их анализа.
1.5 Распространение в природе
Сапонины достоверно обнаружены в представителях примерно 40 семейств.Более широко распространены тритерпеновые сапонины. Чаще всего они встречаются у растений сем. Caryophyllaceae, Fabaceae (солодки, астрагал шерстистоцветковый), Araliaceae (женьшень, аралия маньчжурская), Hippocastanceae (каштан конский), Polygonaceae (сенега), Rosaceae (лапчатки прямостоячая, кровохлебка лекарственная), Asteraceae (календула лекарственная) и др. Стероидные сапонины чаще встречаются у растений сем. Dioscoreaceae (диоскореи), Agavaceae (агавы, юкки), Liliaceae (ландыш), Scrophulariaceae (наперстянки), Zygophyllaceae (якорцы стелющиеся) и др. Из 250 выделенных стероидных сапонинов около 170 соединений относятся к спиростановому типу. В растениях сапонины находятся в различных органах растений, чаще в подземных, в растворенном виде в клеточном соке. Агликоны тритерпеновых сапонинов (урсоловая, олеаноловая кислота) встречаются в кутикуле, перидерме. При сборе, сушке и хранении сырья нужно создать условия, препятствующие ферментативному гидролизу сапонинов. Надземные части собирают в сухую погоду, в небольшую по объему тару (лучше корзины, ящики с отверстиями) и быстро, через 2-3 часа (чтобы не произошло самосогревание сырья) доставляют к месту сушки. Сушка для большинства видов рекомендуется быстрая, в тонком слое, при температуре 50-700. Можно при этой температуре выдержать сырье 1-2 часа, а затем, после дезактивации ферментов, досушивать его при обычной температуре. Сырье хранится в сухом, прохладном месте по общему списку.
1.6 Медицинское использование
Все сапонины за счет рефлекторного раздражения слизистых оболочек обладают отхаркивающим, мочегонным, слабительным действием.
Стероидные сапонины являются исходным продуктом для синтеза гормональных препаратов (кортизона, прогестерона и др.) Кроме того, отдельные сапонины обладают антисклеротическим, гипотензивным (диоскореи, якорцы стелющиеся, пажитник сенной), контрацептивным (агавы), антиоксидантным действием. Некоторые сапонины блокируют рост злокачественных опухолей (париллин из видов смилакса).
Отдельные сапонины проявляют тонизирующее, стимулирующее, адаптогенное действие (женьшень, аралия маньчжурская); антиаллергическое, регулирующее водно-солевой обмен (солодки), Р-витаминное (каштан конский), седативное (синюха голубая) и др.
1.7 Анализ лекарственного растительного сырья
В растениях обычно содержится несколько близких по строению и свойствам гликозидов, разделение и идентификация которых до настоящего времени представляют собой сложную и не всегда разрешимую задачу.
Анализ сырья складывается из нескольких стадий: экстракция сапонинов из сырья, очистка полученного извлечения, разделение на индивидуальные компоненты. Экстрагируют сапонины из сырья обычно полярными растворителями: метанолом и этанолом различной концентрации, водой, 0,9%-ным раствором натрия хлорида. Иногда сырье перед экстракцией обрабатывают петролейным эфиром, четыреххлористым углеродом, диэтиловым эфиром для разрушения нерастворимых в полярных растворителях комплексов сапонинов со стеринами, белками, фенольными соединениями. Очистку полученных извлечений проводят различными способами, что зависит от структуры сапонинов. Полярные сапонины плохо растворимы в этиловом и метиловом спиртах, выпадают в осадок при охлаждении, длительном стоянии спиртового экстракта или при добавлении этанола. Гликозиды с небольшой углеводной цепочкой обычно плохо растворимы в воде и выпадают в осадок при разбавлении спиртовых экстрактов водой. Кислые тритерпеновые сапонины растворимы в водных растворах щелочей и выпадают в осадок при подкислении. Также из спиртовых растворов тритерпеновые сапонины можно осаждать диэтиловым эфиром, ацетоном, этилацетатом, иногда бутиловым и изоамиловым спиртами. Полученную сумму сапонинов очищают повторным переосаждением от полярных сопутствующих веществ: моно- и олигосахаридов, фенольных соединений, органических кислот и др.
Ряд методов основан на способности сапонинов образовывать нерастворимые в воде или водном спирте соли с гидроксидом бария или ацетатом свинца и комплексы с холестерином, танинами, белками. Затем эти соли или комплексы разлагают.
Эти методы позволяют получить более чистую сумму сапонинов.
Качественный анализ
1. Реакция гемолиза. Готовят извлечение на изотоническом растворе натрия хлорида 1 : 30 настаиванием на кипящей водяной бане в течение 30 минут. К 2 мл извлечения добавляют 2 мл 2% взвеси дефибринированной крови. В присутствии сапонинов образуется прозрачный красный раствор ("лаковая кровь").
2. Реакция пенообразования. Водное извлечение из сырья (1 : 10) встряхивают в пробирке в течение 15 сек. Не исчезающая в течение 15 мин пена говорит о возможном присутствии сапонинов.
3. Хроматография в тонком слое. Водное или спиртовое извлечение хроматографируют на силикагеле или алюминия оксиде в подходящей системе растворителей. Для нейтральных сапонинов чаще всего используют н-бутанол – уксусная кислота – вода, для кислых – н-бутанол – водный аммиак в различных соотношениях. Систему подбирают экспериментально. На хроматограммах сапонины обнароуживают, проявляя различными кислотными реагентами: конц. Кислота серная, уксусный ангидрид, 25% раствор фосфорномолибденовой кислоты, треххлористая сурьма и др., часто в сочетании с кобальта хлоридом, ванилином, пара-диметиламинобензальдегидом и др.
Тритерпеновые сапонины проявляются в виде красновато- или буроватофиолетовых пятен.
Стероидные сапонины при проявлении хроматограмм 1% раствором сурьмы треххлористой, конц. кислотой серной и уксусным ангидридом образуют желтые (спиростановые) пятна (реакция Санье). В настоящее время хроматографический метод дает наиболее достоверное представление о наличии сапонинов в сырье.
4. Реакция Лафона. К 2 мл спиртового извлечения добавляют 1 мл кислоты серной концентрированной, 1 мл этанола и 1 каплю 10 % раствора железа сульфата. В присутствии сапонинов образуется сине-зеленое окрашивание.
5. При добавлении к 2 мл водного извлечения 1 мл 10% раствора натрия нитрата и 1 капли кислоты серной концентрированной образуется кроваво-красное окрашивание.
6. При добавлении к 2 мл спиртового извлечения 1 % раствора холестерина образуется белый осадок.
Количественное определение
Единого точного метода количественного определения сапонинов в сырье нет, ввиду их разнообразного строения.
1. Ранее использовали гравиметрический метод, основанный на физических свойствах сапонинов: разной растворимости гликозидов и агликонов. Сапонины из сырья экстрагируют метиловым или этиловым спиртом в аппарате Сокслета. Экстракт упаривают под вакуумом, сапонины осаждают органическим растворителем; отфильтровывают, промывают, высушивают до постоянной массы и взвешивают. Результаты получаются завышенные, так как кроме сапонинов осаждаются сопутствующие вещества. Более точные результаты могут быть получены, если провести гидролиз суммы сапонинов, отделить агликоны, высушить и взвесить.
2. В настоящее время для определения суммы сапонинов и индивидуальных веществ используют физико-химические методы (спектрофотометрия, колориметрия), основанные на способности сапонинов при нагревании давать окрашенные продукты с кислотными реагентами. Например, при определении суммы сапонинов каштана конского, синюхи голубой используют кобальта хлорид с кислотой серной концентрированной; женьшеня – ванилин с кислотой серной концентрированной, стероидных сапонинов – п-диметил-аминобензальдегид в 4 моль/л растворе кислоты хлористоводородной. Калибровочные графики строят по стандартному образцу (например, эсцину) или кобальта хлориду. Эти методы часто используют в сочетании с предварительным хроматографическим разделением суммы сапонинов. Для кислых сапонинов (например, аралозиды) используют потенциометрическое титрование после предварительного гидролиза сапонинов. Иногда для сырья, содержащего сапонины (при научных исследованиях) определяют пенное число и гемолитический индекс.
Пенное число – наименьшая концентрация извлечения из 1 г сырья, при встряхивании которого в течение 15 сек образуется устойчивая в течение 15 мин пена. Основан на физических свойствах сапонинов.
Гемолитический индекс – наименьшая концентрация извлечения из 1 г сырья или раствора чистого сапонина, которая вызывает гемолиз эритроцитов, содержащихся в 1 мл 2 % раствора дефибринированной крови барана. Извлечение сапонинов и разведение проводят изотоническим раствором. Готовится серия разведений и определяется наименьшая концентрация. При работе с кровью других животных параллельно ставят контроль со стандартным сапонином (0,02 % раствор дигитонина). Результаты выражают соотношением массы сырья (1 г) и разведения. Например 1:5000, 1:20000 и т.д.
Эти методы не дают представления о количественном (%) содержании сапонинов, а свидетельствуют о поверхностной или гемолитической активности.
2. Растительное сырье, содержащее стероидные сапонины
2.1 Диоскорея ниппонская
Rhizomata cum radicibus Dioscoreae nipponicae - корневища с корнями диоскореи ниппонской
Собранные в течение всего вегетационного периода (начиная с конца апреля до глубокой осени), тщательно очищенные от земли, освобожденные от остатков стеблей, разрезанные на куски и высушенные корневища с корнями дикорастущего или культивируемого многолетнего травянистого растения диоскореи ниппонской Dioscorea nipponica Makino, сем. Диоскорейные - Dioscoreaceae; используют в качестве лекарственного сырья.
Диоскорея ниппонская (диоскорея японская) - многолетняя двудомная травянистая лиана с горизонтальным толстым коричневато-белым ветвистым корневищем длиной до 1,5 м и диаметром до 3 см с немногочисленными тонкими, неветвистыми, упругими и жесткими корнями. Стебли тонкие, вьющиеся, длиной до 4 м; листья очередные, черешковые, широкояйцевидные с сердцевидным основанием. Нижние листья семилопастные, с короткими боковыми лопастями и более вытянутой крупной заостренной средней; верхние листья трех- и пятилопастные или с почти не выраженными лопастями. Цветки раздельнополые, мелкие, с простым шестираздельным желтовато-зеленым околоцветником, собранные в кисти. Плод - почти сидячая, трехгнездная, широкоэллиптическая коробочка с тремя широкими крыльями на ребрах. Цветет в июле-августе, семена созревают в августе-октябре.
Это дальневосточный вид. Растет в Приморском крае, южных районах Хабаровского края и на юго-востоке Амурской области. Чаще всего встречается во вторичных растительных сообществах, возникающих на местах вырубок и пожаров, на старых залежах, где она развивает наиболее толстые и длинные корневища. Выше 500 м над уровнем моря в горы не поднимается.
Размножается диоскорея семенами, но лучше вегетативно - отрезками корневищ длиной 10-12 см с заделкой в почву на глубину 10 см.
Химический состав. Действующими веществами корневищ с корнями диоскореи ниппонской являются стероидные сапонины (главный из них - диосцин - 2,2%), наиболее высокое содержание которых отмечено в фазу бутонизации. Кроме того, надо отметить присутствие крахмала, жирного масла.
Заготовка, первичная обработка и сушка. Сырье собирают в течение всего вегетационного периода, начиная с конца апреля и до глубокой осени, но для восстановления зарослей корневища с корнями лучше собирать в сентябре-ноябре (после созревания семян), когда они достигают максимальных размеров, хотя содержание диосгенина несколько снижается.
Необходимо оставлять примерно 1/3 встречающихся на участке растений. Не подлежат заготовке экземпляры высотой менее 1 м на место выкопанных растений рекомендуется высеять семена или зарыть кусочки корневищ. Повторная заготовка на одном и том же участке возможна лишь через 20 лет.
Корневища, располагающиеся между корнями деревьев, обычно выкапывают кирками. Сырье отряхивают от земли, удаляют стебли и загнившие части и рубят на куски длиной до 10 см, после чего складывают в мешки и в день сбора доставляют к месту сушки.
Оптимальной считается сушка в сушилках при температуре нагрева корневищ до 50°С. Предварительно их подвяливают под навесами или на токах. Можно сушить сырье и на чердаках с хорошей вентиляцией, разложив корневища слоем не толще 10 см и периодически их переворачивая. Допускается сушка на солнце.
Стандартизация. Качество сырья регламентировано требованиями ФС 42-1521-80.
Внешние признаки. Цельное сырье представлено кусками цилиндрических, слегка изогнутых или перекрученных корневищ с корнями длиной до 30 см и диаметром до 2 см. Корневища снаружи светло-коричневые или желтоватые, продольно-морщинистые, покрыты тонким слоем пробки, которая обычно в сырье легко отслаивается. На верхней стороне четко видны остатки отмерших стеблей. От корневищ отходят немногочисленные упругие тонкие корни до 40 см длиной и около 1 мм в диаметре. Излом корневищ ровный, белый или кремовый. Запах слабый, специфический. Вкус горький, слегка жгучий. Измельченное сырье состоит из кусочков различной формы размером до 7 мм.
Микроскопия. На поперечном срезе корневищ виден тонкий слой пробки. Кора узкая и состоит из мелких, тангентально-вытянутых клеток с неодревесневшими оболочками. В отдельных, более крупных клетках находятся пучки рафид длиной около 100 мкм, ориентированные вдоль корневища. Эндодерма выражена неясно. В центральном цилиндре расположены закрытые проводящие коллатеральные пучки более мелкие по периферии и более крупные округлые в центре. В пучках паренхима почти отсутствует, трахеиды широкопросветные. Клетки паренхимы многоугольные, плотно прилегающие друг к другу. Оболочки клеток одревесневшие, с многочисленными крупными порами. В клетках паренхимы в большом количестве простые крахмальные зерна различной формы (угловатые, округлые и др.) диаметром от 1,5 до 24 мкм. Вместе с друзами встречаются капли жирного масла.
Числовые показатели. Фуростаноловых гликозидов не менее 3%; влажность не более 13%; золы общей не более 3,5%; отшелушившейся пробки и обломков мелких корней диоскореи не более 1,5%; органической и минеральной примесей не более чем по 0,5%. Для измельченного сырья, кроме того, определяют содержание частиц, не проходящих сквозь сито с диаметром отверстий 7 мм, не более 1%, и частиц, проходящих сквозь сито с размером отверстий 0,5 мм, не более 5%.
Хранение. Сырье хранят по общему списку. Срок годности 3 года.
Использование. Терапевтическое действие – сосудорасширяющее, гипотензивное, гиполипидемическое, гипохолестеринемическое, диуретическое, м-холиномиметическое. Показания: болезни сердечно-сосудистой, пищеварительной, репродуктивной, эндокринной системы. В клинике эффективна при лечении ревматоидных артритов, подагры. Из корневищ с корнями получают препарат "Полиспонин", содержащий водорастворимые сапонины. Применяется в комплексной терапии атеросклероза, гипертонической болезни. Ранее использовались корневища с корнями диоскореи кавказской Dioscorea caucasica Lipsky для получения препарата "Диоспонин" аналогичного действия.
2.2 Диоскорея дельтовидная
Rhizomata cum radicibus Dioscoreae deltoideae - корневища с корнями диоскореи дельтовидной
Собранные осенью, освобожденные от остатков стеблей, очищенные от земли, разрезанные на куски и высушенные при температуре не выше 50°С корневища с корнями многолетней культивируемой лианы диоскореи дельтовидной Dioscorea deltoidea Wall., сем. Диоскорейные – Dioscoreaceae; используют в качестве сырья.
Диоскорея дельтовидная – многолетняя двудомная листопадная лиана. Корневища с клубневидными утолщениями, на изломе – желтые. Листья очередные, сердцевидные с оттянутой верхушкой.
Родина – Индия (штаты Джамму и Кашмир), Китай, Индокитай, но растения растут и плодоносят и в Подмосковье. Можно выращивать как многолетнее растение в Крыму, на Кубани, в Закавказье, Приморском крае и других районах. Размножается вегетативным способом (отрезками корневищ) и семенами. Площадь питания 60´30 см. Наибольший прирост корневища дают на третьем году жизни, поэтому следует заготавливать растения именно этого возраста, одновременно закладывая новые плантации отрезками корневищ.
Химический состав. Корневища с корнями накапливают до 8% диосгенина, содержание которого повышается с возрастом растения.
Заготовка, первичная обработка, сушка, упаковка – см. Диоскорея ниппонская.
Стандартизация. Качество сырья регламентировано требованиями ТУ 64-4-63-85.
Внешние признаки. Цельное сырье состоит из кусков корневищ длиной до 10 см, толщиной около 2 см, очень плотных, узловатых, слабо разветвленных, с короткими отростками, на поверхности которых находятся группы спящих почек. Пробка частично отслаивается. От корневища отходят слабо разветвленные придаточные корни длиной до 20 см, толщиной около 1 мм, плотные, упругие.
Цвет корневищ с поверхности от светло-коричневого до серовато-коричневого, в изломе – от желтоватого до кремового с ярко-желтой полосой под пробкой; цвет корней от светло-желтого до светло-коричневого (с отшелушивающейся пробкой). Запах слабый, неприятный.
Измельченное сырье состоит из кусочков корневищ и корней различной формы размером до 7 мм. В сырье должно быть не менее 2,7% диосгенина при влажности не более 13%.
Микроскопия. На поперечном срезе корневища видна тонкая многослойная пробка, отслаивающаяся по феллодерме. Кора узкая, клетки паренхимы тонкостенные. Большую часть занимает центральный цилиндр, в котором разбросаны биколлатеральные и центрофлоэмные проводящие пучки. В клетках паренхимы коры и центрального цилиндра – рафиды, округлые или овальные крахмальные зерна размером 4-32 мкм, мелкие капли масла.
Корень имеет первичное строение. Основную часть корня занимает центральный цилиндр, т.к. кора частично или полностью отслаивается. Наружную часть цилиндра занимает механическое кольцо; затем располагаются чередующиеся между собой 12-15 мелких групп ксилемы и флоэмы, внутрь от них располагается крупное кольцо крупных сосудов. Клетки паренхимы мелкие с одревесневшими стенками.
Качественная реакция. 0,5 г измельченного сырья заливают 10 мл изопропилового спирта и настаивают 16 часов. Хроматографируют в тонком слое сорбента в системе хлороформ-метанол-вода (16:32:7) восходящим способом. Сушат 5 мин в сушильном шкафу при 100°С. После охлаждения проявляют спиртовым раствором серной кислоты 1:4 и снова сушат 1-2 мин при 100°С до появления пятен розовато-фиолетового цвета (с Rf ~ 0,5; 0,55; 0,62; 0,32; 0,35; 0,28).
Числовые показатели. Содержание диосгенина, определяемого спектрофотометрическим методом, не менее 2,7%; влажность не более 13%; органической примеси не более 1%; минеральной примеси не более 2%; для измельченного сырья, кроме того, содержание общей золы, не более 7%; содержание частиц, проходящих сквозь сито с диаметром отверстий 7 мм, не более 5%.
Хранение. Гарантийный срок хранения 5 лет с момента заготовки.
Использование. Сырье является источником диосгенина, на основе которого получают кортикостероидные гормональные препараты.
2.3 Якорцы стелющиеся
Herba Tribuli terrestris – трава якорцев стелющихся
Собранная в фазу цветения – плодоношения и высушенная трава с корнями дикорастущего однолетнего травянистого растения якорцы стелющиеся Tribulus terrestris L., сем. Парнолистниковые – Zygophyllaceae; используют в качестве лекарственного сырья.
Якорцы стелющиеся – однолетнее короткоопушенное травянистое растение. Стебли простерты по земле, от основания ветвистые, длиной 10-120 см. Листья супротивные, парноперистосложные, длиной 3-8 см, с 6-8 парами мелких продолговатых листочков. Цветки правильные желтые, диаметром до 1,2 см, одиночные, расположены в пазухах листьев. Околоцветник пентамерный, тычинок 10, гинецей ценокарпный из 5 сросшихся плодолистиков. Плод - ценокарпий, распадающийся при созревании на 5 звездчато расположенных угловатых "плодиков", несущих на спинке 4 длинных, твердых и острых шипа, а также многочисленные бугорки.
В южной части ареала якорцы цветут в апреле-мае; близ северной границы – в июне-июле. В благоприятных условиях цветение продолжается все лето и в начале осени. Плодоносит с июня-июля до заморозков.
Произрастает обычно в сухих степях на юге европейской части СНГ (Украина, Крым, Молдова, низовья Дона и Волги) и Казахстана, а также в полупустынях Центральной Азии; на Кавказе, Алтае, в Восточной Сибири (Даурия). Вид особенно обилен в Сурхандарьинской, Самаркандской и Кулябской областях Таджикистана, Чимкентской области Казахстана и в центральных районах республики Тува.
Природные ресурсы якорцев стелющихся способны удовлетворить потребность в этом виде сырья.
Химический состав. Надземная часть содержит стероидные сапонины: триллин, диосцин, диосгенин (2%), грациллин, протодиосцин и др.; флавоноиды; алкалоиды и дубильные вещества.
Заготовка, первичная обработка и сушка. Заготовку травы проводят в период цветения и плодоношения (июнь-сентябрь). Растение выдергивают с корнями или отрубают надземную часть близ поверхности почвы киркой, кетменем или мотыгой. на одних и тех же массивах возможна заготовка в течение нескольких лет подряд, так как в связи с разновременным и продолжительным их плодоношением часть плодов успевает созреть и осыпаться до начала заготовок сырья. После сбора удаляют посторонние растения и сушат. Для этого траву раскладывают рыхлым слоем не толще 20 см под навесом, на чердаках, токах (асфальтированных или бетонированных) или на почве, лишенной растительности. В течение первых 1-2 дней сушки сырье ежедневно ворошат. В дождливую погоду траву укрывают брезентом или пленкой. Заготовку травы необходимо проводить в рукавицах, так как колючие плоды растения легко впиваются в кожу, травмируя ее. Стандартизация. Качество сырья регламентировано требованиями ВФС 42-827-79. Внешние признаки. Смесь цельных или частично измельченных листьев, стеблей, корней, а также цельных или распавшихся плодов. Стебли длиной до 60 см, бороздчатые. Листочки продолговатые, частично свернувшиеся или изломанные, длиной до 1,2 см, шириной до 0,5 см с видимым в лупу беловатым опушением с нижней стороны. Плоды дробные, состоящие из 5 звездчато расположенных плодиков диаметром до 2 см с морщинистой оболочкой и острыми твердыми шипами; реже встречаются отдельные треугольные плодики с 2-4 шипами. Цвет стеблей зеленовато-желтый, листьев – зеленый, черешков и плодов – светло-зеленый. Запах слабый, своеобразный. Вкус сладковато-горький. Микроскопия. Клетки верхнего эпидермиса слабоизвилистые, нижнего сильно извилистые с редкими четковидными утолщениями в углах изгибов. Устьица на обеих сторонах аномоцитного типа, окружены 4-5 клетками. По краям и преимущественно на нижнем эпидермисе встречаются длинные одноклеточные волоски, у места их прикрепления клетки эпидермиса расположены радиально, образуя розетку. Качественная реакция. 1 г измельченного сырья нагревают в течение 15 мин на водяной бане с 10 мл 80% этилового спирта, фильтруют. Хроматографируют в тонком слое сорбента в системе хлороформ-метанол-вода (61:32:7). После высушивания опрыскивают 1% раствором пара-диметиламинобензальдегида в 4 моль/л метанольном растворе кислоты хлористоводородной и нагревают в сушильном шкафу при 60°С в течение 2-3 мин. Появляются четыре розовых пятна (фуростаноловые гликозиды). Числовые показатели. Фуростаноловых гликозидов не менее 0,7%; влажность не выше 13%; золы общей не более 16%; органической и минеральной примесей не более чем по 1%. Для измельченного сырья регламентировано также содержание частиц, не проходящих сквозь сито с диаметром отверстий 7 мм (не более 2%) и проходящих сквозь сито с диаметром 0,2 мм (не более 5%). Хранение. Хранят по общему списку в сухих, хорошо проветриваемых помещениях. Срок годности 5 лет. Использование. Терапевтическое действие аналогично диоскореи ниппонской. Получают препарат "Трибуспонин", представляющий собой смесь стероидных сапонинов. Препарат применяют как антисклеротическое средство, которое особенно эффективно, когда атеросклероз сочетается с гипертонической болезнью и стенокардией. В клинике препарат эффективен при гиперсекреции желудочного сока. В эксперименте проявляет антипротозойную активность. Ядовито!
2.4 Юкка славная
Folia Yuccae gloriosae – листья юкки славной
Собранные в течение лета и высушенные листья культивируемого многолетнего вечнозеленого кустарника юкки славной Yucca gloriosa L., сем. Агавовые – Agavaceae; используют в качестве лекарственного сырья.
Это многолетний вечнозеленый кустарник до 1,5 м высотой с простым или ветвистым одревесневающим стволом. Листья крупные (до 70 см в длину и 3,5 см в ширину), линейные, кожистые, с игловидно заостренными верхушками. Они образуют розетки или собраны в пучки. Цветки белые, крупные, многочисленные, собраны в крупное метелковидное соцветие длиной до 1 м. Плод – коробочка с многочисленными черными семенами диаметром до 5 мм. Цветет в июне, плоды созревают в сентябре-октябре.
Родина – Мексика и полупустынные районы юго-западных штатов США. Культивируют в Европе в качестве экзотического растения в садах и парках. В СНГ введена в культуру в Крыму и Закавказье, встречается также в Узбекистане и на юге Украины. Промышленные плантации заложены в Восточной Грузии. Размножается главным образом верхушечными побегами, корневыми отпрысками, отрезками боковых подземных побегов, листом с пяткой (почкой). Можно размножать и с
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Лекарственное растительное сырье, содержащее фенолгликозиды
Биохимические и биологические научные исследования состава лекарственных растений и его влияния на обмен веществ человеческого орган
- Лекарственные вещества, их свойства и анализ
Свойствами и анализом лекарственных веществ занимается фармацевтическая химия.Фармацевтическая химия — наука, которая, базируясь на о
- Лекарственные препараты
Фармакология является одной из ведущих дисциплин в подготовке медицинской сестры с высшим образованием. Цель преподавания фармакологи
- Лекарственные растения в косметике
СодержаниеВведение. 21. Вещества, применяемые при изготовлении лечебно-косметических препаратов 41.1 Вспомогательные вещества. 41.2 Биолог
- Лекарственные растения и лекарственное растительное сырье, содержащее сердечные гликозиды
Федеральное агентство по здравоохранению и социальному развитию РФГОУ ВПО «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ РОСЗДР
- Лекарственные растения и растительное сырье, содержащие полисахариды
ВведениеОбщеизвестно, что растительный и животный мир неразрывно связаны друг с другом. Строение и законы жизнедеятельности раститель
- Лекарственные растения и сырье, содержащие полисахариды
Двадцатый век характеризуется бурным развитием всех отраслей науки. Прочно вошли в нашу жизнь новые химические соединения, материалы, п