Скачать

Конструирование радиорелейной линии

Локальные вычислительные сети (ЛВС) в настоящее время есть в любом офисе, на любом предприятии. ЛВС также естественна, как и электропроводка. Объединение компьютеров в ЛВС – необходимость в повседневной работе.

Локальная вычислительная сеть–компьютерная сеть, покрывающая обычно относительно небольшую территорию или небольшую группу зданий. Также существуют локальные сети, узлы которых разнесены географически на расстояния более 12 500 км. Несмотря на такие расстояния, подобные сети всё равно относят к локальным./1/

Одной из разновидностью таких сетей является радиорелейная связь.

За долгую историю своего развития, насчитывающую более шести десятилетий, несмотря на масштабное разворачивание ВОЛС, радиорелейная связь по-прежнему остается важнейшей составной частью транспортных систем разного уровня – от ведомственных до международных.

Следует признать, что прежнее значение радиорелейной связи на магистральном уровне было утеряно – ее повсеместно вытесняет волоконно-оптическая связь. Но не везде и не всегда. На относительно пустынных или неосвоенных, а также сложно-рельефных территориях, в ряде случаев для дублирования отдельных участков оптики, как предтеча ВОЛС (при необходимости развернуть связь не дожидаясь завершения строительства оптических линий) и др., радиорелейная связь вполне достойно востребована на магистральном уровне и сегодня.

В последние годы радиорелейная связь широко используется для построения ведомственных и корпоративных сетей, позволяя оперативно и эффективно обеспечивать связь между удаленными офисами. С помощью радиорелейной связи абонентам предоставляются услуги голосовой телефонной связи, передачи данных (интернет), кабельного телевидения. /2/


1 Проектно-пояснительная часть

1.1 Цель расчетно-графического задания

Разработать проект территориальной сети согласно требованиям технического задания на основе современного оборудования с использованием средств вычислительной техники и информационных технологий.

1.2 Анализ поставленной задачи

Выполнить проектирование в следующем объеме:

− разработать основные виды соединений;

− разработать структурную схему организации каналов;

− разработать спецификацию оборудования передачи данных;

− предусмотреть взаимодействие с оборудованием связи, локальными вычислительными сетями (ЛВС) и информационными комплексами (ИК);

− рассмотреть и представить систему управления;

− разработать требования к оборудованию связи между пунктами ПД;

В качестве физических каналов передачи информации территориальной сети предприятия предлагается использовать условия технического задания.

проводной сеть канал передача

1.3 Анализ предметной области

Особенность проводных (беспроводных) сетей передачи данных состоит в наличии радиоканала – объекта, отсутствующего у проводных сетей и определяющего показатели качества передачи информации в беспроводных сетях.

Радиорелейная связь благодаря своим особым свойствам все более широко применяется в глобальных, региональных и местных сетях передачи данных. Ее привлекательность обусловлена целым рядом существенных преимуществ:

1. радиорелейные системы (PPC) значительно превосходят традиционные проводные по оперативности и экономичности развертывания линий связи;

2. применение радиорелейных линий (РРЛ) – наиболее экономически выгодный, а подчас и единственно возможный вариант при организации многоканальной связи на территориях со сложным рельефом и там, где прокладка кабеля нецелесообразна;

3. РРЛ можно использовать для оперативного возобновления связи при авариях на магистралях проводной связи, заменяя ими поврежденные участки;

4. построение разветвленных цифровых сетей радиорелейной связи эффективно в больших городах и в индустриальных зонах, где прокладка новых кабелей невозможна или связана с неприемлемо высокими затратами;

5. качество передачи информации по РРЛ практически не уступает обеспечиваемому при использовании ВОЛС и других кабельных линий. /3/

1.4 Организация каналов передачи данных

Канал передачи первичной сети представляет собой совокупность технических средств и среды распространения, обеспечивающую передачу сигналов электросвязи в определенной полосе частот с определенной скоростью передачи между двумя сетевыми станциями, двумя сетевыми узлами или между сетевой станцией и сетевым узлом. Технические средства, позволяющие образовать каналы передачи, входят в состав систем передачи. /4/


1.4.1 Каналы передачи, их классификация и основные характеристики

Каналом передачи называется совокупность технических средств и среды распространения, обеспечивающая передачу сигналов электросвязи в определенной полосе частот или с определенной скоростью передачи между оконечными или промежуточными пунктами телекоммуникационных сетей.

В зависимости от способа представления информации электрическими сигналами различают аналоговые и цифровые каналы передачи данных.

Первые сети ПД были аналоговыми, поскольку использовали распространенные телефонные технологии. Но в дальнейшем устойчиво растет доля цифровых коммуникаций (это каналы типа Е1/Т1, ISDN, сети Frame Relay, выделенные цифровые линии и др.)

В зависимости от направления передачи различают каналы симплексные (односторонняя передача), дуплексные (возможность одновременной передачи в обоих направлениях) и полудуплексные (возможность попеременной передачи в двух направлениях).

В зависимости от числа каналов связи в аппаратуре ПД различают одно- и многоканальные средства ПД. В локальных вычислительных сетях и в цифровых каналах передачи данных обычно используют временное мультиплексирование, в аналоговых каналах – частотное разделение.

Если канал ПД монопольно используется одной организацией, то такой канал называют выделенным, в противном случае канал является разделяемым или виртуальным (общего пользования)./6/

1.4.2 Типовые каналы передачи

Канал передачи, параметры которого соответствуют принятым нормам, называют типовым.

Различают следующие типовые каналы передачи:

– канал тональной частоты;

– канал звукового вещания;

– канал изображений;

– широкополосные и цифровые каналы.

1.5 Декомпозиция задачи на отдельные подзадачи

Учитывая сложность и масштабность поставленной задачи, решать ее целесообразно в несколько этапов:

– исследование моделей каналов связи в телекоммуникационных системах;

– анализ протоколов маршрутизации;

– анализ активного оборудования для построения сетей;

– расчетно-графическая часть территориальной сети;

– проектирование линий связи;

– разработка функциональных схем проектируемой подсистемы;

– расчет волоконно-оптической магистрали связи.



2. Технологическая часть

2.1 Сравнительный анализ технологий проводного и беспроводного доступа

2.1.1 Требования и основные компоненты беспроводных сетей

Для решения перечисленных задач моделирования беспроводных сетей требуются следующие исходные данные.

1. Карта местности, необходимая для адекватного описания условий распространения сигналов в рассматриваемом регионе;

2. Сведения о законе распределения абонентов (трафика) на рассматриваемой территории и их характеристиках, заданных аналитически или представленных в обменном формате картографических данных;

3. Технические характеристики планируемой сети (технология передачи и обработки информации, частотный диапазон, требуемое описание сигнал/шум), указанные в ее стандарте;

4. Характеристики применяемого оборудования;

5. Технические характеристики радиосредств или оборудования, функционирующих в данном регионе.

Требования к объему и полноте исходных данных зависят от типа решаемой задачи (проводная или беспроводная).

В связи с многообразием и сложностью задач построения проводных (беспроводных) сетей трудно рассчитывать на реализацию в одной универсальной модели полного набора функций, необходимых для решения всех перечисленных задач. Поэтому, в настоящее время сложилось несколько специализированных типов автоматизированных компьютерных систем анализа и оптимизации характеристик беспроводных сетей, каждому из которых присущи свои особенности применяемых моделей. Среди них следует выделить 4 ключевых типа.

1. Системы частотно-территориального планирования проводных (беспроводных) сетей. Применяются на этапе развертывания новых или модернизации существующих беспроводных сетей различного назначения для оптимального выбора мест и состава оборудования приемопередающих станций; их особенностями являются:

− использование электронных географических карт для точной привязки модели сети к местности;

− применение строгих моделей распространения электромагнитных волн в каналах связи;

− широкий спектр рассчитываемых характеристик.

2. Системы, обеспечивающие решение задач электромагнитной совместимости проводных (беспроводных) сетей – применяются, как и первые, на этапе развертывания новых или модернизации существующих беспроводных сетей различного назначения для согласования их параметров с параметрами других сетей с целью минимизации взаимных помех и для них характерно:

− возможность подключения к базам данных с местами размещения и составом приемопередающей аппаратуры всех радиосредств, работающих в рассматриваемом регионе;

− возможность подключения к базам данных параметров приемопередающей аппаратуры различных производителей;

− использование электронных географических карт для точной привязки модели сети к местности;

− расчет характеристик помех различного вида и оценка их влияния на параметры сетей.

3. Системы мониторинга качества работы существующих сетей; применяются для измерения и последующего анализа характеристик сети в реальных условиях ее функционирования; в системах такого типа обеспечивается:

− обмен информацией с базами данных измерений параметров реальных сетей;

− возможность сравнения результатов расчета и эксперимента и корректировки параметров модели сети по его результатам.

4. Системы, предназначенные для оптимизации принципов передачи информации и параметров оборудования разрабатываемых сетей; в таких системах:

– нет необходимости в точной привязке модели сети к определенной местности;

– должна быть обеспечена возможность проверки работоспособности системы в различных условиях, вследствие чего применяются статистические модели распространения электромагнитных сигналов;

– имеется возможность задания различных алгоритмов работы сети.

2.1.2 Технологии беспроводного доступа

Беспроводные технологии 3G, WiMAX и Wi-Fi используются во все более широком спектре отраслей. 3G работает в области мобильной связи и обеспечивает передачу голоса и данных, правда, скорости передачи данных пока не очень высоки. Технология WiMAX в отличие от 3G ориентирована только на IP и потому проста и удобна. На ее основе можно быстро развернуть сеть, а пропускная способность WiMAX, в том числе и для передачи голоса, сулит большие перспективы. Однако 3G – зрелая, рабочая технология, а WiMAX хотя и более перспективная, но еще недостаточно разработана. Технология Wi-Fi работает на ограниченном расстоянии, и если теоретически можно добиться дальности в 200–300 м, то в условиях крупных городов с большим числом помех и преград она ограничена обычно 30 м и применяется, как правило, внутри помещений. Таким образом, cвязь по Wi-Fi удобна и для дома, и для офиса. Есть сети Wi-Fi весьма внушительных размеров, но они все равно ограничены помещениями, пусть и очень большими, с немалым скоплением людей, например, в аэропортах, крупных складских комплексах, гостиницах, выставочных павильонах.

WIMAX очень перспективная технология, но она требует достаточно широкого частотного спектра. И пока этот вопрос не будет отрегулирован в правовом плане, рассчитывать на большой рост сетей WiMAX не приходится.

Эти три технологии не конкуренты и являются взаимодополняющими для оператора – ведь у них разные зоны покрытия базовых станций. Известно, что Wi-Fi работает на небольшом расстоянии, и его целесообразно использовать, когда требуется небольшая зона покрытия. Технология WiMAX удобна, если необходимо обеспечить беспроводной широкополосный доступ в Интернет. Наиболее разумный путь для оператора – в зависимости от местоположения и конкретных условий работы комбинировать эти три технологии – 3G, WiMAX и Wi-Fi – с тем, чтобы обеспечить лучшую зону покрытия при оптимальных затратах.

Однако следует помнить, что у всех трех технологий разная степень зрелости. Технология 3G и ее реализация UMTS наиболее зрелые, так как есть готовое промышленное оборудование и решения на его базе, а самое главное, есть абонентские терминалы, позволяющие донести сервисы, которые развертываются на базе этой технологии, до конечных пользователей. Технология Wi-Fi также является достаточно зрелой. Но, к сожалению, этого нельзя сказать про технологию WiMAX. И все равно стоит делать на нее ставку, ее привлекательность и перспективность заключаются в том, что WiMAX дает возможность более эффективно использовать частотный спектр.

Но основной проблемой, характерной для всех новых технологий, являются не только вышеперечисленные сложности и нехватка недорогого терминального оборудования, а неготовность абонентов пользоваться услугами широкополосной передачи данных. Это серьезно тормозит распространение беспроводных технологий на массовом рынке.

Таким образом, если говорить о беспроводных технологиях в глобальном, мировом масштабе, то можно выделить три сдерживающих фактора: недостаток терминалов, ограниченность сервисов и высокие цены. А в России к ним еще добавляются сложности с лицензированием частот для WiMAX.

2.1.3 Технологии проводного доступа

Технологии проводного абонентского доступа имеет смысл разбить на пять основных групп по критерию среды передачи и категориям пользователей. На рис. 1 представлена их классификация.

LAN (Local Area Network) – группа технологий, предназначенных для предоставления корпоративным пользователям услуг доступа к ресурсам локальных вычислительных сетей и использующих в качестве среды передачи структурированные кабельные системы категорий 3, 4 и 5, коаксиальный кабель и оптоволоконный кабель.

DSL (Digital Subscriber Line) – группа технологий, предназначенных для предоставления пользователям ТфОП услуг мультимедиа и использующих в качестве среды передачи существующую инфраструктуру ТфОП.

КТВ (кабельное телевидение) – группа технологий, предназначенных для предоставления пользователям сетей КТВ мультимедийных услуг (за счет организации обратного канала) и использующих в качестве среды передачи оптоволоконный и коаксиальный кабели.

OAN (Optical Access Networks) – группа технологий, предназначенных для предоставления пользователям широкополосных услуг, линии доступа к мультимедийным услугам и использующих в качестве среды передачи оптоволоконный кабель.

СКД (сети коллективного доступа) – группа гибридных технологий для организации сетей доступа в многоквартирных домах; в качестве среды передачи используется существующая в домах инфраструктура ТфОП, радиотрансляционных сетей и сетей электропитания.

Рис. 1. Классификация технологий проводного доступа

Технологии группы LAN

В группе LAN более 90% всех сетей построены с использованием технологии Ethernet, она обеспечивает пользователям корпоративных сетей скорости передачи информации от 10 Мбит/с до 1 Гбит/с. Широкое распространение сетей Ethernet при организации LAN, в первую очередь, связано с низкой стоимостью, легкостью управления и простотой используемого оборудования. Ethernet обеспечивает сейчас поддержку широкого набора услуг, включая передачу речи и видео с требуемым качеством обслуживания QoS (IEEE 802.1p), а также организацию VLAN (IEEE 802.1Q).

Технология сетей коллективного доступа

Для организации относительно недорогого доступа в Интернет жителей многоквартирных домов разработаны технологии СКД: HomePNA и PLC (Power Line Communication). Сеть доступа развертывается на существующей в доме кабельной инфраструктуре (витая медная пара, проводка радиотрансляционных сетей, электрическая проводка), а концентратор трафика может подключаться к узлу служб с использованием различных систем передачи (кабельных, радио и др.).

Для домашних сетей подходит оборудование гибридных Ethernet или mini-DSLAM при использовании в качестве концентратора трафика мультиплексоров DSL.

Технология HPNA разработана альянсом Home Phoneline Networking Alliance (стандарты: HPNA 1.0, HPNA 1.1, HPNA 2.0 и HPNA 3.0). Системы доступа HPNA 1.x обеспечивают коллективный доступ к каналу с пропускной способностью 1 Мбит/с на расстоянии до 150 м (HPNA 1.0) и до 300 м (HPNA 1.1). В стандарте HPNA 2.0 пропускная способность коллективного канала увеличена до 10 Мбит/с при дальности до 350 м. В стандарте HPNA 3.0 пропускная способность увеличится до 100 Мбит/с.

Технологии симметричного DSL-доступа

Технологии симметричного DSL-доступа используются при предоставлении услуг объединения LAN, организации выносов, подключении оборудования пользователя к транспортным сетям по симметричным медным линиям. К этой группе относятся технологии HDSL, SDSL, MDSL, MSDSL, SHDSL, HDSL2/4 И VDSL.

Симметричные технологии xDSL различают по числу пар используемых проводов. В частности, самая «древняя» симметричная технология HDSL (high bit rate DSL) применяется для передачи по одной, двум или трем парам, причем в каждой паре осуществляется дуплексная передача. Часть «родословного дерева» xDSL для симметричных технологий представлена на рис. 2 /9/.


Рис. 2. Классификация симметричных xDSL-технологий по числу пар используемых проводов

Сначала появился вариант HDSL для двух пар, нормированный в ANSI, который использует кодирование 2B1Q. Затем прошла стандартизация HDSL для трех, двух и одной пар в ETSI с использованием 2B1Q или CAP. Часто употребляются обозначения HDSL2 и SDSL2, причем технология HDSL2 рассчитана исключительно на передачу Т1, a SDSL2 поддерживает скорости от 384 кбит/c до 2,304 Мбит/с (с шагом 64 кбит/с).

Технологии SDSL2 предназначались в основном для делового сектора. Но возможности комбинированной передачи речи и данных, повышенная потребность частного сектора в скорости передачи и хороших технических характеристиках (таких, как спектральная совместимость, аварийное питание и т.д.) могут в будущем привести к тому, что SDSL2 заменят ISDN в частном секторе и тем самым создадут серьезную конкуренцию асимметричным службам xDSL. Первые образцы оборудования SDSL2 были представлены на выставках «Ce-BIT'99» и «Telecom» /10/.

Технологии асимметричного xDSL-доступа

Если первоначально развитие симметричных технологий xDSL в основном было ориентировано на потребности делового сектора, то асимметричные технологии xDSL предназначались для частного сектора. Такой подход определяет существенную разницу в требованиях к ним. В частном секторе было необходимо, чтобы уже существующая телефонная служба (ТфОП или BRI-ISDN) продолжала работать и при переходе на ADSL. Классификация асимметричных xDSL-технологий приведена на рис. 3.

Рис. 3. Классификация асимметричных xDSL-технологий

ADSL (так называемая Full-rate ADSL) первоначально требовала наличия разветвителя. Технология обеспечивала максимальную скорость передачи в прямом направлении – 6,144 Мбит/с, а в обратном – 0,640 Мбит/с. Разделение осуществляется с помощью эхокомпенсации или методом частотного разделения. Разветвители необходимы как со стороны АТС, так и со стороны абонентов. В ADSL после долгой конкуренции САР (амплитудно-фазовая модуляция) и DMTV (дискретная мультитоновая технология) последний вид модуляции получил наибольшее распространение.

Первые версии ADSL имели следующие отношения скоростей передачи в прямом и обратном направлениях: ADSL1 – 1,5 Мбит/с / 16 кбит/с; ADSL2 – 3 Мбит/с / 16 кбит/с; ADSL3 -6 Мбит/с / 64 кбит/с).

Технологии группы КТВ

Использование сетей КТВ для построения интерактивных сетей доступа к мультимедийным услугам стало возможным с появлением в 1997 году стандарта DOCSIS (Data over Cable Service Interface Specification), разработанного по инициативе организации операторов кабельных сетей Северной Америки MCNS (Multimedia Network System Partners Ltd.). Для построения гибридных (HFC – Hybrid Fiber Coaxial) сетей КТВ сегодня имеется 5 стандартов: три американских (DOCSIS 1.0, DOCSIS 1.1 и DOCSIS 2.0), один европейский (Euro-DOCSIS) и один международный (Рек. J.112 ITU-T), объединяющий требования американских и европейского стандартов. Дальнейшее развитие европейского (IPCableCom) и американского (PacketCable) вариантов спецификаций на HFC-сети продолжается в части создания дополнительных возможностей и внедрения новых услуг. Для организации прямого канала в сетях КТВ США применяется полоса частот 6 МГц (Рек. J.83.B. ITU-T) в диапазоне частот 88–860 МГц. При использовании модуляции 256QAM скорость передачи данных в прямом канале достигает 42 Мбит/с. В Европе для этих целей занимается полоса частот 8 МГц (Рек. J.83.A ITU-T) в диапазоне частот 108–862 МГц, а скорость передачи составляет 52 Мбит/с. Отличие европейских и американских сетей КТВ не ограничивается только указанными характеристиками. Они разнятся также методами сигнализации и организации интерфейса V5, методами обеспечения безопасности и т.д. В целом эти различия и определили появление двух стандартов на обратный канал в интерактивных сетях КТВ: DOCSIS и EuroDOCSIS /11/. Стандарт DOCSIS 1.0 определяет физический и МАС-уровни, уровень управления для кабельных модемов и головных станций CMTS (Cable Modem Termination System), принципы обеспечения сетевой безопасности (шифрование и аутентификация) и качество обслуживания. Для организации обратного канала выделен диапазон частот 5–42 МГц. Скорость передачи в обратном канале для этого канала не превышает 1 Мбит/с. Дальнейшее совершенствование стандартов DOCSIS шло по пути увеличения пропускной способности обратного канала, обеспечения механизмов QoS для IP-телефонии и мультимедийных приложений. В третьей версии стандарта DOCSIS 2.0 скорость передачи в обратном канале составляет около 30 Мбит/с. В Европе для организации обратного канала выделен диапазон частот 5–65 МГц, а скорость передачи составляет около 42 Мбит/с./12/

Оптические технологии группы OAN

Группа технологий FTTx (Fiber To The x, где x может быть заменен на B – Building – здание или Cab – Cabinet – распределительный шкаф сети абонентских линий, см. рис. 1) предназначена для совместного использования с технологиями ADSL и VDSL и позволяет более эффективно использовать пропускную способность этих технологий благодаря сокращению длины медно-кабельных линий связи /13/.

Эти технологии позволяют предоставлять индивидуальному пользователю каналы с пропускной способностью выше 1 Гбит/с, однако стоимость их пока высока. В настоящее время для предоставления пользователям широкополосных услуг используются обычно смешанные медно-оптические сети доступа. Существует несколько концепций разворачивания сети доступа смешанного типа. Одна из них называется HFC (Hybrid Fiber Coaxial) и предполагает доведение оптики до точки концентрации, при этом распределительная абонентская сеть строится на основе коаксиальных кабелей. Данная архитектура не получила широкого распространения и используется обычно лишь операторами кабельного телевидения. Другая концепция является разновидностью концепции FTTx и носит название FTTB (Fiber To The Building – «волокно к зданию», то есть доведение ВОЛ С до офисного здания). Согласно концепции FTTB распределение сигналов по абонентам внутри здания осуществляется по витым медным парам с использованием преимущественно технологии VDSL. На рис. 4 представлены другие варианты концепции FTTx.

Рис. 4. Технологии оптического доступа


Варианты доступа FTTH и FTTB пока не получили широкого распростра – нения. Связано это в основном с тем, что их реализация требует от оператора значительно больших инвестиций, чем построение DSL-инфраструктуры, поскольку для предоставления абоненту высокоскоростного канала (до нескольких Гбит/с) необходимо во много раз увеличить пропускную способность опорных сетей, протянуть оптоволокно до абонента, разработать немало новых приложений и, самое главное, убедить абонента заплатить за это деньги. Поэтому многие операторы до сих пор стараются использовать имеющуюся медно-кабельную инфраструктуру.

Подгруппа технологий PON – это семейство быстроразвивающихся, наиболее перспективных технологий широкополосного мультисервисного множественного доступа по оптическому волокну. Суть технологии пассивных оптических сетей, вытекающая из ее названия, состоит в том, что ее распределительная сеть строится без каких-либо активных компонентов: разветвление оптического сигнала осуществляется с помощью пассивных делителей оптической мощности – сплиттеров. Следствием этого преимущества является снижение стоимости системы доступа, уменьшение объема необходимого сетевого управления, высокая дальность передачи и отсутствие необходимости в последующей модернизации распределительной сети.

Из технологий подгруппы PON на сегодняшний день известны 4 вида (рис. 5) /14/

:• APON (ATM PON);

• BPON (Broadband PON);

• GPON (Gigabit PON);

• EPON (Ethernet PON).


Рис. 5. Концепция построения САД на базе оптоволокна

2.2 Исследование модели каналов связи в телекоммуникационных системах

Проведем классификацию каналов связи.

Канал связи – это совокупность устройств, обеспечивающих передачу сигналов с определенными свойствами от одного пункта к другому. При построении системы связи, как правило, является заданным звеном, с которым источники и получатели сообщений должны быть согласованы посредством передатчиков и приемников.

По физической природе каналы связи делятся на:

1. Механические – используются для передачи материальных носителей информации;

2. Акустические – передают звуковой сигнал;

3. Оптические – передают световой сигнал;

4. Электрические – передают электрический сигнал.

Электрические и оптические каналы связи могут быть:

– проводными, использующими для передачи сигналов проводниковые линии связи (электрические провода, кабели, светодиоды и т.д.);

– беспроводными (радиоканалы, инфракрасные каналы и т.д.), использующими для передачи сигналов электромагнитные волны, распространяющиеся по эфиру.

По форме передаваемой информации каналы связи делятся на:

– аналоговые – по аналоговым каналам предается информация, представленная в непрерывной форме, то есть в виде непрерывного ряда значений какой-либо физической величины;

– цифровые – по цифровым каналам передается информация, представленная в виде цифровых (дискретных, импульсных) сигналов той или иной физической природы.

В зависимости от возможных направлений передачи информации различаю:

– симплексные КС, позволяющие передавать информацию только в одном направлении;

– полудуплексные КС, обеспечивающие попеременную передачу информации в прямом и обратном направлении;

– дуплексные КС, позволяющие вести передачу информации одновременно и в прямом и в обратном направлениях.

Каналы связи могут быть:

– коммутируемыми;

– некоммутируемыми.

Коммутируемые каналы создаются от отдельных участков(сегментов) только на время передачи по ним информации; по окончании передачи такой канал ликвидируется(разъединяется).

Некоммутируемые (выделенные) каналы создаются на длительное время и имеют постоянные характеристики по длине, пропускной способности, помехозащищенности.

По пропускной способности их можно разделить на:

– низкоскоростные КС, скорость передачи информации в которых от 50 до 200 бит/с; это телеграфные КС, как коммутируемые (абонентский телеграф), так и некоммутируемые;

– среднескоростные КС, например аналоговые (телефонные) КС; скорость передачи в них от 300 до 9600 бит/с, а в новых стандартах V90-V92 Международного консультативного комитета по телеграфии и телефонии (МККТТ) и до 56000 бит/с.

– высокоскоростные (широкополосные) КС, обеспечивающие скорость передачи информации выше 56000 бит/с.

Физической средой передачи информации в низкоскоростных и среднескоростных КС обычно являются проводные линии связи: группы либо параллельных, либо скрученных («витая пара») проводов.

Для организации широкополосных КС используются различные кабели, в частности:

– неэкранированные с витыми парами из медных проводов (UTP);

– экранированные с витыми парами из медных проводов(STP);

– волоконно-оптические;

– коаксиальные;

– беспроводные радиоканалы.

Витая пара – это изолированные полупроводники, попарно свитые между собой для уменьшения перекрестных наводок между проводниками.

UTP кабели чаще других используются в системах передачи данных, в частности в вычислительных сетях. Выделяют пять категорий витых пар UTP: первая и вторая категории используются при низкоскоростной передачи данных; третья, четвертая и пятая _ при скоростях передачи соответственно до 16,25 и 155 Мбит/с.

STP-кабели обладают хорошими техническими характеристиками, но имеют высокую стоимость, жесткие и неудобны в работе, требуется заземления экрана. Они делятся на типы: Type 1, Type 2 Type 3 Type 5 Type 9. Из них Type 3 определяет характеристики неэкранированного телефонного кабеля, а Type 5 – волоконно-оптического кабеля. Наиболее популярен кабель Type 1 стандарта IBM, состоящий из двух пар скрученных проводов, экранированных проводящей оплеткой, которую положено заземлять.

Коаксиальный кабель представляет собой медный проводник, покрытый диэлектриком и окруженный свитой из тонких медных проводников экранирующей защитной оболочкой.

Основу волоконно-оптического кабеля составляют «внутренние подкабели» – стеклянные или пластиковые волокна диаметром от 5 (одномодовые) до 100 (многомодовые) микрон, окруженные твердым заполнителем и помещенные в защитную оболочку диаметром 125–250 мкм. В одном кабеле может содержаться от одного до нескольких сотен таких «внутренних подкабелей»). Кабель, в свою очередь, окружен заполнителем и покрыт более толстой защитной оболочкой, внутри которой положен один или несколько силовых элементов, принимающих на себя обеспечение механической прочности кабеля.

Радиоканал – это беспроводной канал связи, прокладываемый через эфир. Система передачи данных (СПД) по радиоканалу включает в себя радиопередатчик и радиоприемник, настроенные на один и тот же радиоволновой диапазон, который определяется частотной полосой электромагнитного спектра, используемой для передачи данных. Высокоскоростной доступ предоставляет пользователям каналы со скоростью передачи 2 Мбит/с. и выше./15/

2.3 Анализ протоколов маршрутизации в компьютерных сетях

Маршрутизация (Routing) – это способ направления сообщений по различным сетям, посредством которого устройства доставляют сообщения получателям. Маршруты могут задаваться административно (статические маршруты), либо вычисляться с помощью алгоритмов маршрутизации, базируясь на информации о топологии и состоянии сети, полученной с помощью протоколов маршрутизации (динамические маршруты). Статическими маршрутами могут быть:

– маршруты, не изменяющиеся во времени;

– маршруты, изменяющиеся по расписанию;

– маршруты, изменяющиеся по ситуации – административно в момент возникновения стандартной ситуации.

Существуют два основных типа протоколов маршрутизации: протоколы внутренних маршрутизаторов (IGP – interior gateway protocol), для маршрутизаторов, находящихся внутри автономной системы (autonomous system), и протоколы внешних маршрутизаторов (EGP – exterior gateway protocol), для маршрутизаторов, которые общаются с маршрутизаторами в других автономных системах.

2.3.1 Протокол RIP

RIP (Routing Information Protocol) – один из наиболее распространенных протоколов маршрутизации в небольших компьютерных сетях. Алгоритм маршрутизации RIP (алгоритм Беллмана – Форда) был впервые разработан в 1969 году, как основной для сети ARPANET./1/

Протокол RIP предназначен для автоматического обновления таблицы маршрутов, при этом используется информация о состоянии сети, которая рассылается маршрутизаторами (routers). В соответствии с протоколом RIP любая машина может быть маршрутизатором. При этом все маршрутизаторы делятся на активные и пассивные. Активные маршрутизаторы сообщают о маршрутах, которые они поддерживают в сети. Пассивные маршрутизаторы читают эти широковещательные сообщения и исправляют свои таблицы маршрутов, но при этом сами информацию в сеть не предоставляют. Обычно в качестве активных маршрутизаторов выступают шлюзы, а в качестве пассивных – обычные машины (hosts).

В основу алгоритма маршрутизации по протоколу RIP положена простая идея: чем больше шлюзов надо пройти пакету, тем большевреми требуется для прохождения маршрута. При обмене сообщениями маршрутизаторы сообщают в сеть IP – номер сети и число «прыжков» (hops), которое надо совершить, пользуясь данным маршрутом. Надо сразу заметить, что такой алгоритм эффективен только для сетей, которые имеют одинаковую скорость передачи по любому сегменту сети./16/

Недостатки RIP. Во-первых, RIP не имеет представления о делении на подсети. Если обычный 16-битный идентификатор хоста в адресе класса В ненулевой, RIP не может определить, принадлежит ли ненулевая часть идентификатору подсети или IP адрес – это целиком адрес хоста. Некоторые реализации используют маску подсети того интерфейса, через который пришла RIP информация, однако такой способ не всегда корректен.

Во-вторых, для RIP требуется очень много времени, чтобы восстановить функционирование сети, после того как вышел из строя маршрутизатор или канал. Время обычно составляет несколько минут. В это время могут возникнуть петли маршрутизации. В современных реализациях RIP существует множество рекомендаций, которые позволяют избавляться от петель маршрутизации и увеличить скорость сходимости сетей./17/

2.3.2 Протокол OSPF

OSPF (англ. Open Shortest Path First) – протокол динамической маршрутизации, основанный на технологии отслеживания состояния канала (link-state technology) и использующий для нахождения кратчайшего пути Алгоритм Дейкстры (Dijkstra’s algorithm). Протокол OSPF был разработан IETF в 1988 году. Последняя версия протокола представлена в RFC 2328./17/

OSPF также отличается от RIP (как и многие другие протоколы маршрутизации) тем, что OSPF использует непосредственно IP. Это означает, что он не использует UDP или TCP. OSPF имеет собственную величину, которая устанавливается в поле протокола (protocol) в IP заголовке.

К тому же, так как OSPF это протокол состояния канала, а не протокол вектора расстояний.


2.3.3 Протокол BGP

BGP (протокол граничных маршрутизаторов (Border Gateway Protocol)) – это протокол внешних маршрутизаторов, предназначенный для связи между маршрутизаторами в различных автономных системах. BGP заменяет собой старый EGP, который использовался в ARPANET.

Системы, поддерживающие BGP, обмениваются информацией о доступности сети с другими BGP системами. Эта информация включает в себя полный путь по автономным системам, по которым должен пройти траффик (поток данных), чтобы достичь этих сетей. Эта информация адекватна построению графа соединений AS (автономных систем). При этом возникает возможность легко обходить петли маршрутизации, а также упрощается процесс принятия решений о маршрутизации.

BGP отличается от RIP или OSPF тем, что BGP использует TCP в качестве транспортного протокола. Две системы, использующие BGP, устанавливают TCP соединения между собой и затем обмениваются полными таблицами маршрутизации BGP. Обновления представляются в виде изменений таблицы маршрутизации (таблица не передается целиком).

BGP это протокол вектора расстояний, однако, в отличие от RIP (который объявляет пересылки к пункту назначения), BGP перечис