Определение загрязнения водных объектов г. Ноябрьска
Несовершенная хозяйственная деятельность приводит зачастую к истощению, загрязнению поверхностных вод, что делает эту воду частично или полностью непригодной для использования и может привести к серьезным экономическим и экологическим последствиям.
Без воды человек не может прожить более трех суток, но, даже понимая всю важность роли воды в его жизни, он все равно продолжает жестко эксплуатировать водные объекты, безвозвратно изменяя их естественный режим сбросами и отходами.
Цель работы: определить степень загрязнения озер
Задачи: Описание физико-географической характеристики района;
оценить состояние водных объектов;
дать характеристику водных объектов;
оценить степень загрязнения поверхностных вод и их пригодность для различных видов водопользования.
Для написания выпускной квалификационной работы использовались учебные пособия и данные с предприятия.
Дипломная работа содержит 49 страниц печатного текста, 7 таблиц, 5 рисунков.
Глава I. Физико-географическая характеристика района
1.1 Географическое положение, рельеф и геология
Сибирские увалы образуют водораздел правых притоков широтного отрезка Оби и бассейнов рек Надым, Пякупур и др. На этой территории преимущественно в 70-80-е гг. были пробурены сотни скважин, достигших добаженовских слоев (георгиевской, васюганской, тюменской и других свит местной стратиграфической шкалы), а также проведено сейсмопрофилирование с большой плотностью наблюдений. Полученные в результате этих работ материалы, а также производственные обобщения и публикации специалистов ЗапСибНИГНИ, СНИИГГиМСа, ИГГ и ИГНГ СО РАН и других организаций послужили фактологической основой анализа тектоники мезозойского комплекса указанного региона.
По результатам литолого-стратиграфических корреляций данных бурения и каротажа скважин, а также анализа региональных профилей ОГТ юрский комплекс Сибирских увалов представлен мощной (750-1000 м) терригенной толщей. В разрезе толщи (снизу вверх) намечается вертикальный ряд формаций (рис.1.1.1):
1. Терригенная (песчаник-аргиллитовая) с уверенно коррелируемыми по площади подформациями (литофациями) существенно аргиллитового и песчаникового состава, а также песчаник-аргиллитовым (аргиллитов более 50 %) горизонтом в основании. Мощность формации по профилю от 280 до 450 м; она включает отложения новогодней, тогурской и других свит раннеюрского возраста.
2. Угленосная песчаник-аргиллитовая, в составе которой преобладают фациально изменчивые субконтинентальные (лагунно-озерные) толщи сметанного песчаник-аргиллитового состава (рис.1.1.1), содержащие пласты и линзы углей. Мощность формации от 250 до 450м; она включает преимущественно отложения тюменской свиты (средняя юра).
3.Существенно песчаник-аргиллитовая, преимущественно прибрежно-морских фаций. Мощность ее 65-100 м; аномальная (сдвоенная) мощность формации (около 150 м) установлена в верховьях р. Тромъеган (Ново-Перевальная площадь). Формация включает отложения васюганской свиты (поздний бат-оксфорд).
4. Углеродисто-кремнистых (битуминозных) аргиллитов и глин мощностью 20-50 м. В основании формации (свиты) намечается седиментационный контраст, который интерпретируется как размыв; на эту поверхность выходят различные горизонты подстилающих отложений. Условно этот размыв называется «предбаженовским», хотя на значительных площадях стратиграфически ниже «баженитов» установлены глинисто-аргиллитовые отложения георгиевской свиты. Но эти отложения маломощны (до 10-15 м), по составу существенно аргиллитовые и отличаются от «баженитов» лишь отсутствием битуминозности.
Юрские отложения повсеместно перекрыты аргиллит-песчаниковой «клиноформной» формацией неокома.
По профилю намечается определенная зональность в распределении и соотношениях литофаций (рис.1.1.1). Она проявляется на западе р. Вынгапур (около 76° в.д.) в виде относительно устойчиво чередующихся литофаций в разрезе, а восточнее - зоны выклиниваний и фациальных замещений. Эта «зона выклиниваний» отражается проявлением здесь конседиментационных деформаций поверхности седиментации.
Баженовский горизонт (свита) Западной Сибири охватывает стратиграфический объем волжского яруса - нижней части берриаса. Обычно он представлен тонкослоистыми, часто микрослоистыми, иногда тонкокомковатыми и пятнистыми углеродсодержащими (битуминозными) глинисто-кремнистыми, кремнисто-известковистыми и известково-глинисгыми отложениями с устойчивыми характеристиками вещественного состава и мощности. Свита обладает минимальной изменчивостью состава отложений на площади распространения по сравнению с таковой других горизонтов юрского разреза. Ее мощность колеблется в пределах 20-50 м, практически не выклиниваясь, а вариации вещественного состава определяются ограниченным набором тонкозернистых кремнисто-карбонатно-глинистых компонентов. На отдельных участках наблюдаются также прослои аргиллитов с пониженной битуминозностью, а роль ловушек и коллекторов играют внутрислоевые зоны разлистования (разновидность какиритизации).
В районе Сибирских увалов состав баженовской свиты близок общему для Западной Сибири, но на локальных участках в верховьях рек Пим (Южно-Ватлорская площадь) и Тромъеган (Восточно-Перевальная и Конитлорская площади) на западе, а также в верховьях р. Аган (Тагринская площадь) - на востоке Сибирских увалов она имеет аномальный алеврито-песчаниковый характер, сходный с отложениями неокома. По результатам литолого-стратиграфических корреляций здесь выявлена и определенная закономерность региональных вариаций мощности баженовской свиты (рис.1.1.2): для бассейна верховий рек Надым и Казым вырисовывается неупорядоченная система относительно изометричных контуров изопахит с преобладающими значениями 20-30 м; чуть южнее (верховья рек Пим и Тромъеган) площади с устойчивыми мощностями около 30 м увеличиваются. Восточнее меридиана 75° в.д. (бассейн р. Пякупур) в распределении мощностей баженовской свиты намечается субмеридиональная зональность. Достаточно контрастно она проявлена от 77° в.д., где протяженные "прогибы" с мощностью более 40 м разделены зонами сокращенных мощностей (до 15-20 м). В единичных скважинах бассейна р.Тромъеган (рис.1.1.2) углеродисто-кремнистые аргиллиты в разрезе отсутствуют.
При формировании горизонта в волжско-берриаское время преобладали условия обширной, медленно погружающейся равнины с глубиной около 200-500 м ниже уровня моря. По-видимому, региональная трансгрессия имела место на фоне относительного тектонического покоя и выравнивания рельефа как в области прогибания, так и в ее обрамлении. Поэтому прогибание не компенсировалось осадконакоплением.
Анализ пространственной конфигурации баженовской свиты и ее соотношений с другими членами юрско-мелового разреза представляет интерес в связи с изучением региональной тектоники мезозойского комплекса. Этот анализ проводится с учетом морфотектоники ограничивающих поверхностей, а также характера и возраста постседиментационных деформаций.
Рассмотрим морфотектонику структурной поверхности Б. Баженовская свита обычно рассматривается в качестве сейсмического репера, характерные свойства которого определяются узким диапазоном изменения ее мощности (10-30 м), низкими значениями плотности пород (1,93-2,78 г/см3) по сравнению с таковыми обрамления и скоростями распространения упругих волн около 3,0-3,3 км/с. В кровле свиты акустическая граница имеет отрицательный знак коэффициента отражения, а в подошве - положительный. Поскольку разность времен прихода элементарных волн от этих границ мала, то они обычно регистрируются как единое интерференционное колебание. Эта волна часто связывается с подошвой баженовской свиты, что типично для более южных районов Западной Сибири. Но результаты сейсмического моделирования в Широтном Приобье показывают, что отраженная волна формируется в более широком стратиграфическом интервале, нежели возраст баженовской свиты; этот интервал отложений включает верхние части васюганской свиты (30-40 м), георгиевские и баженовские слои, а также нижние горизонты (50-70 м) куломзинской свиты раннемелового возраста. Для территории Сибирских увалов устойчивые отражения тяготеют к кровле баженовской свиты или горизонту в целом при мощности менее 30 м. Эта структурная поверхность обычно обозначается индексом Б и уверенно выделяется по данным ОГТ и каротажа.
Морфотектоническая карта структурной поверхности Б (рис.1.1.3) построена на основе приемов амплитудно-градиентного анализа гипсометрической карты ее рельефа с учетом поведения плоскостей нормированных уровней региональных морфотипов. На качественном уровне в регионе выделяются два главных морфотипа: ареальный западный, или Верхненадымский, и поясовый восточный, или Таркосалинский. Для первого из них характерна в целом выровненная поверхность с локализованными и слабо упорядоченными аномалиями рельефа. Локальные морфоструктуры образуют три основные группы:
1) изометричные малоамплитудные (до 100-130 м) поднятия и их ограниченные скопления на площади до 20-30 км;
2) изометричные или слабоудлиненные мульды глубиной до 40-60 м;
3) уступообразные перегибы поверхности. Анализ нормированных поверхностей ареала позволяет наметить региональные линии перегибов, которым соответствуют неявно выраженные системы разнотипных малоамплитудных градиентных зон рельефа. Вполне возможно, что эти линии намечают границы блоковых неоднородностей строения фундамента юрского комплекса (рис.1.1.3).
Таркосалинский морфотектонический тип структурной поверхности Б (часть более обширного Уренгойско-Колтогорского пояса) представляет собой эшелонированную систему контрастно выраженных морфоструктур, ориентированных в меридиональном направлении в виде сближенных крупных валообразных поднятий и узких прогибов, разделенных склоновыми зонами с большими амплитудами перепада отметок (до 500-600 м) и очень высокими для региона градиентами (отношение перепада отметок к ширине склона). Отношение длины валов и прогибов к их ширине редко превышает 3:1, поскольку обычно они прерываются субширотными или диагональными системами "трансформных" трогов и перегибов структурной поверхности.
Валообразные поднятия (таблица 1.1.1) имеют крутые склоны, в той или иной степени асимметричный профиль и часто ступенчатое строение. Амплитудно-градиентные характеристики большинства склоновых структур Таркосалинской системы аномально высоки для платформенных обстановок, поэтому логично сделать предположение об их деформационной природе.
«Предбаженовский» размыв, по-видимому, связан с малоамплитудным подводным размывом выравненной поверхности васюганских отложений. О малой амплитуде расчленения рельефа поверхности размыва свидетельствует глинистый состав перекрывающих георгиевских и баженовских осадков, а морфологию поверхности размыва отражает схематическая карта изопахит георгиевской свиты для значительной части Сибирских увалов (рис.1.1.4). На северо-западе преобладают неупорядоченные относительно изометричные «окна размыва» в поле развития маломощных (до 10 м) глинисто-аргиллитовых отложений. Южнее площадь размыва увеличивается, образуя на северном склоне Сургутского свода обширное поднятие, осложненное широтным «заливом» с мощностью георгиевских отложений до 10-13 м (рис.1.1.2). Восточнее меридиана 76° в.д. конфигурация и размеры окон размыва и зон прогибания существенно отличаются: в распределении изолиний преобладают субмеридиональные направления, а мощность в осевых зонах более контрастных, чем на западе, прогибов превышает 10-15 м. В окнах размыва на поверхности «выступов» установлены различные горизонты васюганской свиты: на востоке это песчаные пласты верхней части свиты, а на крайнем западе изучаемой площади - разноуровенные отложения нижневасюганской подсвиты. Поскольку глубина размыва увеличивается в западном направлении, в этом же направлении снижается песчанистость отложений васюганской свиты в выступах.
Линия раздела западных и восточных областей размыва совпадает с границей основных морфотектонических типов поверхности Б - Верхненадымского ареала и Таркосалинской системы.
Таким образом, можно сделать вывод, что Баженовский горизонт в районе Сибирских увалов - это реперный структурный элемент мезозойского терригенного комплекса, пограничный слой между различными в формационном отношении этажами осадочного чехла Западно-Сибирской плиты. Углеродисто-кремнистые аргиллиты этого слоя обладают характерными и устойчивыми на площади свойствами состава с ограниченными вариациями мощности. Баженовский горизонт ограничен в разрезе фиксированными седиментационными контрастами, в том числе «предбаженовским» размывом.
В мезозойском (юрско-меловом) комплексе намечен вертикальный ряд формаций, где углеродсодержащие аргиллиты занимают определенную позицию - они заканчивают трансгрессивный цикл от нижне-среднеюрских озерно-аллювиалъных, дельтовых и лагунных отложений через келловей-оксфордские субконтинентальные и прибрежно-морские к волжским отложениям спокойного мелководного моря. Добаженовские отложения входят в общую группу серо-цветных полимиктовых, в том числе угленосных, формаций приморских равнин и мелководного моря. Послебаженовская «клиноформная» формация неокома фиксирует начало регрессивного цикла осадконакопления.
Латеральные неоднородности формационного ряда выражены на западе Сибирских увалов в виде устойчивой последовательности литофаций в разрезе (Верхненадымское плато), а на востоке - как область неустойчивых характеристик формационного ряда (Таркосалинская зона). Понимая процесс осадконакопления как функцию массопереноса обломочного материала по поверхности (экзогенная геодинамика), можно утверждать, что в юрское время Таркосалинская зона была более активной структурой, чем Верхненадымское плато, что и отразилось в структуре баженовского горизонта - схема изопахит фиксирует заметные колебания мощности отложений в Таркосалинской зоне по сравнению с таковыми более западных районов. Вместе с тем деформация этого горизонта указывает, что тектоническая активность здесь продолжалась и позднее. Следовательно, наблюдаемая неоднородность строения юрского комплекса Таркосалинской зоны определяется седиментационной и постседиментационной составляющими. В существенно меньшей степени конседиментационные деформации проявлены в верховьях р. Надым.
Серия широтных профилей (рис.1.1.5), составленных по буровым скважинам с учетом региональных профилей ОГТ, убедительно иллюстрирует морфоструктурную неоднородность баженовского горизонта (и юрско-мелового комплекса в целом) изучаемой территории, подтверждая таким образом схему морфотектонического районирования (рис.1.1.3). Верхненадымскому ареалу соответствует преимущественно субгоризонтальное залегание баженовской свиты, а Таркосалинской системе - область аномальных отклонений от горизонтального залегания, т.е. наличие деформаций в осадочной толще. По-видимому, склоны валов, или перегибы слоев, сформированы системами малоамплитудных сбросов. Причем деформации слоев проявляются не только в подстилающих толщах юры, но также в перекрывающих баженовскую свиту отложениях неокома, т.е. имеют постседиментационный характер. В таком случае в зонах малоамплитудных сбросов следует ожидать зональную деформацию породных массивов в виде повышенной трещиноватости. Соответственно это влечет за собой нарушение первичных свойств пористости и проницаемости отложений, что необходимо учитывать в задачах прогноза региональной нефтегазоносности мезозойского комплекса.
Рис.1.1.1. Корреляция литофации мезозойского комплекса Сибирских увалов:
Добаженовские литофации: 1 - существенно песчаниковая (более 70 %), 2 - существенно аргиллитовая (более 70 %), 3 - песчаник-аргиллитовая (более 50 % аргиллитов), 4 - аргиллит-песчаниковая (более 50 % песчаников); 5 - угленосные литофации; 6 - аргиллиты баженовского горизонта; 7 - клиноформная терригенная формация неокома; 8 - границы формаций; 9 - подошва мезозойского комплекса; 10 - скважины, вскрывшие подошву юрского комплекса.
Рис. 1.1.2. Схема изопахит Баженовской свиты:
1 – изопахиты, м; 2 - мощность баженовской свиты по скважинам, м; 3 - линии профилей литофаций (а) и баженовского горизонта (б).
Рис.1.1.3.Морфотектоническая карта структурной поверхности Б:
1 - области малоамплитудных поднятий и прогибов (плато); 2 - днища крупных прогибов (впадин); 3 - вершинные поверхности крупных поднятий (валов); 4 - высокоградиентные (а) и низкоградиентные (б) склоновые зоны, 5 – предполагаемые разломы, 6 – граница морфотектонических районов; цифры – основные поднятия (валы) Таркосалинской системы (таблица 1.1.1).
Рис.1.1.4. Схема изопахит Георгиевской свиты (предбаженовский размыв):
1- отсутствие отложений, 2- мощность баженовской свиты по скважинам, м; 3- линии профилей литофаций (а) и баженовского горизонта (б).
Рис. 1.1.5. Схематические широтные профили Баженовского горизонта (без учета амплитуды). Соотношение вертикального и горизонтального масштабов 1 : 50:
1 - баженовский горизонт, 2 - линии малоамплитудных сбросов, 3 - скважины, 4 - граница морфотектонических районов(рис.1.3.3).
Таблица 1.1.1- Амплитудно-градиентные характеристики склоновых структур Таркосалинской системы
Номер структуры | Структура | Длина, км | Ширина, км | Перепад отметок склона, м | |
запад | восток | ||||
1 | Пурпейская | >30 | 20 | 140 | 600 |
2 | Вэнгаяхинская | 90 | 25 | 320 | 720 |
3 | Вынгапуровская | 60 | 40 | 200 | 720 |
4 | Айваседапуровская | >45 | 35 | 500 | 500 |
5 | Етыпуровская | 80 | 25 | 600 | 500 |
6 | Комсомольская | 55 | 40 | 100 | 200 |
7 | Ноябрьская | 55 | 30 | 300 | 400 |
1.2 Климат и гидрография
Город Ноябрьск находится в сложных климатических условиях - в арктической зоне Западно-Сибирской равнины. Природа на Крайнем Севере очень ранима и медленно восстанавливается. Северная граница Ямало-Ненецкого АО - это берег Карского моря, на западе – Архангельская область и Республика Коми, на юге – ХМАО, на востоке – Таймырский и Эвенкийский автономные округа Красноярского края. Географические координаты города - 63°12′ северной широты и 75°27′ восточной долготы.
Для описания климатических условий были использованы данные лежащей вблизи метеорологической станции Халясавэй.
Высота Солнца над горизонтом на широте исследуемой территории в день летнего солнцестояния равна 50,2о. Наименьшая высота Солнца в день зимнего солнцестояния: 3,2о; в дни равноденствий она равна 26.7о. Годовая продолжительность солнечного сияния, в среднем, 1630 часов. Наибольшее число часов солнечного сияния отмечается в июле, наименьшее – в декабре. Весной число часов солнечного сияния в 2-3раза больше, чем осенью, что связано с годовым ходом облачности. В целом за год облачность снижает число часов солнечного сияния на 63%.
Годовой приход суммарной солнечной радиации составляет около 3200 МДж/м2. Быстрый рост суммарной радиации начинается в марте-апреле с увеличением высоты солнца над горизонтом и продолжительности дня. Максимальные значения отмечаются в мае, а в июле приход суммарной солнечной радиации начинает уменьшаться. Прямая солнечная радиация на горизонтальную поверхность составляет 1500 МДж/м2 в год, в июле соответственно, 600 и 250 МДж/м2, в декабре – 4 и 0 МДж/м2. Число дней без солнца от 115 до 135 в год. Суммарная солнечная радиация в декабре составляет 4 МДж/м2, а в июне 600 МДж/м2. Суммарная солнечная радиация за год составляет от 1600 МДж/м2. Доля прямой солнечной радиации в суммарной радиации меняется в течение года. В период с ноября по декабрь вклад прямой солнечной радиации незначителен и составляет около 20%. Зимой преобладает рассеянная радиация. Наиболее благоприятны условия для поступления прямой солнечной радиации летом, но даже в эти месяцы вклад прямой солнечной радиации составляет около 50%.
Альбедо (отношение количества отраженной к количеству поступающей солнечной радиации) естественной поверхности очень разнообразно. Летом отражается в среднем 18-25% приходящей радиации. Резкое увеличение значений альбедо начинается в октябре (до 50-60%) и связано с образованием устойчивого снежного покрова, в январе-феврале альбедо увеличивается до 80%, а с началом разрушения снежного покрова (апрель-май) альбедо уменьшается. Радиационный баланс около 900 МДж/м2, что составляет 20-28% годового количества суммарной радиации. Период с положительным радиационным балансом составляет 5-6 месяцев.
Циркуляция атмосферы формируется под влиянием арктических и умеренных воздушных масс. Зимой циркуляция определяется наличием над Баренцевым, Карским морями и на севере ЯНАО обширной ложбины низкого давления от Исландской депрессии и острогом высокого давления от Азиатского антициклона над южными районами Западной Сибири. Взаимодействие ложбины пониженного давления с отрогом высокого давления вызывает преобладание западного и юго-западного переноса воздушных масс. В апреле происходит заметное ослабление Азиатского антициклона, а над арктическими морями происходит усиление области высокого давления. Летом давление над континентом падает, формируется обширная часть пониженного давления, а так как над арктическими морями преобладает высокое давление, то преобладающие ветры – северо-восточного направления.
Меняющийся характер циркуляции хорошо прослеживается при анализе движения циклонов и антициклонов. Зимой циклоны смещаются в основном из Исландской депрессии по арктическим морям и вдоль северного побережья Евразии. Летом при ослаблении Азиатского антициклона происходит смещение южных циклонов к северу. В целом за год преобладает число дней с циклональной циркуляцией и глубокими циклонами. Наиболее активна циклоническая деятельность с сентября по ноябрь. Часть антициклонов смещается на территорию округа с севера Баренцева моря в юго-восточном направлении, и выносят туда арктический воздух. Чаще такие вторжения бывают весной. В июле отмечается выход так называемых ультраполярных антициклонов с Таймыра. Зимой область высокого давления над округом связана с северной окраиной или гребнем Азиатского антициклона. Наибольшее число дней с антициклонами отмечается в июле и августа, наименьшее – в октябре.
Для Западной Сибири характерны муссонообразные ветры: зимой с охлажденного материка на океан, летом с океана на сушу. В зимнее время преобладают ветры южного направления, летом Северо-западного и северного. В целом за год преобладают ветры северо-западного и южного направления. Среднегодовая скорость ветра равна 3,7м/с (рис. 1.2.1). В зимний период в среднем бывает 44 дня с ветром силой более 4 баллов (8м/с). Сильные и часто повторяющиеся ветра благоприятны для рассеивания загрязняющих атмосферный воздух веществ.
Рис.1.2.1. Средняя скорость ветра за год на станции Халясавей, м/с
Несмотря на слабую расчлененность рельефа, микроклимат в тайге летом различен. В местные понижения обычно скатывается остывший воздух, и общий прогрев их несколько запаздывает. Это явление наблюдается как в суточном, так и частично в сезонном ходе температуры и играет немалую роль в формировании местного климата. На открытых болотах снег сдувается и промерзание здесь более значительно, чем в лесу. Это позволяет зимой прокладывать через болота дороги, пригодные не только для езды на оленях, но и для вывозки леса тяжеловесными тракторами и автомашинами.
Высокая влажность воздуха и почвы характерны только для теплого времени года, когда выпадает основная масса осадков. Равнинность территории затрудняет сток, а лесные подзолистые и дерново-подзолистые почвы, покрытые обильной подстилкой из старой листвы, травяным и моховым покровом, слабо испаряют избыточную влагу.
Район исследования находится в умеренном климатическом поясе (климате северной тайги). Северная тайга относится к зоне повышенной дискомфортности климата с повторяемостью неблагоприятных погод в среднем за год 30%, зимой – 70%.
Годовое количество осадков около 584 миллиметров, максимум выпадает в теплое время года (с апреля по октябрь) (рис. 1.2.2). Наибольшее количество осадков выпадает в августе – 78 мм, наименьшее – в феврале – 24 мм.
Рис. 1.2.2 .Среднее количество осадков за год на станции Халясавей, мм
Следует отметить значительную изменчивость месячных и годовых сумм осадков. Так, например, в дождливые годы в августе выпадает 134 мм осадков, а в засушливые – 16 мм. Годовые суммы осадков могут отличаться от средних на 200-250 мм в ту или иную сторону. Число дней с осадками более 0,1 мм – 203 дня, более 5 мм – 25 дней.
Зима продолжается около 7 месяцев – 25 недель (с октября до апреля). Средняя продолжительность солнечного сияния при умеренно морозной погоде оставляет 0,5 часа, при жестко морозной -1,9 часа (ясный день). При облачном дне продолжительность уменьшается до 30 минут и менее. Суровость морозных погод усиливается тем, что в основном они формируются с ветром. При умеренно морозной погоде среднесуточная скорость ветра равна 5 м/с.
Средняя годовая температура воздуха района равна –6,7 ºС. Самым холодным месяцем в году является январь с температурой воздуха –25 ºС. Самый тёплый месяц в году - июль с температурой воздуха +16,2 ºС. Годовой ход температуры воздуха на станции Халясавей (ºС) приведен на рис.1.2.3. В отдельные дни почти ежегодно температура воздуха понижается до –49ºС. Такие низкие температуры можно ожидать почти ежегодно. Температура воздуха может понизиться до –61ºС.
Для всей зоны в мае характерны ночные заморозки, а в северных районах они возможны и летом. Общая продолжительность безморозного периода меньше 100 дней. Несмотря на короткое лето, эта зона получает сравнительно много солнечного тепла, чему способствуют длинные дни и прозрачный воздух. Вегетационный период в таежной зоне примерно на месяц больше безморозного и продолжается на севере около 100—110 дней. В северной тайге сельскохозяйственной деятельности мешают поздние весенние и ранние осенние ночные заморозки.
Рис. 1.2.3. Годовой ход температуры воздуха на станции Халясавей, ºС
Среднее число дней с метелью до 30-40дней. Максимум отмечается в феврале – марте. Число дней с гололедом около 2. Образуется с сентября по май и его возникновение связано с прохождением южных циклонов, при выпадении обложного дождя, мороси, снега. Среднее число дней с изморозью до 50-80. Число дней с туманами до 10. Исследуемый район лежит в умеренном климатическом поясе (климате северной тайги). Северная тайга относится к зоне повышенной дискомфортности климата с повторяемостью неблагоприятных погод в среднем за год 30%, зимой – 70%
Район исследований обладает большими ресурсами запаса поверхностных и подземных вод, пригодных для бытовых и промышленных целей. В основном, для хозяйственных и промышленных целей используется вода, добываемая из подземных горизонтов, питаемых за счёт природных вод поверхностных водоёмов и водотоков. Питание подземных горизонтов весьма стабильно, что обусловлено приуроченностью района к зоне избыточного увлажнения, обильному развитию низинных болот и озёр – до 80 % площади. Значительный по объёму и расходу поверхностный сток с пиковым весенним паводком определяют достаточно высокую ресурсную обеспеченность эксплуатационного водозабора г. Ноябрьск.
В своём гидрографическом расположении город Ноябрьск находится в бассейне реки Пякупур, представленной реками её водосбора – Вынгапур, Ханаяха, Янгаяха, и Итуяха. Для бассейна характерен значительный эрозионный врез, большинство рек имеют врезанные, хорошо выработанные долины с меандрирующими руслами. Основными элементами гидрографической сети района являются реки Ханаяха, Янгаяха и Нанкпех; озёра Тетумамонтяй, Ханто, Светлое. По характеру заболоченности территория относится к озёрно-болотной, озёра имеют термокарстовое, ледниковое происхождение.
Режимы водотоков весьма схожи, в годовом цикле можно выделить следующие основные фазы:
- весеннее половодье (середина мая – конец июня), общей продолжительностью не более 45 суток;
- низкий летне-осенний сток (продолжительность всего периода около 90 суток);
- очень низкий зимний меженный сток (в период ледостава).
Реки принадлежат к типу смешанного питания, в котором участвуют талые воды сезонных снегов, жидкие осадки и подземные воды. Основное питание реки получают за счет таяния снегов и выпадения летне-осенних дождей. Далее происходит перераспределение жидких осадков и они дают питание подземным водам. В основном гидрохимический режим определяется химическим составом атмосферных осадков и грунтовых питающих вод. Отличительной чертой территории является обильное развитие болот и озёр. В бассейнах отдельных рек уровень заболоченности достигает до 80%. Развитию многочисленных болот существенно способствовал режим накопления осадков на древних озерно-аллювиальных равнинах, неоднократные морские трансгрессии четвертичного периода на севере Западной Сибири, мерзлота.
Район исследований обладает большими ресурсами озерных вод, пригодных для бытовых и промышленных целей. Озёрные котловины сравнительно глубоко врезаны в толщи многолетнемерзлых пород, имеют крутые невысокие берега, разнообразны по размеру, но преимущественно округлой формы. Глубины озёр составляют от 4 до 30 м, но, основной источник питания озер, как и рек, - талые воды; в меньшей степени питание осуществляется за счет дождей. Роль грунтовых вод в питании озёр незначительна, и для большинства из них подземное питание наблюдается только в теплый период года. Почти во все сточные и бессточные озера приток талых вод происходит с незначительных по площади водосборов, представленных склонами озерных котловин и поверхностью ледяного покрова самих водоемов. Исключением являются проточные озера - в них талые воды поступают из бассейнов впадающих в них рек. В годовом ходе уровне озёр рассматриваемого района наблюдается два максимума и два минимума. Наиболее выраженный максимум наблюдается в период весеннего половодья, второй - в период летне-осенних дождей, в отдельные годы практически не выражен. Минимальные значения уровня отмечены во время ледостава и приурочены к периоду начала весеннего снеготаяния, для которого отмечается наибольшее истощение грунтового питания озера и максимальная толщина ледового покрова. Второй минимум – в летний период, при продолжительном периоде отсутствия осадков. Уровневый режим озер полностью соответствует источникам питания и водному балансу водоемов. Самые высокие уровни воды наблюдаются в период очищения озер от ледяного покрова. Затем происходит медленное понижение уровня, иногда прерываемое незначительными (до 1,5 - 2,0 см) повыше
Категории:
- Астрономии
- Банковскому делу
- ОБЖ
- Биологии
- Бухучету и аудиту
- Военному делу
- Географии
- Праву
- Гражданскому праву
- Иностранным языкам
- Истории
- Коммуникации и связи
- Информатике
- Культурологии
- Литературе
- Маркетингу
- Математике
- Медицине
- Международным отношениям
- Менеджменту
- Педагогике
- Политологии
- Психологии
- Радиоэлектронике
- Религии и мифологии
- Сельскому хозяйству
- Социологии
- Строительству
- Технике
- Транспорту
- Туризму
- Физике
- Физкультуре
- Философии
- Химии
- Экологии
- Экономике
- Кулинарии
Подобное:
- Определение степени и оценка загрязнения рек
В настоящее время проблема загрязнения водных объектов является наиболее актуальной, т.к. всем известно выражение - «вода - это жизнь». Б
- Отходы одна из основных проблем экологии планеты
Отходы одна из основных проблем экологии планетыСодержание1. Золошлаковые отходы Молдавской ГРЭС. Токсичность и возможности комплекс
- Оценка степени загрязнения сточных вод
Курсовая работаДисциплина: Моделирование в экологии и ПТСна тему: «Оценка степени загрязнения сточных вод»СодержаниеВведение Класси
- Очистка от выбросов участка тепловой резки металлов
СОДЕРЖАНИЕВведение 1. Краткая характеристика выбросов участка тепловой резки металлов2. Обоснование определения экономической эффект
- Последствия аварии на Чернобыльской АЭС
радиационный облучение авария чернобыльский26 апреля 1986 года произошел взрыв на Чернобыльской АЭС, которая расположена в 100 км от Киев
- Разработка мероприятий по защите окружающей среды при нанесении лакокрасочных материалов
Защита окружающей среды является важнейшей социально-экономической задачей.В условиях промышленно развитого общества при все возрас
- Методологические и концептуальные основы познания биосферы
В последние годы понятия биосферы можно услышать очень часто. Специалисты биологи, экологи, географы, геологи, представители гуманитар